Yafei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2399468/publications.pdf

Version: 2024-02-01

434195 394421 1,149 41 19 31 h-index citations g-index papers 41 41 41 1066 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	CENTRAL REGION COMPONENT1, a Novel Synaptonemal Complex Component, Is Essential for Meiotic Recombination Initiation in Rice. Plant Cell, 2013, 25, 2998-3009.	6.6	81
2	Ten Years of Gene Discovery for Meiotic Event Control in Rice. Journal of Genetics and Genomics, 2014, 41, 125-137.	3.9	68
3	OsDMC1 Is Not Required for Homologous Pairing in Rice Meiosis. Plant Physiology, 2016, 171, 230-241.	4.8	67
4	<i>Semi-Rolled Leaf2</i> modulates rice leaf rolling by regulating abaxial side cell differentiation. Journal of Experimental Botany, 2016, 67, 2139-2150.	4.8	64
5	The F-Box Protein ZYGO1 Mediates Bouquet Formation to Promote Homologous Pairing, Synapsis, and Recombination in Rice Meiosis. Plant Cell, 2017, 29, 2597-2609.	6.6	61
6	OsRAD51C is essential for double-strand break repair in rice meiosis. Frontiers in Plant Science, 2014, 5, 167.	3.6	51
7	The Role of OsMSH5 in Crossover Formation during Rice Meiosis. Molecular Plant, 2013, 6, 729-742.	8.3	46
8	P31 ^{comet} , a member of the synaptonemal complex, participates in meiotic DSB formation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10577-10582.	7.1	43
9	Meiotic Chromosome Association 1 Interacts with TOP3 \hat{l}_{\pm} and Regulates Meiotic Recombination in Rice. Plant Cell, 2017, 29, 1697-1708.	6.6	43
10	Characterization of a new semi-dominant dwarf allele of SLR1 and its potential application in hybrid rice breeding. Journal of Experimental Botany, 2018, 69, 4703-4713.	4.8	40
11	Ornithine δâ€aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice. Plant Journal, 2018, 96, 842-854.	5 . 7	40
12	Crossover Formation During Rice Meiosis Relies on Interaction of OsMSH4 and OsMSH5. Genetics, 2014, 198, 1447-1456.	2.9	39
13	XRCC3 is essential for proper double-strand break repair and homologous recombination in rice meiosis. Journal of Experimental Botany, 2015, 66, 5713-5725.	4.8	38
14	OsMTOPVIB Promotes Meiotic DNA Double-Strand Break Formation in Rice. Molecular Plant, 2016, 9, 1535-1538.	8.3	36
15	<i>Os<scp>SPL</scp></i> regulates meiotic fate acquisition in rice. New Phytologist, 2018, 218, 789-803.	7.3	33
16	OsSDS is essential for DSB formation in rice meiosis. Frontiers in Plant Science, 2015, 6, 21.	3.6	32
17	A strategy for generating rice apomixis by gene editing. Journal of Integrative Plant Biology, 2019, 61, 911-916.	8.5	32
18	HEIP1 regulates crossover formation during meiosis in rice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10810-10815.	7.1	28

#	Article	IF	Citations
19	De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Communications Biology, 2018, 1, 84.	4.4	24
20	OsMTOPVIB is required for meiotic bipolar spindle assembly. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15967-15972.	7.1	24
21	The OsRR24/LEPTO1 Type-B Response Regulator is Essential for the Organization of Leptotene Chromosomes in Rice Meiosis. Plant Cell, 2018, 30, 3024-3037.	6.6	22
22	Os HOP 2 regulates the maturation of crossovers by promoting homologous pairing and synapsis in rice meiosis. New Phytologist, 2019, 222, 805-819.	7.3	21
23	<i>Oryza sativa</i> RNA-Dependent RNA Polymerase 6 Contributes to Double-Strand Break Formation in Meiosis. Plant Cell, 2020, 32, 3273-3289.	6.6	20
24	Global Identification of Genes Specific for Rice Meiosis. PLoS ONE, 2015, 10, e0137399.	2.5	19
25	Nitrogen nutrition contributes to plant fertility by affecting meiosis initiation. Nature Communications, 2022, 13, 485.	12.8	18
26	The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genetics, 2018, 14, e1007769.	3.5	17
27	OsRAD51D promotes homologous pairing and recombination by preventing nonhomologous interactions in rice meiosis. New Phytologist, 2020, 227, 824-839.	7.3	17
28	OsHUS1 Facilitates Accurate Meiotic Recombination in Rice. PLoS Genetics, 2014, 10, e1004405.	3. 5	15
29	The endonuclease homolog OsRAD1 promotes accurate meiotic double-strand break repair by suppressing non-homologous end joining. Plant Physiology, 2016, 172, pp.00831.2016.	4.8	14
30	The SUN Domain Proteins OsSUN1 and OsSUN2 Play Critical but Partially Redundant Roles in Meiosis. Plant Physiology, 2020, 183, 1517-1530.	4.8	14
31	PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. New Phytologist, 2021, 230, 585-600.	7.3	13
32	A functional centromere lacking CentO sequences in a newly formed ring chromosome in rice. Journal of Genetics and Genomics, 2016, 43, 694-701.	3.9	12
33	Defective Microspore DevelopmentÂ1 is required for microspore cell integrity and pollen wall formation in rice. Plant Journal, 2020, 103, 1446-1459.	5.7	11
34	Identification of quantitative trait loci associated with drought tolerance traits in rice (Oryza sativa) Tj ETQq0 0	Ͻ rgBT /Ον	erlock 10 Tf 5
35	The E3 ubiquitin ligase DESYNAPSIS1 regulates synapsis and recombination in rice meiosis. Cell Reports, 2021, 37, 109941.	6.4	9
36	OsATM Safeguards Accurate Repair of Meiotic Double-Strand Breaks in Rice. Plant Physiology, 2020, 183, 1047-1057.	4.8	6

YAFEI LI

#	Article	IF	CITATIONS
37	Replication protein A large subunit (RPA1a) limits chiasma formation during rice meiosis. Plant Physiology, 2021, 187, 1605-1618.	4.8	6
38	Genetic Mapping of ms1s, a Recessive Gene for Male Sterility in Common Wheat. International Journal of Molecular Sciences, 2021, 22, 8541.	4.1	5
39	Reproductive cells and peripheral parietal cells collaboratively participate in meiotic fate acquisition in rice anthers. Plant Journal, 2021, 108, 661-671.	5.7	5
40	QTL analysis of main agronomic traits in rice under low temperature stress. Euphytica, 2019, 215, 1.	1.2	3
41	Fluorescence In Situ Hybridization on Rice Chromosomes. Methods in Molecular Biology, 2016, 1370, 105-112.	0.9	2