List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2401830/publications.pdf Version: 2024-02-01

Διναρό Βιάνο

#	Article	IF	CITATIONS
1	Colloidal photonic crystals formation studied by real-time light diffraction. Nanophotonics, 2022, 11, 3257-3267.	6.0	4
2	Emergence of Ring‣haped Microstructures in Restricted Geometries Containing Selfâ€Propelled, Catalytic Janus Spheres. ChemNanoMat, 2021, 7, 1125.	2.8	0
3	Siliconâ€Based Photonic Architectures from Hierarchically Porous Carbon Opals. Particle and Particle Systems Characterization, 2020, 37, 1900396.	2.3	2
4	Vacancies in Selfâ€Assembled Crystals: An Archetype for Clusters Statistics at the Nanoscale. Small, 2020, 16, e2002735.	10.0	2
5	Large area metasurfaces made with spherical silicon resonators. Nanophotonics, 2020, 9, 943-951.	6.0	12
6	A Selfâ€Assembled 2D Thermofunctional Material for Radiative Cooling. Small, 2019, 15, e1905290.	10.0	83
7	Templateâ€Free, Surfactantâ€Mediated Orientation of Selfâ€Assembled Supercrystals of Metal–Organic Framework Particles. Small, 2019, 15, e1902520.	10.0	41
8	Bare Silica Opals for Realâ€Time Humidity Sensing. Advanced Materials Technologies, 2019, 4, 1800493.	5.8	20
9	Tunable Visual Detection of Dew by Bare Artificial Opals. Advanced Functional Materials, 2018, 28, 1800591.	14.9	13
10	Hierarchically Porous Carbon Photonic Structures. Advanced Functional Materials, 2018, 28, 1703885.	14.9	15
11	Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nature Chemistry, 2018, 10, 78-84.	13.6	298
12	Seeded Synthesis of Monodisperse Core–Shell and Hollow Carbon Spheres. Small, 2016, 12, 4357-4362.	10.0	27
13	Large fluctuations at the lasing threshold of solid- and liquid-state dye lasers. Scientific Reports, 2016, 6, 32134.	3.3	33
14	Monodisperse Silica Spheres Ensembles with Tailored Optical Resonances in the Visible. Particle and Particle Systems Characterization, 2016, 33, 871-877.	2.3	12
15	Shape Memory Cellulose-Based Photonic Reflectors. ACS Applied Materials & Interfaces, 2016, 8, 31935-31940.	8.0	68
16	Engineering the Lightâ€Transport Mean Free Path in Silica Photonic Glasses. Particle and Particle Systems Characterization, 2016, 33, 352-357.	2.3	6
17	Colloidal crystals and water: Perspectives on liquid–solid nanoscale phenomena in wet particulate media. Advances in Colloid and Interface Science, 2016, 234, 142-160.	14.7	14
18	Random Lasing in Novel Dyeâ€Doped White Paints with Shape Memory. Advanced Optical Materials, 2015, 3, 1080-1087.	7.3	12

#	Article	IF	CITATIONS
19	Exploration and Exploitation of Water in Colloidal Crystals. Advanced Materials, 2015, 27, 2686-2714.	21.0	27
20	Shape-memory effect for self-healing and biodegradable photonic systems. , 2014, , .		0
21	Thermoresponsive Shapeâ€Memory Photonic Nanostructures. Advanced Optical Materials, 2014, 2, 516-521.	7.3	56
22	Nanoscale Morphology of Water in Silica Colloidal Crystals. Journal of Physical Chemistry Letters, 2013, 4, 1136-1142.	4.6	21
23	Qualitative and Quantitative Analysis of Crystallographic Defects Present in 2D Colloidal Sphere Arrays. Langmuir, 2012, 28, 161-167.	3.5	12
24	Studying Light Propagation in Self-Assembled Hybrid Photonic–Plasmonic Crystals by Fourier Microscopy. Langmuir, 2012, 28, 9174-9179.	3.5	24
25	Water-Dependent Micromechanical and Rheological Properties of Silica Colloidal Crystals Studied by Nanoindentation. Nano Letters, 2012, 12, 4920-4924.	9.1	25
26	Photoinduced Local Heating in Silica Photonic Crystals for Fast and Reversible Switching. Advanced Materials, 2012, 24, 6204-6209.	21.0	10
27	One-Step-Process Composite Colloidal Monolayers and Further Processing Aiming at Porous Membranes. Langmuir, 2012, 28, 13172-13180.	3.5	9
28	In Situ Optical Study of Water Sorption in Silica Colloidal Crystals. Journal of Physical Chemistry C, 2012, 116, 18222-18229.	3.1	18
29	Magnetophotonic Response of Three-Dimensional Opals. ACS Nano, 2011, 5, 2957-2963.	14.6	21
30	Three Regimes of Water Adsorption in Annealed Silica Opals and Optical Assessment. Langmuir, 2011, 27, 13992-13995.	3.5	20
31	Light Emission from Nanocrystalline Si Inverse Opals and Controlled Passivation by Atomic Layer Deposited Al ₂ O ₃ . Advanced Materials, 2011, 23, 5219-5223.	21.0	17
32	Ultrathin conformal coating for complex magneto-photonic structures. Nanoscale, 2011, 3, 4811.	5.6	12
33	Waterâ€Đependent Photonic Bandgap in Silica Artificial Opals. Small, 2011, 7, 1838-1845.	10.0	33
34	Nanostructuring of Azomolecules in Silica Artificial Opals for Enhanced Photoalignment. Advanced Functional Materials, 2011, 21, 4109-4119.	14.9	11
35	Selfâ€Assembled Photonic Structures. Advanced Materials, 2011, 23, 30-69.	21.0	583
36	Tunable magneto-photonic response of nickel nanostructures. Applied Physics Letters, 2011, 99, .	3.3	22

#	Article	IF	CITATIONS
37	High Degree of Optical Tunability of Selfâ€Assembled Photonicâ€Plasmonic Crystals by Filling Fraction Modification. Advanced Functional Materials, 2010, 20, 4338-4343.	14.9	45
38	Facile route to magnetophotonic crystals by infiltration of 3D inverse opals with magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2010, 322, 1494-1496.	2.3	13
39	New poly(phenylenevinylene)â€methyl methacrylateâ€based photonic crystals. Journal of Polymer Science Part A, 2010, 48, 2659-2665.	2.3	4
40	Enhancement and Directionality of Spontaneous Emission in Hybrid Selfâ€Assembled Photonic–Plasmonic Crystals. Small, 2010, 6, 1757-1761.	10.0	78
41	Resonance-driven random lasing. Nature Photonics, 2008, 2, 429-432.	31.4	261
42	Electrodeposition and optical properties of silver infiltrated photonic nanostructures. Materials Letters, 2008, 62, 2677-2680.	2.6	8
43	Resonant light transport through Mie modes in photonic glasses. Physical Review A, 2008, 78, .	2.5	62
44	Observation of Resonant Behavior in the Energy Velocity of Diffused Light. Physical Review Letters, 2007, 99, 233902.	7.8	73
45	Stacking patterns in self-assembly opal photonic crystals. Applied Physics Letters, 2007, 90, 161131.	3.3	46
46	Photonic Glass: A Novel Random Material for Light. Advanced Materials, 2007, 19, 2597-2602.	21.0	230
47	Silicon onion-layer periodic three dimensional nanostructures. Journal of Materials Chemistry, 2006, 16, 2969-2971.	6.7	7
48	Three-Dimensional Lithography of Photonic Crystals. , 2006, , 153-173.		2
49	Silicon Onionâ€Layer Nanostructures Arranged in Three Dimensions. Advanced Materials, 2006, 18, 1593-1597.	21.0	25
50	Quantum Dot Thin Layers Templated on ZnO Inverse Opals. Advanced Materials, 2006, 18, 2768-2772.	21.0	28
51	Opals for Photonic Band-Gap Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1143-1150.	2.9	3
52	ZnO Inverse Opals by Chemical Vapor Deposition. Advanced Materials, 2005, 17, 2761-2765.	21.0	94
53	Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Applied Physics Letters, 2003, 82, 1284-1286.	3.3	243
54	Optical study of the full photonic band gap in silicon inverse opals. Applied Physics Letters, 2002, 81, 4925-4927.	3.3	49

#	Article	IF	CITATIONS
55	Synthesis of inverse opals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 281-290.	4.7	100
56	Photonic band gap properties of CdS-in-opal systems. Applied Physics Letters, 2001, 78, 3181-3183.	3.3	40
57	Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405, 437-440.	27.8	1,512
58	Microstructural study of CdS/opal composites. Acta Materialia, 2000, 48, 4653-4657.	7.9	4
59	Silica-coated metals and semiconductors. Stabilization and nanostructuring. Pure and Applied Chemistry, 2000, 72, 257-267.	1.9	71
60	Photonic crystals for laser action. Optical Materials, 1999, 13, 187-192.	3.6	29
61	Electrophoretic Deposition To Control Artificial Opal Growth. Langmuir, 1999, 15, 4701-4704.	3.5	270
62	Bragg diffraction from indium phosphide infilled fcc silica colloidal crystals. Physical Review B, 1999, 59, 1563-1566.	3.2	93
63	Face centered cubic photonic bandgap materials based on opal-semiconductor composites. Journal of Lightwave Technology, 1999, 17, 1975-1981.	4.6	24
64	Atmospheric pressure MOCVD growth of crystalline InP in opals. Journal of Crystal Growth, 1998, 193, 9-15.	1.5	19
65	Control of the Photonic Crystal Properties of fcc-Packed Submicrometer SiO2 Spheres by Sintering. Advanced Materials, 1998, 10, 480-483.	21.0	309
66	CdS photoluminescence inhibition by a photonic structure. Applied Physics Letters, 1998, 73, 1781-1783.	3.3	150
67	Photonic crystal properties of packed submicrometric SiO2 spheres. Applied Physics Letters, 1997, 71, 1148-1150.	3.3	334
68	3D Long-range ordering in ein SiO2submicrometer-sphere sintered superstructure. Advanced Materials, 1997, 9, 257-260.	21.0	350
69	Characterization of bias enhanced MWCVD diamond thin films. Materials Letters, 1996, 29, 111-115.	2.6	5