Jesper de Claville Christiansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/239837/publications.pdf

Version: 2024-02-01

236925 276875 2,519 163 25 41 g-index citations h-index papers 165 165 165 2519 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Swelling of composite microgels with soft cores and thermo-responsive shells. Mechanics of Advanced Materials and Structures, 2022, 29, 7204-7220.	2.6	1
2	Tuning the viscoelastic response of hydrogel scaffolds with covalent and dynamic bonds. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105179.	3.1	9
3	Glassy structure affected cold-crystallization behavior and structure of poly(lactic acid). Journal of Polymer Research, 2022, 29, .	2.4	1
4	Reentrant-Convex Swelling of Thermoresponsive Gels in Mixtures of Solvents. Industrial & Engineering Chemistry Research, 2022, 61, 9725-9734.	3.7	1
5	Equilibrium Swelling of Thermo-Responsive Gels in Mixtures of Solvents. Chemistry, 2022, 4, 681-700.	2.2	0
6	Equilibrium swelling of thermoâ€responsive coreâ€shell microgels. Journal of Applied Polymer Science, 2021, 138, 50354.	2.6	2
7	Mechanical and microstructural characterization of poly(N-isopropylacrylamide) hydrogels and its nanocomposites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1021-1035.	1.1	2
8	Structure–property relations in linear viscoelasticity of supramolecular hydrogels. RSC Advances, 2021, 11, 16860-16880.	3.6	5
9	Modulation of the volume phase transition temperature of thermo-responsive gels. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104215.	3.1	7
10	The effects of pH and ionic strength on the volume phase transition temperature of thermo-responsive anionic copolymer gels. Polymer, 2021, 221, 123637.	3.8	6
11	Thermo-Viscoelastic Response of Protein-Based Hydrogels. Bioengineering, 2021, 8, 73.	3.5	1
12	Thermo-Mechanical Behavior of Poly(ether ether ketone): Experiments and Modeling. Polymers, 2021, 13, 1779.	4.5	5
13	Equilibrium swelling of multi-stimuli-responsive copolymer gels. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104623.	3.1	1
14	Toward sustainability in the built environment: An integrative approach. Resources, Conservation and Recycling, 2021, 172, 105676.	10.8	3
15	Modulation of the volume phase transition temperature for multi-stimuli-responsive copolymer hydrogels. International Journal of Mechanical Sciences, 2021, 211, 106753.	6.7	10
16	The effect of porosity on elastic moduli of polymer foams. Journal of Applied Polymer Science, 2020, 137, 48449.	2.6	13
17	Modeling the elastic response of polymer foams at finite deformations. International Journal of Mechanical Sciences, 2020, 171, 105398.	6.7	6
18	Thermo-mechanical behavior of elastomers with dynamic covalent bonds. International Journal of Engineering Science, 2020, 147, 103200.	5.0	13

#	Article	IF	CITATIONS
19	Modeling dielectric permittivity of polymer composites at microwave frequencies. Materials Research Bulletin, 2020, 126, 110818.	5.2	7
20	The effect of saccharides on equilibrium swelling of thermo-responsive gels. RSC Advances, 2020, 10, 30723-30733.	3.6	2
21	Modeling dielectric permittivity of polymer composites filled with transition metal dichalcogenide nanoparticles. Journal of Composite Materials, 2020, 54, 3841-3855.	2.4	2
22	Mechanical response and equilibrium swelling of thermoresponsive copolymer hydrogels. Polymer International, 2020, 69, 974-984.	3.1	11
23	Tension–compression asymmetry in the mechanical response of hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103851.	3.1	15
24	Electromagnetic properties and EMI shielding effectiveness of polymer composites reinforced with ferromagnetic particles at microwave frequencies. Journal of Applied Physics, 2020, 127, 125101.	2.5	9
25	Self-recovery, fatigue and anti-fatigue of supramolecular elastomers. International Journal of Fatigue, 2020, 134, 105496.	5.7	2
26	Thermal dynamics affected formation and dislocation of PDLA morphology. Polymer, 2020, 192, 122318.	3.8	6
27	Crystallisation of iPB-1 based on preserved helix conformation. Polymer, 2020, 190, 122209.	3.8	13
28	Micromechanical modeling of barrier properties of polymer nanocomposites. Composites Science and Technology, 2020, 189, 108002.	7.8	21
29	Modeling electrical conductivity of polymer nanocomposites with aggregated filler. Polymer Engineering and Science, 2020, 60, 1556-1565.	3.1	5
30	Equilibrium swelling of thermo-responsive copolymer microgels. RSC Advances, 2020, 10, 42718-42732.	3.6	7
31	Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Management, 2019, 96, 75-85.	7.4	183
32	Thermal conductivity of highly filled polymer nanocomposites. Composites Science and Technology, 2019, 182, 107717.	7.8	19
33	Conformational Energy Settled Crystallization Behaviors of Poly(<scp>I</scp> -lactic acid). ACS Applied Polymer Materials, 2019, 1, 2552-2560.	4.4	4
34	Evaluation of Relationship Between Crystallization Structure and Thermalâ€Mechanical Performance of PLA with MCC Addition. ChemistrySelect, 2019, 4, 10174-10180.	1.5	7
35	Modeling Thermal Conductivity of Highly Filled Polymer Composites. Polymer Engineering and Science, 2019, 59, 2174-2179.	3.1	6
36	Stretchâ€induced stableâ€metastable crystal transformation of PVDF/graphene composites. Polymer Crystallization, 2019, 2, e10079.	0.8	3

#	Article	IF	CITATIONS
37	Memory effects on crystallization behaviours of poly(<scp>l</scp> -lactic acid) revisited. CrystEngComm, 2019, 21, 2660-2668.	2.6	13
38	Selfâ€recovery and fatigue of doubleâ€network gels with permanent and reversible bonds. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 438-453.	2.1	8
39	Multiscale Characterization of a Wood-Based Biocrude as a Green Compatibilizing Agent for High-Impact Polystyrene/Halloysite Nanotube Nanocomposites. ACS Omega, 2019, 4, 19934-19943.	3.5	4
40	Coupling method for internal nozzle flow and the spray formation for viscous liquids. International Journal of Computational Methods and Experimental Measurements, 2019, 7, 130-141.	0.2	2
41	Macroporous temperatureâ€sensitive gels with fast response: Comparison of preparation methods. Journal of Applied Polymer Science, 2018, 135, 46353.	2.6	7
42	Nanocomposite Gels with Permanent and Transient Junctions under Cyclic Loading. Macromolecules, 2018, 51, 1462-1473.	4.8	25
43	A Novel Bioresidue to Compatibilize Sodium Montmorillonite and Linear Low Density Polyethylene. Industrial & Density Polyethylene.	3.7	11
44	Conformation Selected Direct Formation of Form I in Isotactic Poly(butene-1). Crystal Growth and Design, 2018, 18, 2525-2537.	3.0	28
45	Modeling the non-isothermal viscoelastic response of glassy polymers. Acta Mechanica, 2018, 229, 1137-1156.	2.1	6
46	Multi-cycle deformation of supramolecular elastomers: Constitutive modeling and structure-property relations. International Journal of Engineering Science, 2018, 133, 311-335.	5.0	4
47	Time-dependent response of hydrogels under multiaxial deformation accompanied by swelling. Acta Mechanica, 2018, 229, 5067-5092.	2.1	16
48	Mechanical response of double-network gels with dynamic bonds under multi-cycle deformation. Polymer, 2018, 150, 95-108.	3.8	4
49	Double-network gels with dynamic bonds under multi-cycle deformation. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 58-68.	3.1	6
50	Self-recovery, Fatigue and Anti-fatigue of Supramolecular Elastomers. Journal of Self-Assembly and Molecular Electronics (SAME), 2018, 6, 1-1.	0.0	0
51	Multiscale Investigation of a Bioresidue as a Novel Intercalant for Sodium Montmorillonite. Journal of Physical Chemistry C, 2017, 121, 1794-1802.	3.1	22
52	The effects of pH and ionic strength on equilibrium swelling of polyampholyte gels. International Journal of Solids and Structures, 2017, 110-111, 192-208.	2.7	21
53	Apparent stiffening of a graphene nanomembrane with initial curvature. AIP Advances, 2017, 7, 045123.	1.3	2
54	Bending of multilayer nanomembranes. Composite Structures, 2017, 182, 261-272.	5.8	2

#	Article	IF	Citations
55	Rheological behaviour of lubrication oils used in two-stroke marine engines. Industrial Lubrication and Tribology, 2017, 69, 750-753.	1.3	0
56	A Concrete and Viable Example of Multimaterial Body: The Evolution Project Main Outcomes. Procedia CIRP, 2017, 66, 300-305.	1.9	5
57	Structure–property relations for temperature-responsive gels. Polymer, 2017, 132, 164-173.	3.8	10
58	A simplified model for equilibrium and transient swelling of thermo-responsive gels. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 20-32.	3.1	11
59	Mechanical response and equilibrium swelling of temperature-responsive gels. European Polymer Journal, 2017, 94, 56-67.	5.4	11
60	Swelling of glucose-responsive gels functionalized with boronic acid. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 533-541.	3.1	5
61	Evolution FP7 funded project: body structure design strategies using new composite and aluminium materials and enabled technologies. International Journal of Automotive Composites, 2017, 3, 251.	0.1	0
62	A MODEL FOR CAVITATION-INDUCED PRIMARY BREAK-UP OF VISCOUS LIQUID SPRAYS. WIT Transactions on Engineering Sciences, 2017, , .	0.0	3
63	Thermal strain-induced cold crystallization of amorphous poly(lactic acid). CrystEngComm, 2016, 18, 3237-3246.	2.6	25
64	Temperature dependence of poly(lactic acid) mechanical properties. RSC Advances, 2016, 6, 113762-113772.	3.6	49
65	Structure-property relations for equilibrium swelling of cationic gels. European Polymer Journal, 2016, 79, 23-35.	5.4	4
66	An Advanced Technological Lightweighted Solution for a Body in White. Transportation Research Procedia, 2016, 14, 1021-1030.	1.5	15
67	Analysis of structure transition and compatibility of PTT/PC blend without transesterification. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1172-1182.	3.8	3
68	The Effects of pH and Ionic Strength of Swelling of Cationic Gels. International Journal of Applied Mechanics, 2016, 08, 1650059.	2.2	15
69	Swelling-induced bending of bilayer gel beams. Composite Structures, 2016, 153, 961-971.	5.8	15
70	Deformation-induced crystalline structure evolutions of isotactic poly-1-butene. Colloid and Polymer Science, 2016, 294, 1983-1988.	2.1	6
71	Modeling the effect of ionic strength on swelling of pH-sensitive macro- and nanogels. Materials Today Communications, 2016, 6, 92-101.	1.9	7
72	Inhomogeneous swelling of pH-responsive gels. International Journal of Solids and Structures, 2016, 87, 11-25.	2.7	22

#	Article	IF	CITATIONS
73	Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements. Polymer, 2016, 90, 111-121.	3.8	58
74	A qualitative analysis of particle-induced viscosity reduction in polymeric composites. Journal of Materials Science, 2016, 51, 3080-3096.	3.7	8
75	Modeling the effects of pH and ionic strength on swelling of polyelectrolyte gels. Journal of Chemical Physics, 2015, 142, 114904.	3.0	59
76	Double equilibrium melting temperatures and zero growth temperature of PVDF in PVDF/graphene composites. Journal of Polymer Research, 2015, 22, 1.	2.4	2
77	Modeling the effects of pH and ionic strength on swelling of anionic polyelectrolyte gels. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 055005.	2.0	28
78	Deformation and structure evolution of glassy poly(lactic acid) below the glass transition temperature. CrystEngComm, 2015, 17, 5651-5663.	2.6	37
79	Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS. Polymer, 2015, 70, 109-117.	3.8	22
80	Swelling of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mi mathvariant="normal">H</mml:mi></mml:mrow></mml:math> -sensitive hydrogels. Physical Review E, 2015, 91, 022305.	2.1	37
81	Crystalline structures and crystallization behaviors of poly(l-lactide) in poly(l-lactide)/graphene nanosheet composites. Polymer Chemistry, 2015, 6, 3988-4002.	3.9	37
82	Modeling the effects of temperature and pH on swelling of stimuli-responsive gels. European Polymer Journal, 2015, 73, 278-296.	5.4	31
83	Mechanical response of HEMA gel under cyclic deformation: Viscoplasticity and swelling-induced recovery. International Journal of Solids and Structures, 2015, 52, 220-234.	2.7	13
84	Enhancement of mechanical properties of polypropylene by blending with styrene-(ethylene-butylene)-styrene tri-block copolymer. Journal of Polymer Engineering, 2014, 34, 765-774.	1.4	8
85	Time-dependent response of hydrogels under constrained swelling. Journal of Applied Physics, 2014, 115, 233517.	2.5	11
86	Polypropylene/organoclay/SEBS nanocomposites with toughness–stiffness properties. RSC Advances, 2014, 4, 6573.	3.6	22
87	Influence of two compatibilizers on clay/PP nanocomposites properties. Polymer Engineering and Science, 2013, 53, 403-409.	3.1	5
88	Fading memory of loading history in polypropylene and a polypropylene/clay nanocomposite. Mechanics of Composite Materials, 2013, 49, 85-96.	1.4	1
89	Stress–strain relations for hydrogels under multiaxial deformation. International Journal of Solids and Structures, 2013, 50, 3570-3585.	2.7	55
90	Constitutive Modeling of the Mechanical Response of Nanocomposite Hydrogels for Tissue Engineering. Procedia Engineering, 2013, 59, 37-45.	1.2	1

#	Article	IF	Citations
91	Multi-cycle deformation of semicrystalline polymers: Observations and constitutive modeling. Mechanics Research Communications, 2013, 48, 70-75.	1.8	12
92	Effect of crystalline structure on the mechanical response of polypropylene under cyclic deformation. Journal of Polymer Engineering, 2013, 33, 181-190.	1.4	0
93	Predicting the laser weldability of dissimilar polymers. Polymer, 2013, 54, 3891-3897.	3.8	34
94	Investigation on high strength laser welds of polypropylene and highâ€density polyethylene. Journal of Applied Polymer Science, 2013, 129, 2679-2685.	2.6	21
95	Constitutive equations in finite elasticity of swollen elastomers. International Journal of Solids and Structures, 2013, 50, 1494-1504.	2.7	52
96	Volume changes in hydrogels subjected to finite deformations. Mechanics Research Communications, 2013, 50, 33-38.	1.8	5
97	Timeâ€dependent response of polypropylene/clay nanocomposites under tension and retraction. Polymer Engineering and Science, 2013, 53, 931-940.	3.1	3
98	Mechanical testing of polystyrene/polystyrene laser welds. Polymer Testing, 2013, 32, 475-481.	4.8	12
99	Cyclic viscoplasticity of semicrystalline polymers with finite deformations. Mechanics of Materials, 2013, 56, 53-64.	3.2	34
100	Investigation of Mechanical Properties of PP/Clay Nanocomposites Based on Network Cross-Linked Compatibilizers. Industrial & Engineering Chemistry Research, 2013, 52, 3773-3778.	3.7	10
101	Self-limiting lithiation of electrode nanoparticles in Li-ion batteries. Journal of Applied Physics, 2013, 114, .	2.5	16
102	Constitutive modeling of the viscoelastic and viscoplastic responses of metallocene catalyzed polypropylene. Multidiscipline Modeling in Materials and Structures, 2012, 8, 380-402.	1.3	0
103	CYCLIC VISCOPLASTICITY OF SEMICRYSTALLINE POLYMERS WITH FINITE STRAINS: OBSERVATIONS AND CONSTITUTIVE MODELING. International Journal of Computational Materials Science and Engineering, 2012, 01, 1250037.	0.7	0
104	Cyclic viscoelastoplasticity of polypropylene/nanoclay composites. Mechanics of Time-Dependent Materials, 2012, 16, 397-425.	4.4	6
105	Cyclic viscoelastoplasticity of polypropylene/nanoclay hybrids. Computational Materials Science, 2012, 53, 396-408.	3.0	10
106	Properties and Semicrystalline Structure Evolution of Polypropylene/Montmorillonite Nanocomposites under Mechanical Load. Macromolecules, 2012, 45, 962-973.	4.8	31
107	Morphology study of layered silicate/chitosan nanohybrids. Surface and Interface Analysis, 2012, 44, 200-207.	1.8	14
108	Effect of multiple extrusions on the impact properties of polypropylene/clay nanocomposites. Journal of Applied Polymer Science, 2012, 126, 620-630.	2.6	19

#	Article	IF	CITATIONS
109	Sealing of polymer micro-structures by over-moulding. International Journal of Advanced Manufacturing Technology, 2012, 61, 161-170.	3.0	3
110	Nanomaterials in biomedical applications. , 2011, , .		0
111	Activation energy of poly(methyl methacrylate) from rheometry and polymer welding. Journal of Materials Science, 2011, 46, 4660-4666.	3.7	2
112	Mullins' effect in semicrystalline polymers: experiments andÂmodeling. Meccanica, 2011, 46, 359-370.	2.0	16
113	Cyclic viscoelastoplasticity of polypropylene: effects of crystalline structure. Acta Mechanica, 2011, 221, 201-222.	2.1	4
114	Viscoelasticity and viscoplasticity of polypropylene/polyethylene blends. International Journal of Solids and Structures, 2010, 47, 2498-2507.	2.7	13
115	Polypropylene/clay nanocomposites: mechanical response, damage, and fracture. EPJ Web of Conferences, 2010, 6, 05004.	0.3	0
116	Nonlinear time-dependent response of polypropylene/nanoclay melts: Experiments and modeling. Computational Materials Science, 2010, 47, 807-816.	3.0	10
117	Effect of annealing on viscoplasticity of polymer blends: Experiments and modeling. Computational Materials Science, 2010, 50, 59-64.	3.0	2
118	Nonlinear Viscoelastic Response of Thermoplastic-Elastomer Melts. Advances in Applied Mathematics and Mechanics, 2010, 2, 1-31.	1.2	3
119	Viscoelasticity, viscoplasticity, and creep failure of polypropylene/clay nanocomposites. Composites Science and Technology, 2009, 69, 2596-2603.	7.8	61
120	Creep failure of polypropylene: experiments and constitutive modeling. International Journal of Fracture, 2009, 159, 63-79.	2.2	16
121	Essential work of fracture and viscoplastic response of a carbon black-filled thermoplastic elastomer. Engineering Fracture Mechanics, 2009, 76, 1977-1995.	4.3	3
122	Thermo-viscoplasticity of carbon black-reinforced thermoplastic elastomers. International Journal of Solids and Structures, 2009, 46, 2298-2308.	2.7	22
123	Cyclic viscoplasticity of carbon black-filled thermoplastic elastomers: Experiments and modeling. Computational Materials Science, 2009, 45, 398-406.	3.0	5
124	Thermo-viscoelasticity of polymer melts: experiments and modeling. Acta Mechanica, 2008, 197, 211-245.	2.1	3
125	Measurements of first and second normal stress differences in a polymer melt. Journal of Non-Newtonian Fluid Mechanics, 2008, 148, 41-46.	2.4	25
126	Cyclic thermo-viscoplasticity of carbon black-reinforced thermoplastic elastomers. Composites Science and Technology, 2008, 68, 3114-3122.	7.8	10

#	Article	IF	CITATIONS
127	Thermo-viscoelastic and viscoplastic behavior of high-density polyethylene. International Journal of Solids and Structures, 2008, 45, 4274-4288.	2.7	49
128	Thermo-viscoelastic response of nanocomposite melts. International Journal of Engineering Science, 2008, 46, 87-104.	5.0	8
129	Cyclic elastoplasticity of solid polymers. Computational Materials Science, 2008, 42, 27-35.	3.0	9
130	Viscoelasticity of polyethylene/montmorillonite nanocomposite melts. Computational Materials Science, 2008, 43, 1027-1035.	3.0	3
131	Cyclic viscoplasticity of high-density polyethylene: Experiments and modeling. Computational Materials Science, 2007, 39, 465-480.	3.0	54
132	Viscoelasticity and viscoplasticity of semicrystalline polymers: Structure–property relations for high-density polyethylene. Computational Materials Science, 2007, 39, 729-751.	3.0	39
133	Cyclic deformation of ternary nanocomposites: Experiments and modeling. International Journal of Solids and Structures, 2007, 44, 2677-2694.	2.7	6
134	Cyclic viscoplasticity of high-density polyethylene/montmorillonite clay nanocomposite. European Polymer Journal, 2007, 43, 10-25.	5.4	21
135	Cyclic viscoplasticity of thermoplastic elastomers. Acta Mechanica, 2007, 194, 47-65.	2.1	13
136	Cyclic viscoplasticity of solid polymers: The effects of strain rate and amplitude of deformation. Polymer, 2007, 48, 3003-3012.	3.8	17
137	Constitutive equations for the nonlinear viscoelastic and viscoplastic behavior of thermoplastic elastomers. International Journal of Engineering Science, 2006, 44, 205-226.	5.0	25
138	Constitutive equations for the nonlinear elastic response of rubbers. Acta Mechanica, 2006, 185, 31-65.	2.1	7
139	Competing effect between filled glass bead and induced? crystal on the tensile properties of polypropylene/glass bead blends. Journal of Applied Polymer Science, 2005, 96, 1729-1733.	2.6	12
140	Sandwich Panel With a Periodical and Graded Core., 2005,, 773-782.		0
141	Constitutive equations for the viscoplastic response of isotactic polypropylene in cyclic tests: The effect of strain rate. Polymer Engineering and Science, 2004, 44, 548-556.	3.1	21
142	Viscosity models for silicate melts. Journal of Non-Newtonian Fluid Mechanics, 2004, 124, 71-76.	2.4	0
143	Finite viscoplasticity of semicrystalline polymers. Archive of Applied Mechanics, 2003, 72, 779-803.	2.2	7
144	A Model for the Elastoplastic Behavior of Isotactic Poly(propylene) Below the Yield Point. Macromolecular Materials and Engineering, 2003, 288, 164-174.	3.6	5

#	Article	IF	Citations
145	Model for the viscoelastic and viscoplastic responses of semicrystalline polymers. Journal of Applied Polymer Science, 2003, 88, 1438-1450.	2.6	13
146	Effect of high-temperature annealing on the elastoplastic response of isotactic polypropylene in loading-unloading tests. Journal of Applied Polymer Science, 2003, 90, 186-196.	2.6	3
147	The effect of annealing on the elastoplastic response of isotactic polypropylene. European Polymer Journal, 2003, 39, 21-31.	5.4	34
148	The effect of annealing on the viscoplastic response of semicrystalline polymers at finite strains. International Journal of Solids and Structures, 2003, 40, 1337-1367.	2.7	14
149	The effect of strain rate on the viscoplastic behavior of isotactic polypropylene at finite strains. Polymer, 2003, 44, 1211-1228.	3.8	16
150	Model for anomalous moisture diffusion through a polymer-clay nanocomposite. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 476-492.	2.1	90
151	The effect of annealing on the nonlinear viscoelastic response of isotactic polypropylene. Polymer Engineering and Science, 2003, 43, 946-959.	3.1	17
152	Modelling the viscoplastic response of polyethylene in uniaxial loading–unloading tests. Mechanics Research Communications, 2003, 30, 431-442.	1.8	24
153	The effect of annealing on the elastoplastic and viscoelastic responses of isotactic polypropylene. Computational Materials Science, 2003, 27, 403-422.	3.0	9
154	Nonlinear time-dependent response of isotactic polypropylene. Journal of Rheology, 2003, 47, 595-618.	2.6	3
155	Physical aging in a hyperquenched glass. Applied Physics Letters, 2002, 81, 2983-2985.	3.3	71
156	Influence of push–pull injection moulding on fibres and matrix of fibre reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 2002, 33, 735-744.	7.6	35
157	The effect of annealing on the time-dependent behavior of isotactic polypropylene at finite strains. Polymer, 2002, 43, 4745-4761.	3.8	42
158	Determination of the fictive temperature for a hyperquenched glass. Chemical Physics Letters, 2002, 357, 20-24.	2.6	124
159	EFFECT OF CROSS-LINKING OF HIGH-DENSITY POLYETHYLENE. I. ON SPHERULITIC STRUCTURES. Journal of Macromolecular Science - Physics, 2001, 40, 335-341.	1.0	1
160	Mechanical Properties of Isotactic Polypropylene with Oriented and Cross-hatched Lamellae Structure. International Polymer Processing, 2000, 15, 202-207.	0.5	13
161	FRAGILITY AND FLOW BEHAVIOUR OF SEVERAL PHOSPHATE AND SILICATE MELTS. Phosphorus Research Bulletin, 1999, 10, 497-502.	0.6	3
162	A model for equilibrium swelling of the UCST â€ŧype thermoâ€responsive hydrogels. Polymer International, 0, , .	3.1	2

JESPER DECLAVILLE

#	Article	IF	CITATIONS
163	A Predictive Model for Equilibrium Swelling of Thermoresponsive Gels in Aqueous Solutions of Surfactants. ACS Applied Polymer Materials, 0, , .	4.4	1