
Paolo D'Odorico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2398003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global desertification: Drivers and feedbacks. Advances in Water Resources, 2013, 51, 326-344.	3.8	656
2	Global land and water grabbing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 892-897.	7.1	480
3	The Global Foodâ€Energyâ€Water Nexus. Reviews of Geophysics, 2018, 56, 456-531.	23.0	446
4	Global agricultural economic water scarcity. Science Advances, 2020, 6, eaaz6031.	10.3	334
5	On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resources Research, 1999, 35, 3709-3722.	4.2	314
6	A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology, 2012, 5, 520-530.	2.4	313
7	Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology, 2010, 116, 236-245.	2.6	306
8	Feeding humanity through global food trade. Earth's Future, 2014, 2, 458-469.	6.3	300
9	Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere, 2010, 1, 1-11.	2.2	290
10	Meeting future food demand with current agricultural resources. Global Environmental Change, 2016, 39, 125-132.	7.8	277
11	Observed increasing water constraint on vegetation growth over the last three decades. Nature Communications, 2021, 12, 3777.	12.8	246
12	Mathematical models of vegetation pattern formation in ecohydrology. Reviews of Geophysics, 2009, 47, .	23.0	244
13	Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology, 2012, 93, 264-271.	3.2	243
14	Ecohydrology of water-controlled ecosystems. Advances in Water Resources, 2002, 25, 1335-1348.	3.8	242
15	Dryland ecohydrology and climate change: critical issues and technical advances. Hydrology and Earth System Sciences, 2012, 16, 2585-2603.	4.9	241
16	Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 2017, 10, 919-924.	12.9	238
17	AEOLIAN PROCESSES AND THE BIOSPHERE. Reviews of Geophysics, 2011, 49, .	23.0	230
18	The water-land-food nexus of first-generation biofuels. Scientific Reports, 2016, 6, 22521.	3.3	226

#	Article	IF	CITATIONS
19	Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. Advances in Water Resources, 2003, 26, 45-58.	3.8	217
20	The Tragedy of the Grabbed Commons: Coercion and Dispossession in the Global Land Rush. World Development, 2017, 92, 1-12.	4.9	216
21	Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophysical Research Letters, 2012, 39, .	4.0	210
22	On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. Journal of Geophysical Research, 2007, 112, .	3.3	202
23	Resilience and reactivity of global food security. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6902-6907.	7.1	179
24	Preferential states in soil moisture and climate dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8848-8851.	7.1	176
25	Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nature Geoscience, 2015, 8, 772-775.	12.9	164
26	A Multiscale, Hierarchical Model of Pulse Dynamics in Arid-Land Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 397-419.	8.3	153
27	Noise-induced stability in dryland plant ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10819-10822.	7.1	150
28	The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Scientific Reports, 2017, 7, 41613.	3.3	145
29	Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy, 2016, 61, 213-223.	6.0	144
30	Vegetation–microclimate feedbacks in woodland–grassland ecotones. Global Ecology and Biogeography, 2013, 22, 364-379.	5.8	142
31	Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation. Journal of Geophysical Research, 2010, 115, .	3.3	140
32	A Probabilistic Analysis of Fireâ€Induced Treeâ€Grass Coexistence in Savannas. American Naturalist, 2006, 167, E79-E87.	2.1	139
33	The Global Water Grabbing Syndrome. Ecological Economics, 2018, 143, 276-285.	5.7	134
34	Preferential states of seasonal soil moisture: The impact of climate fluctuations. Water Resources Research, 2000, 36, 2209-2219.	4.2	132
35	Manage water in a green way. Science, 2015, 349, 584-585.	12.6	130
36	Closing the yield gap while ensuring water sustainability. Environmental Research Letters, 2018, 13, 104002.	5.2	127

#	Article	IF	CITATIONS
37	Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20696-20701.	7.1	124
38	On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	120
39	Land grabbing: a preliminary quantification of economic impacts on rural livelihoods. Population and Environment, 2014, 36, 180-192.	3.0	120
40	On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology, 2006, 53, 597-609.	3.1	119
41	An analytical model to relate the vertical root distribution to climate and soil properties. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	119
42	Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environmental Research Letters, 2019, 14, 053001.	5.2	118
43	Recent History and Geography of Virtual Water Trade. PLoS ONE, 2013, 8, e55825.	2.5	115
44	The global value of water in agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21985-21993.	7.1	112
45	Threats to sustainable development posed by land and water grabbing. Current Opinion in Environmental Sustainability, 2017, 26-27, 120-128.	6.3	111
46	Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology, 2012, 5, 174-183.	2.4	110
47	Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resources Research, 2007, 43, .	4.2	109
48	Ecohydrology of Terrestrial Ecosystems. BioScience, 2010, 60, 898-907.	4.9	109
49	Water-controlled wealth of nations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4230-4233.	7.1	108
50	Global unsustainable virtual water flows in agricultural trade. Environmental Research Letters, 2019, 14, 114001.	5.2	108
51	Hydrologic controls on soil carbon and nitrogen cycles. II. A case study. Advances in Water Resources, 2003, 26, 59-70.	3.8	106
52	Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29526-29534.	7.1	106
53	Post-Fire Resource Redistribution in Desert Grasslands: A Possible Negative Feedback on Land Degradation. Ecosystems, 2009, 12, 434-444.	3.4	104
54	Local food crop production can fulfil demand for less than one-third of the population. Nature Food, 2020, 1, 229-237.	14.0	102

#	Article	IF	CITATIONS
55	Resilience in the global food system. Environmental Research Letters, 2017, 12, 025010.	5.2	100
56	Making ecological models adequate. Ecology Letters, 2018, 21, 153-166.	6.4	100
57	Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environmental Research Letters, 2020, 15, 095004.	5.2	100
58	Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems. Water Resources Research, 2006, 42, .	4.2	94
59	Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renewable and Sustainable Energy Reviews, 2019, 105, 499-512.	16.4	92
60	Stochastic soil moisture dynamics along a hillslope. Journal of Hydrology, 2003, 272, 264-275.	5.4	91
61	Tidal influences on carbon assimilation by a salt marsh. Environmental Research Letters, 2008, 3, 044010.	5.2	91
62	Global sensitivity of highâ€resolution estimates of crop water footprint. Water Resources Research, 2015, 51, 8257-8272.	4.2	91
63	Hydrologic and aeolian controls on vegetation patterns in arid landscapes. Geophysical Research Letters, 2007, 34, .	4.0	90
64	Global Spatio-Temporal Patterns in Human Migration: A Complex Network Perspective. PLoS ONE, 2013, 8, e53723.	2.5	90
65	Biogeochemistry of Kalahari sands. Journal of Arid Environments, 2007, 71, 259-279.	2.4	89
66	Reserves and trade jointly determine exposure to food supply shocks. Environmental Research Letters, 2016, 11, 095009.	5.2	88
67	Hillslope and channel contributions to the hydrologic response. Water Resources Research, 2003, 39,	4.2	87
68	Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3145-3157.	4.0	87
69	Tropical forest loss enhanced by large-scale land acquisitions. Nature Geoscience, 2020, 13, 482-488.	12.9	87
70	Physical and biological feedbacks of deforestation. Reviews of Geophysics, 2012, 50, .	23.0	86
71	Tree-grass coexistence in Savannas: The role of spatial dynamics and climate fluctuations. Geophysical Research Letters, 1999, 26, 247-250.	4.0	84
72	Does globalization of water reduce societal resilience to drought?. Geophysical Research Letters, 2010, 37, .	4.0	83

#	Article	IF	CITATIONS
73	Ecohydrology of groundwaterâ€dependent ecosystems: 1. Stochastic water table dynamics. Water Resources Research, 2009, 45, .	4.2	80
74	Changing Seasons: An Effect of the North Atlantic Oscillation?. Journal of Climate, 2002, 15, 435-445.	3.2	78
75	On the temporal variability of the virtual water network. Geophysical Research Letters, 2012, 39, .	4.0	78
76	An Analysis of the Soil Moisture Feedback on Convective and Stratiform Precipitation. Journal of Hydrometeorology, 2008, 9, 280-291.	1.9	76
77	Relation Between the North-Atlantic Oscillation and Hydroclimatic Conditions in Mediterranean Areas. Water Resources Management, 2011, 25, 1269-1279.	3.9	76
78	Geomorphic structure of tidal hydrodynamics in salt marsh creeks. Water Resources Research, 2008, 44, .	4.2	75
79	Fertility Island Formation and Evolution in Dryland Ecosystems. Ecology and Society, 2008, 13, .	2.3	75
80	Virtual water transfers unlikely to redress inequality in global water use. Environmental Research Letters, 2011, 6, 024017.	5.2	75
81	Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover. Ecology, 2017, 98, 762-772.	3.2	74
82	Impact of globalization on the resilience and sustainability of natural resources. Nature Sustainability, 2019, 2, 283-289.	23.7	74
83	Trends and fluctuations in the dates of ice break-up of lakes and rivers in Northern Europe: the effect of the North Atlantic Oscillation. Journal of Hydrology, 2002, 268, 100-112.	5.4	69
84	A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical Research Letters, 2005, 32, .	4.0	68
85	Potential for landsliding: Dependence on hyetograph characteristics. Journal of Geophysical Research, 2005, 110, .	3.3	67
86	On the ecohydrology of structurally heterogeneous semiarid landscapes. Water Resources Research, 2006, 42, .	4.2	64
87	Interannual variability of winter precipitation in the European Alps: relations with the North Atlantic Oscillation Hydrology and Earth System Sciences, 2009, 13, 17-25.	4.9	64
88	Hydraulic lift as a determinant of tree–grass coexistence on savannas. New Phytologist, 2015, 207, 1038-1051.	7.3	63
89	Hydrological limits to carbon capture and storage. Nature Sustainability, 2020, 3, 658-666.	23.7	63
90	Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth, 2021, 4, 1262-1277.	6.8	63

Paolo D'Odorico

#	Article	IF	CITATIONS
91	Modeling the effects of climate change on eelgrass stability and resilience: future scenarios and leading indicators of collapse. Marine Ecology - Progress Series, 2012, 448, 289-301.	1.9	62
92	Feedbacks between fires and wind erosion in heterogeneous arid lands. Journal of Geophysical Research, 2007, 112, .	3.3	61
93	Form and function of grass ring patterns in arid grasslands: the role of abiotic controls. Oecologia, 2008, 158, 545-555.	2.0	61
94	The Waterâ€Energy Nexus of Hydraulic Fracturing: A Global Hydrologic Analysis for Shale Oil and Gas Extraction. Earth's Future, 2018, 6, 745-756.	6.3	61
95	The Southern Kalahari: a potential new dust source in the Southern Hemisphere?. Environmental Research Letters, 2012, 7, 024001.	5.2	60
96	Moderating diets to feed the future. Earth's Future, 2014, 2, 559-565.	6.3	59
97	Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nature Food, 2021, 2, 409-416.	14.0	59
98	Impact of feedbacks on Chihuahuan desert grasslands: Transience and metastability. Journal of Geophysical Research, 2009, 114, .	3.3	58
99	Food appropriation through large scale land acquisitions. Environmental Research Letters, 2014, 9, 064030.	5.2	58
100	The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales. Ecological Monographs, 2017, 87, 198-218.	5.4	58
101	Water limits to closing yield gaps. Advances in Water Resources, 2017, 99, 67-75.	3.8	58
102	Enhancement of wind erosion by fire-induced water repellency. Water Resources Research, 2006, 42, .	4.2	57
103	Dustâ€rainfall feedbacks in the West African Sahel. Water Resources Research, 2008, 44, .	4.2	57
104	Nonlinear Dynamics and Alternative Stable States in Shallow Coastal Systems. Oceanography, 2013, 26, 220-231.	1.0	57
105	On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert. Journal of Geophysical Research, 2010, 115, .	3.3	56
106	Patterns and implications of Plant-soil <i>δ</i> ¹³ C and <i>δ</i> ¹⁵ N values in African savanna ecosystems. Quaternary Research, 2010, 73, 77-83.	1.7	55
107	A probabilistic model of rainfall-triggered shallow landslides in hollows: A long-term analysis. Water Resources Research, 2003, 39, .	4.2	54
108	The water footprint of carbon capture and storage technologies. Renewable and Sustainable Energy Reviews, 2021, 138, 110511.	16.4	54

#	Article	IF	CITATIONS
109	Vegetation patterns induced by random climate fluctuations. Geophysical Research Letters, 2006, 33, .	4.0	53
110	Soil carbon and nitrogen dynamics in southern African savannas: the effect of vegetation-induced patch-scale heterogeneities and large scale rainfall gradients. Climatic Change, 2009, 94, 63-76.	3.6	53
111	New frontiers of land and water commodification: socioâ€environmental controversies of largeâ€scale land acquisitions. Land Degradation and Development, 2017, 28, 2234-2244.	3.9	52
112	Ecohydrological feedbacks between salt accumulation and vegetation dynamics: Role of vegetationâ€groundwater interactions. Water Resources Research, 2010, 46, .	4.2	51
113	The water footprint of land grabbing. Geophysical Research Letters, 2013, 40, 6130-6135.	4.0	51
114	Impact of transnational land acquisitions on local food security and dietary diversity. Proceedings of the United States of America, 2021, 118, .	7.1	51
115	An Assessment of ENSO-Induced Patterns of Rainfall Erosivity in the Southwestern United States. Journal of Climate, 2001, 14, 4230-4242.	3.2	50
116	Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains. Water Resources Research, 2010, 46, .	4.2	50
117	Patterns as indicators of productivity enhancement by facilitation and competition in dryland vegetation. Journal of Geophysical Research, 2006, 111, .	3.3	49
118	Feedbacks between phosphorus deposition and canopy cover: The emergence of multiple stable states in tropical dry forests. Global Change Biology, 2008, 14, 154-160.	9.5	49
119	Post-fire resource redistribution and fertility island dynamics in shrub encroached desert grasslands: a modeling approach. Landscape Ecology, 2009, 24, 325-335.	4.2	49
120	Ecohydrology of groundwaterâ€dependent ecosystems: 2. Stochastic soil moisture dynamics. Water Resources Research, 2009, 45, .	4.2	49
121	Globalization of agricultural pollution due to international trade. Hydrology and Earth System Sciences, 2014, 18, 503-510.	4.9	45
122	The green and blue crop water requirement WATNEEDS model and its global gridded outputs. Scientific Data, 2020, 7, 273.	5.3	45
123	Phase Transitions Driven by State-Dependent Poisson Noise. Physical Review Letters, 2004, 92, 110601.	7.8	44
124	Spatial organization and drivers of the virtual water trade: a community-structure analysis. Environmental Research Letters, 2012, 7, 034007.	5.2	44
125	The fourth food revolution. Nature Geoscience, 2013, 6, 417-418.	12.9	44
126	Socio-Environmental Effects of Large-Scale Land Acquisition in Mozambique. Research for Development, 2018, , 377-389.	0.4	44

#	Article	IF	CITATIONS
127	On space-time scaling of cumulated rainfall fields. Water Resources Research, 1998, 34, 3461-3469.	4.2	43
128	Vegetation dynamics induced by phreatophyte–aquifer interactions. Journal of Theoretical Biology, 2007, 248, 301-310.	1.7	43
129	Environmental consequences of oil production from oil sands. Earth's Future, 2017, 5, 158-170.	6.3	43
130	Food Inequality, Injustice, and Rights. BioScience, 2019, 69, 180-190.	4.9	43
131	Stability and resilience of seagrass meadows to seasonal and interannual dynamics and environmental stress. Journal of Geophysical Research, 2012, 117, .	3.3	42
132	Early Warning Signs in Social-Ecological Networks. PLoS ONE, 2014, 9, e101851.	2.5	42
133	Effect of rainfall interannual variability on the stability and resilience of dryland plant ecosystems. Water Resources Research, 2007, 43, .	4.2	41
134	Coupled stochastic dynamics of water table and soil moisture in bare soil conditions. Water Resources Research, 2008, 44, .	4.2	41
135	Historical trade-offs of livestock's environmental impacts. Environmental Research Letters, 2015, 10, 125013.	5.2	41
136	Changes in spatial variance during a grassland to shrubland state transition. Journal of Ecology, 2017, 105, 750-760.	4.0	41
137	Can biological invasions induce desertification?. New Phytologist, 2009, 181, 512-515.	7.3	40
138	European large-scale farmland investments and the land-water-energy-food nexus. Advances in Water Resources, 2017, 110, 579-590.	3.8	40
139	The water-land-food nexus of natural rubber production. Journal of Cleaner Production, 2018, 172, 1739-1747.	9.3	40
140	Livestock intensification and the influence of dietary change: A calorie-based assessment of competition for crop production. Science of the Total Environment, 2015, 538, 817-823.	8.0	39
141	Spatially explicit feedbacks between seagrass meadow structure, sediment and light: Habitat suitability for seagrass growth. Advances in Water Resources, 2016, 93, 315-325.	3.8	39
142	Duration and frequency of water stress in vegetation: An analytical model. Water Resources Research, 2000, 36, 2297-2307.	4.2	38
143	Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots. Advances in Water Resources, 2014, 66, 70-80.	3.8	38
144	Biodiversity enhancement induced by environmental noise. Journal of Theoretical Biology, 2008, 255, 332-337.	1.7	37

#	Article	IF	CITATIONS
145	Combined effects of soil moisture and nitrogen availability variations on grass productivity in African savannas. Plant and Soil, 2010, 328, 95-108.	3.7	37
146	Impact of land use change on atmospheric P inputs in a tropical dry forest. Journal of Geophysical Research, 2011, 116, .	3.3	37
147	The global land rush and climate change. Earth's Future, 2015, 3, 298-311.	6.3	37
148	Stochastic Flow Analysis for Predicting River Scour of Cohesive Soils. Journal of Hydraulic Engineering, 2006, 132, 493-500.	1.5	36
149	Interactions Between Soil Erosion Processes and Fires: Implications for the Dynamics of Fertility Islands. Rangeland Ecology and Management, 2010, 63, 267-274.	2.3	35
150	Water Savings of Crop Redistribution in the United States. Water (Switzerland), 2017, 9, 83.	2.7	35
151	Desiccation crisis of saline lakes: A new decision-support framework for building resilience to climate change. Science of the Total Environment, 2020, 703, 134718.	8.0	35
152	Resilience and recovery potential of duneland vegetation in the southern Kalahari. Ecosphere, 2014, 5, 1-14.	2.2	33
153	Evaluating Ecohydrological Theories of Woody Root Distribution in the Kalahari. PLoS ONE, 2012, 7, e33996.	2.5	32
154	Weak and Strong Sustainability of Irrigation: A Framework for Irrigation Practices Under Limited Water Availability. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	32
155	The role of vegetation–microclimate feedback in promoting shrub encroachment in the northern Chihuahuan desert. Global Change Biology, 2015, 21, 2141-2154.	9.5	31
156	Noise-induced vegetation patterns in fire-prone savannas. Journal of Geophysical Research, 2007, 112, .	3.3	30
157	The effect of fire-induced soil hydrophobicity on wind erosion in a semiarid grassland: Experimental observations and theoretical framework. Geomorphology, 2009, 105, 80-86.	2.6	30
158	A possible bistable evolution of soil thickness. Journal of Geophysical Research, 2000, 105, 25927-25935.	3.3	29
159	An ecohydrological framework for grass displacement by woody plants in savannas. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 192-206.	3.0	29
160	Freshwater savings from marine protein consumption. Environmental Research Letters, 2014, 9, 014005.	5.2	29
161	Past and present biophysical redundancy of countries as a buffer to changes in food supply. Environmental Research Letters, 2016, 11, 055008.	5.2	29
162	The water-energy-food nexus of unconventional oil and gas extraction in the Vaca Muerta Play, Argentina. Journal of Cleaner Production, 2019, 207, 743-750.	9.3	29

#	Article	IF	CITATIONS
163	Tree–Grass Coexistence in the Everglades Freshwater System. Ecosystems, 2011, 14, 298-310.	3.4	28
164	Potential dust emissions from the southern Kalahari's dunelands. Journal of Geophysical Research F: Earth Surface, 2013, 118, 307-314.	2.8	28
165	Examining the linkage between shrub encroachment and recent greening in waterâ€limited southern Africa. Ecosphere, 2015, 6, 1-16.	2.2	28
166	Nonâ€linear shift from grassland to shrubland in temperate barrier islands. Ecology, 2018, 99, 1671-1681.	3.2	28
167	Energy implications of the 21st century agrarian transition. Nature Communications, 2021, 12, 2319.	12.8	28
168	Potential of grass invasions in desert shrublands to create novel ecosystem states under variable climate. Ecohydrology, 2016, 9, 1496-1506.	2.4	27
169	A new dataset of global irrigation areas from 2001 to 2015. Advances in Water Resources, 2021, 152, 103910.	3.8	27
170	Space-time self-organization of mesoscale rainfall and soil moisture. Advances in Water Resources, 2000, 23, 349-357.	3.8	25
171	The geomorphic structure of the runoff peak. Hydrology and Earth System Sciences, 2011, 15, 1853-1863.	4.9	24
172	Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas. Landscape Ecology, 2013, 28, 685-698.	4.2	24
173	The Effects of Interannual Rainfall Variability on Tree–Grass Composition Along Kalahari Rainfall Gradient. Ecosystems, 2017, 20, 975-988.	3.4	24
174	Simulating the Cascading Effects of an Extreme Agricultural Production Shock: Global Implications of a Contemporary US Dust Bowl Event. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	24
175	Competition for water induced by transnational land acquisitions for agriculture. Nature Communications, 2022, 13, 505.	12.8	24
176	lsotope composition and anion chemistry of soil profiles along the Kalahari Transect. Journal of Arid Environments, 2009, 73, 480-486.	2.4	22
177	Effect of repeated deforestation on vegetation dynamics for phosphorusâ€limited tropical forests. Journal of Geophysical Research, 2012, 117, .	3.3	22
178	On the use of neural networks for dendroclimatic reconstructions. Geophysical Research Letters, 2000, 27, 791-794.	4.0	21
179	The influence of stochastic soil moisture dynamics on gaseous emissions of NO, N2O, and N2. Hydrological Sciences Journal, 2003, 48, 781-798.	2.6	21
180	Probabilistic modeling of nitrogen and carbon dynamics in water-limited ecosystems. Ecological Modelling, 2004, 179, 205-219.	2.5	21

#	Article	IF	CITATIONS
181	A dynamic soil water threshold for vegetation water stress derived from stomatal conductance models. Water Resources Research, 2007, 43, .	4.2	21
182	The Limits of Water Pumps. Science, 2008, 321, 36-37.	12.6	21
183	Hydrologic controls on phosphorus dynamics: A modeling framework. Advances in Water Resources, 2012, 35, 94-109.	3.8	21
184	The land and its people. Nature Geoscience, 2014, 7, 324-325.	12.9	21
185	A quantitative description of the interspecies diversity of belowground structure in savanna woody plants. Ecosphere, 2015, 6, 1-15.	2.2	21
186	Climate change and large-scale land acquisitions in Africa: Quantifying the future impact on acquired water resources. Advances in Water Resources, 2016, 94, 231-237.	3.8	21
187	Hydrological consequences of natural rubber plantations in Southeast Asia. Land Degradation and Development, 2020, 31, 2060-2073.	3.9	21
188	Ecohydrological feedbacks between permafrost and vegetation dynamics. Advances in Water Resources, 2012, 49, 1-12.	3.8	20
189	Possible self-organizing dynamics for land-atmosphere interaction. Journal of Geophysical Research, 1998, 103, 23071-23077.	3.3	19
190	Coupled land-atmosphere modeling of the effects of shrub encroachment on nighttime temperatures. Agricultural and Forest Meteorology, 2011, 151, 1690-1697.	4.8	19
191	Positive feedbacks between phosphorus deposition and forest canopy trapping, evidence from Southern Mexico. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1521-1531.	3.0	19
192	Antarctica's Dry Valleys: A potential source of soluble iron to the Southern Ocean?. Geophysical Research Letters, 2015, 42, 1912-1918.	4.0	19
193	Dimensionality reduction of complex dynamical systems. IScience, 2021, 24, 101912.	4.1	19
194	Climatic oscillations influence the flooding of Venice. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	18
195	Vertical attributes of precipitation systems in West Africa and adjacent Atlantic Ocean. Theoretical and Applied Climatology, 2008, 92, 181-193.	2.8	18
196	Physiological responses of Spartina alterniflora to varying environmental conditions in Virginia marshes. Hydrobiologia, 2011, 669, 167-181.	2.0	18
197	On the feedback between water turbidity and microphytobenthos growth in shallow tidal environments. Earth Surface Processes and Landforms, 2019, 44, 1192-1206.	2.5	18
198	Water limitations to large-scale desert agroforestry projects for carbon sequestration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24925-24926.	7.1	18

#	Article	IF	CITATIONS
199	Spatial pattern formation induced by Gaussian white noise. Mathematical Biosciences, 2011, 229, 174-184.	1.9	17
200	An analysis of structure: biomass structure relationships for characteristic species of the western <scp>K</scp> alahari, <scp>B</scp> otswana. African Journal of Ecology, 2014, 52, 20-29.	0.9	17
201	Inequality or injustice in water use for food?. Environmental Research Letters, 2015, 10, 024013.	5.2	17
202	The past and future of food stocks. Environmental Research Letters, 2016, 11, 035010.	5.2	17
203	Suppression of rainfall by fires in African drylands. Geophysical Research Letters, 2016, 43, 8527-8533.	4.0	17
204	Does phenology play a role in the feedbacks underlying shrub encroachment?. Science of the Total Environment, 2019, 657, 1064-1073.	8.0	17
205	Configuration entropy of fractal landscapes. Geophysical Research Letters, 1998, 25, 1015-1018.	4.0	16
206	Carbon and nitrogen parasitism by a xylemâ€ŧapping mistletoe (<i>Tapinanthus oleifolius</i>) along the Kalahari Transect: a stable isotope study. African Journal of Ecology, 2008, 46, 540-546.	0.9	16
207	Inequalities in the networks of virtual water flow. Eos, 2012, 93, 309-310.	0.1	16
208	The impact of changing moisture conditions on short-term P availability in weathered soils. Plant and Soil, 2013, 365, 201-209.	3.7	16
209	Soil organic C and total N pools in the Kalahari: potential impacts of climate change on C sequestration in savannas. Plant and Soil, 2015, 396, 27-44.	3.7	16
210	Total vertical sediment flux and PM10 emissions from disturbed Chihuahuan Desert surfaces. Geoderma, 2017, 293, 19-25.	5.1	16
211	Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems. Journal of Theoretical Biology, 2012, 293, 65-73.	1.7	15
212	Bistable dynamics between forest removal and landslide occurrence. Water Resources Research, 2014, 50, 1112-1130.	4.2	15
213	Albedo changes after fire as an explanation of fire-induced rainfall suppression. Geophysical Research Letters, 2017, 44, 3916-3923.	4.0	15
214	A Spatial Model for Soil–Atmosphere Interaction: Model Construction and Linear Stability Analysis. Journal of Hydrometeorology, 2000, 1, 61-74.	1.9	14
215	Evidence of optimal water use by vegetation across a range of North American ecosystems. Geophysical Research Letters, 2007, 34, .	4.0	14
216	Transient growth induces unexpected deterministic spatial patterns in the Turing process. Europhysics Letters, 2011, 95, 18003.	2.0	14

#	Article	IF	CITATIONS
217	Phosphorus input through fog deposition in a dry tropical forest. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2493-2504.	3.0	14
218	Pathways to sustainable intensification through crop water management. Environmental Research Letters, 2016, 11, 091001.	5.2	14
219	Ecomorphodynamic approaches to river anabranching patterns. Advances in Water Resources, 2016, 93, 156-165.	3.8	14
220	The Enemy of My Enemy Hypothesis: Why Coexisting with Grasses May Be an Adaptive Strategy for Savanna Trees. Ecosystems, 2017, 20, 1278-1295.	3.4	14
221	Climate seasonality as an essential predictor of global fire activity. Global Ecology and Biogeography, 2019, 28, 198-210.	5.8	14
222	Spatio-temporal stochastic resonance induces patterns in wetland vegetation dynamics. Ecological Complexity, 2012, 10, 93-101.	2.9	13
223	The science of evidence: the value of global studies on land rush. Journal of Peasant Studies, 2013, 40, 907-909.	4.5	13
224	Biogeochemistry of dust sources in Southern Africa. Journal of Arid Environments, 2015, 117, 18-27.	2.4	13
225	Direct and Indirect Facilitation of Plants with Crassulacean Acid Metabolism (CAM). Ecosystems, 2015, 18, 985-999.	3.4	13
226	The competitive advantage of a constitutive CAM species over a C ₄ grass species under drought and CO ₂ enrichment. Ecosphere, 2019, 10, e02721.	2.2	13
227	The interactive nutrient and water effects on vegetation biomass at two <scp>A</scp> frican savannah sites with different mean annual precipitation. African Journal of Ecology, 2012, 50, 446-454.	0.9	12
228	Dustâ€rainfall feedback in West African Sahel. Geophysical Research Letters, 2015, 42, 7563-7571.	4.0	12
229	Land Degradation and Environmental Change. , 2016, , 219-227.		12
230	Soluble ferrous iron (Fe (II)) enrichment in airborne dust. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,153.	3.3	12
231	Hydrological implications of large-scale afforestation in tropical biomes for climate change mitigation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	12
232	SOIL MOISTURE DYNAMICS IN WATER-LIMITED ECOSYSTEMS. , 2006, , 31-46.		11
233	Noise-induced transitions in state-dependent dichotomous processes. Physical Review E, 2008, 78, 031137.	2.1	11
234	Effects of competition on induction of crassulacean acid metabolism in a facultative CAM plant. Oecologia, 2017, 184, 351-361.	2.0	11

#	Article	IF	CITATIONS
235	The neglected costs of water peace. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1316.	6.5	11
236	A probabilistic approach to the analysis of contraction scour. Journal of Hydraulic Research/De Recherches Hydrauliques, 2006, 44, 654-662.	1.7	10
237	The relative importance of climate change and shrub encroachment on nocturnal warming in the southwestern United States. International Journal of Climatology, 2015, 35, 475-480.	3.5	10
238	The effect of nitrogen availability and water conditions on competition between a facultative <scp>CAM</scp> plant and an invasive grass. Ecology and Evolution, 2017, 7, 7739-7749.	1.9	10
239	Desertification and Land Degradation. , 2019, , 573-602.		10
240	Positive feedbacks and bistability associated with phosphorus–vegetation–microbial interactions. Advances in Water Resources, 2013, 52, 151-164.	3.8	9
241	Can land use intensification in the Mallee, Australia increase the supply of soluble iron to the Southern Ocean?. Scientific Reports, 2014, 4, 6009.	3.3	9
242	Ancient water supports today's energy needs. Earth's Future, 2017, 5, 515-519.	6.3	9
243	Critical transition to woody plant dominance through microclimate feedbacks in North American coastal ecosystems. Ecology, 2020, 101, e03107.	3.2	9
244	Ecosystem complexity enhances the resilience of plant-pollinator systems. One Earth, 2021, 4, 1286-1296.	6.8	9
245	ECOHYDROLOGY OF ARID AND SEMIARID ECOSYSTEMS: AN INTRODUCTION. , 2006, , 1-10.		8
246	Experimental evidence for limited leaching of phosphorus from canopy leaves in a tropical dry forest. Ecohydrology, 2013, 6, 806-817.	2.4	8
247	What commodities and countries impact inequality in the global food system?. Environmental Research Letters, 2016, 11, 095013.	5.2	8
248	Food, trade, and the environment. Environmental Research Letters, 2018, 13, 100201.	5.2	8
249	Kalahari Wildfires Drive Continental Post-Fire Brightening in Sub-Saharan Africa. Remote Sensing, 2019, 11, 1090.	4.0	8
250	Critical Transitions in Plant-Pollinator Systems Induced by Positive Inbreeding-Reward-Pollinator Feedbacks. IScience, 2020, 23, 100819.	4.1	8
251	A growing produce bubble: United States produce tied to Mexico's unsustainable agricultural water use. Environmental Research Letters, 0, , .	5.2	8
252	Precursors of state transitions in stochastic systems with delay. Theoretical Ecology, 2013, 6, 265-270.	1.0	7

#	Article	IF	CITATIONS
253	Critical slowing down associated with critical transition and risk of collapse in crypto-currency. Royal Society Open Science, 2020, 7, 191450.	2.4	7
254	CAM plant expansion favored indirectly by asymmetric climate warming and increased rainfall variability. Oecologia, 2020, 193, 1-13.	2.0	7
255	Values-Based Scenarios of Water Security: Rights to Water, Rights of Waters, and Commercial Water Rights. BioScience, 2021, 71, 1157-1170.	4.9	7
256	Reconstructing the temporal dynamics of snow cover from observations. Geophysical Research Letters, 2001, 28, 2975-2978.	4.0	6
257	Statistical simulation of the influence of the NAO on European winter surface temperatures: Applications to phenological modeling. Journal of Geophysical Research, 2004, 109, .	3.3	6
258	From facilitative to competitive interactions between woody plants and plants with crassulacean acid metabolism (CAM): The role of hydraulic descent. Ecohydrology, 2017, 10, e1799.	2.4	6
259	A Mechanism of Land Degradation in Turfâ€Mantled Slopes of the Tibetan Plateau. Geophysical Research Letters, 2018, 45, 4041-4048.	4.0	6
260	Largeâ€scale land acquisition as a potential driver of slope instability. Land Degradation and Development, 2021, 32, 1773-1785.	3.9	6
261	A new conceptual framework for spatial predictive modelling of land degradation in a semiarid area. Land Degradation and Development, 2022, 33, 3358-3374.	3.9	6
262	Transition between stable states in the dynamics of soil development. Geophysical Research Letters, 2001, 28, 595-598.	4.0	5
263	A stochastic model for vegetation water stress. Ecohydrology, 2010, 3, 177-188.	2.4	5
264	Indicators of Collapse in Systems Undergoing Unsustainable Growth. Bulletin of Mathematical Biology, 2015, 77, 339-347.	1.9	5
265	Response of a facultative CAM plant and its competitive relationship with a grass to changes in rainfall regime. Plant and Soil, 2018, 427, 321-333.	3.7	5
266	Are African irrigation dam projects for large-scale agribusiness or small-scale farmers?. Environmental Research Communications, 2022, 4, 015005.	2.3	5
267	The value generated by irrigation in the command areas of new agricultural dams in Africa. Agricultural Water Management, 2022, 264, 107517.	5.6	5
268	Noise-sustained fluctuations in stochastic dynamics with a delay. Physical Review E, 2012, 85, 041106.	2.1	4
269	Reply to â€~The politics of evidence: a response to Rulli and D'Odorico'. Journal of Peasant Studies, 2013, 40, 913-914.	4.5	4
270	The economic impacts of positive feedbacks resulting from deforestation. Ecological Economics, 2015, 120, 93-99.	5.7	4

#	Article	IF	CITATIONS
271	Virtual Water as a Metric for Institutional Sustainability. Sustainability, 2017, 10, 237-245.	0.7	4
272	Mapping Areas of the Southern Ocean Where Productivity Likely Depends on Dustâ€Đelivered Iron. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030926.	3.3	4
273	Soil Moisture Dynamics in Water-Limited Ecosystems. , 2019, , 31-48.		4
274	Ecosystem dynamics and aeolian sediment transport in the southern Kalahari. African Journal of Ecology, 2020, 58, 337-344.	0.9	3
275	Ecohydrology of Arid and Semiarid Ecosystems: An Introduction. , 2019, , 1-27.		3
276	Correction for Lawrence <i>et al.</i> , Land Change Science Special Feature: Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3169-3169.	7.1	2
277	Tree island pattern formation in the Florida Everglades. Ecological Complexity, 2016, 26, 37-44.	2.9	2
278	Age distribution dynamics with stochastic jumps in mortality. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170451.	2.1	2
279	The competitive advantage of C4 grasses over CAM plants under increased rainfall variability. Plant and Soil, 2019, 442, 483-495.	3.7	2
280	Microclimate feedbacks sustain power law clustering of encroaching coastal woody vegetation. Communications Biology, 2021, 4, 745.	4.4	2
281	Ecohydrological Controls on the Deposition of Non-rainfall Water, N, and P to Dryland Ecosystems. , 2019, , 121-137.		2
282	Reply to Comment on â€~Water footprint of marine protein consumption—aquaculture's link to freshwater'. Environmental Research Letters, 2014, 9, 109002.	5.2	1
283	Impact of feedbacks on Chihuahuan desert grasslands: Transience and metastability. Journal of Geophysical Research, 2009, 114, .	3.3	1
284	Sustaining Water Resources. , 2020, , 149-163.		1
285	Evaluation of dust production efficiencies in sandy sediments. Earth Surface Processes and Landforms, 2022, 47, 1229-1237.	2.5	1
286	Non-linear Shift from Grassland to Shrubland in Temperate Barrier Islands. Bulletin of the Ecological Society of America, 2018, 99, e01421.	0.2	0
287	Thank You to Our Peer Reviewers for 2019. Reviews of Geophysics, 2020, 58, no.	23.0	0
288	Thank You to Our Peer Reviewers for 2020. Reviews of Geophysics, 2021, 59, e2021RG000741.	23.0	0

#	Article	IF	CITATIONS
289	The Globalisation of Food and Water: The Italian Case. , 2015, , 145-158.		0
290	Modeling of Phosphorus Dynamics in Dryland Ecosystems. , 2019, , 309-333.		0
291	Thank You to Our 2021 Peer Reviewers. Reviews of Geophysics, 2022, 60, .	23.0	0