List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2397960/publications.pdf Version: 2024-02-01

	9264	7160
28,309	74	153
citations	h-index	g-index
251	251	30248
docs citations	times ranked	citing authors
	citations 251	28,309 74 citations h-index 251 251

#	Article	IF	CITATIONS
1	Understanding the Potential Impact of Different Drug Properties on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission and Disease Burden: A Modelling Analysis. Clinical Infectious Diseases, 2022, 75, e224-e233.	5.8	10
2	Modelling the impact of vaccine hesitancy in prolonging the need for Non-Pharmaceutical Interventions to control the COVID-19 pandemic. Communications Medicine, 2022, 2, .	4.2	36
3	Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet, The, 2022, 399, 1303-1312.	13.7	889
4	A novel statistical framework for exploring the population dynamics and seasonality of mosquito populations. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220089.	2.6	4
5	Optimizing social and economic activity while containing SARS-CoV-2 transmission using DAEDALUS. Nature Computational Science, 2022, 2, 223-233.	8.0	8
6	Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling. Communications Medicine, 2022, 2, .	4.2	28
7	Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infectious Diseases, The, 2022, 22, 1293-1302.	9.1	789
8	COVID-19 and the difficulty of inferring epidemiological parameters from clinical data – Authors' reply. Lancet Infectious Diseases, The, 2021, 21, 28.	9.1	10
9	Database of epidemic trends and control measures during the first wave of COVID-19 in mainland China. International Journal of Infectious Diseases, 2021, 102, 463-471.	3.3	12
10	Evaluating the Performance of Malaria Genetics for Inferring Changes in Transmission Intensity Using Transmission Modeling. Molecular Biology and Evolution, 2021, 38, 274-289.	8.9	17
11	The J-IDEA Pandemic Planner. Medical Care, 2021, 59, 371-378.	2.4	7
12	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Setting-specific Transmission Rates: A Systematic Review and Meta-analysis. Clinical Infectious Diseases, 2021, 73, e754-e764.	5.8	160
13	Estimating the potential impact of Attractive Targeted Sugar Baits (ATSBs) as a new vector control tool for Plasmodium falciparum malaria. Malaria Journal, 2021, 20, 151.	2.3	25
14	Leveraging community mortality indicators to infer COVID-19 mortality and transmission dynamics in Damascus, Syria. Nature Communications, 2021, 12, 2394.	12.8	35
15	Modelling intensive care unit capacity under different epidemiological scenarios of the COVID-19 pandemic in three Western European countries. International Journal of Epidemiology, 2021, 50, 753-767.	1.9	24
16	Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: A mathematical modelling analysis. Vaccine, 2021, 39, 2995-3006.	3.8	71
17	Fine-scale estimation of key life-history parameters of malaria vectors: implications for next-generation vector control technologies. Parasites and Vectors, 2021, 14, 311.	2.5	0
18	Using syndromic measures of mortality to capture the dynamics of COVID-19 in Java, Indonesia, in the context of vaccination rollout. BMC Medicine, 2021, 19, 146.	5.5	7

#	Article	IF	CITATIONS
19	Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England. Science Translational Medicine, 2021, 13, .	12.4	89
20	Potential impact of intervention strategies on COVID-19 transmission in Malawi: a mathematical modelling study. BMJ Open, 2021, 11, e045196.	1.9	8
21	The impact of a COVID-19 lockdown on work productivity under good and poor compliance. European Journal of Public Health, 2021, 31, 1009-1015.	0.3	8
22	Global patterns of submicroscopic Plasmodium falciparum malaria infection: insights from a systematic review and meta-analysis of population surveys. Lancet Microbe, The, 2021, 2, e366-e374.	7.3	29
23	Under-reporting of deaths limits our understanding of true burden of covid-19. BMJ, The, 2021, 375, n2239.	6.0	75
24	Non-pharmaceutical interventions, vaccination, and the SARS-CoV-2 delta variant in England: a mathematical modelling study. Lancet, The, 2021, 398, 1825-1835.	13.7	119
25	Communicating uncertainty in epidemic models. Epidemics, 2021, 37, 100520.	3.0	9
26	Analysis of the potential for a malaria vaccine to reduce gaps in malaria intervention coverage. Malaria Journal, 2021, 20, 438.	2.3	9
27	Ivermectin as a novel complementary malaria control tool to reduce incidence and prevalence: a modelling study. Lancet Infectious Diseases, The, 2020, 20, 498-508.	9.1	53
28	Modelling the roles of antibody titre and avidity in protection from Plasmodium falciparum malaria infection following RTS,S/AS01 vaccination. Vaccine, 2020, 38, 7498-7507.	3.8	18
29	The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis. PLoS Medicine, 2020, 17, e1003359.	8.4	50
30	Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study. The Lancet Global Health, 2020, 8, e1132-e1141.	6.3	573
31	State-level tracking of COVID-19 in the United States. Nature Communications, 2020, 11, 6189.	12.8	104
32	The potential public health consequences of COVID-19 on malaria in Africa. Nature Medicine, 2020, 26, 1411-1416.	30.7	128
33	Adapting hospital capacity to meet changing demands during the COVID-19 pandemic. BMC Medicine, 2020, 18, 329.	5.5	144
34	Response to COVID-19 in South Korea and implications for lifting stringent interventions. BMC Medicine, 2020, 18, 321.	5.5	137
35	Host or pathogen-related factors in COVID-19 severity? – Authors' reply. Lancet, The, 2020, 396, 1397.	13.7	3
36	The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRC. Nature Communications, 2020, 11, 2107.	12.8	57

#	Article	IF	CITATIONS
37	The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. Science, 2020, 369, 413-422.	12.6	718
38	Have deaths from COVID-19 in Europe plateaued due to herd immunity?. Lancet, The, 2020, 395, e110-e111.	13.7	70
39	Power calculations for cluster randomized trials (CRTs) with right-truncated Poisson-distributed outcomes: a motivating example from a malaria vector control trial. International Journal of Epidemiology, 2020, 49, 954-962.	1.9	7
40	Tracking progress towards malaria elimination in China: Individual-level estimates of transmission and its spatiotemporal variation using a diffusion network approach. PLoS Computational Biology, 2020, 16, e1007707.	3.2	14
41	The duration of chemoprophylaxis against malaria after treatment with artesunate-amodiaquine and artemether-lumefantrine and the effects of pfmdr1 86Y and pfcrt 76T: a meta-analysis of individual patient data. BMC Medicine, 2020, 18, 47.	5.5	22
42	Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infectious Diseases, The, 2020, 20, 669-677.	9.1	3,036
43	Estimating the number of undetected COVID-19 cases among travellers from mainland China. Wellcome Open Research, 2020, 5, 143.	1.8	5
44	Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature, 2020, 584, 257-261.	27.8	2,558
45	Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment. Wellcome Open Research, 2020, 5, 81.	1.8	62
46	Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment. Wellcome Open Research, 2020, 5, 81.	1.8	81
47	Estimated impact of RTS,S/AS01 malaria vaccine allocation strategies in sub-Saharan Africa: A modelling study. PLoS Medicine, 2020, 17, e1003377.	8.4	24
48	Title is missing!. , 2020, 17, e1003377.		0
49	Title is missing!. , 2020, 17, e1003377.		0
50	Title is missing!. , 2020, 17, e1003377.		0
51	Title is missing!. , 2020, 17, e1003377.		Ο
52	Title is missing!. , 2020, 17, e1003377.		0
53	Fine-scale modelling finds that breeding site fragmentation can reduce mosquito population persistence. Communications Biology, 2019, 2, 273.	4.4	10
54	Modelling pathogen load dynamics to elucidate mechanistic determinants of host–Plasmodium falciparum interactions. Nature Microbiology, 2019, 4, 1592-1602.	13.3	19

#	Article	IF	CITATIONS
55	Prioritizing the scale-up of interventions for malaria control and elimination. Malaria Journal, 2019, 18, 122.	2.3	27
56	How delayed and non-adherent treatment contribute to onward transmission of malaria: a modelling study. BMJ Global Health, 2019, 4, e001856.	4.7	15
57	False-negative malaria rapid diagnostic test results and their impact on community-based malaria surveys in sub-Saharan Africa. BMJ Global Health, 2019, 4, e001582.	4.7	44
58	Impact of seasonal variations in Plasmodium falciparum malaria transmission on the surveillance of pfhrp2 gene deletions. ELife, 2019, 8, .	6.0	28
59	Plasmodium vivax and Plasmodium falciparum infection dynamics: re-infections, recrudescences and relapses. Malaria Journal, 2018, 17, 170.	2.3	35
60	Can improving access to care help to eliminate malaria?. Lancet, The, 2018, 391, 1870-1871.	13.7	4
61	Drug-Resistance and Population Structure of Plasmodium falciparum Across the Democratic Republic of Congo Using High-Throughput Molecular Inversion Probes. Journal of Infectious Diseases, 2018, 218, 946-955.	4.0	78
62	A trade-off between dry season survival longevity and wet season high net reproduction can explain the persistence of Anopheles mosquitoes. Parasites and Vectors, 2018, 11, 576.	2.5	20
63	Using ante-natal clinic prevalence data to monitor temporal changes in malaria incidence in a humanitarian setting in the Democratic Republic of Congo. Malaria Journal, 2018, 17, 312.	2.3	14
64	Mathematical models of human mobility of relevance to malaria transmission in Africa. Scientific Reports, 2018, 8, 7713.	3.3	43
65	Estimating spatiotemporally varying malaria reproduction numbers in a near elimination setting. Nature Communications, 2018, 9, 2476.	12.8	28
66	Synergy in anti-malarial pre-erythrocytic and transmission-blocking antibodies is achieved by reducing parasite density. ELife, 2018, 7, .	6.0	32
67	Modelling population-level impact to inform target product profiles for childhood malaria vaccines. BMC Medicine, 2018, 16, 109.	5.5	8
68	Plasmodium falciparum genetic variation of var2csa in the Democratic Republic of the Congo. Malaria Journal, 2018, 17, 46.	2.3	13
69	Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax. Nature Communications, 2018, 9, 3300.	12.8	59
70	Predictive Malaria Epidemiology, Models of Malaria Control Interventions and Elimination. , 2018, , 1-7.		0
71	Predictive Malaria Epidemiology, Models of Malaria Transmission and Elimination. , 2018, , 1-7.		0
72	<i>Pfhrp2</i> -deleted <i>Plasmodium falciparum</i> parasites in the Democratic Republic of Congo: A national cross-sectional survey. Journal of Infectious Diseases, 2017, 216, jiw538.	4.0	100

#	Article	IF	CITATIONS
73	Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. The Lancet Global Health, 2017, 5, e680-e687.	6.3	102
74	Assessing the impact of imperfect adherence to artemether-lumefantrine on malaria treatment outcomes using within-host modelling. Nature Communications, 2017, 8, 1373.	12.8	20
75	Model citizen – Authors' reply. The Lancet Global Health, 2017, 5, e974.	6.3	1
76	Mathematical Modelling to Guide Drug Development for Malaria Elimination. Trends in Parasitology, 2017, 33, 175-184.	3.3	27
77	Modelling the cost-effectiveness of introducing the RTS,S malaria vaccine relative to scaling up other malaria interventions in sub-Saharan Africa. BMJ Global Health, 2017, 2, e000090.	4.7	39
78	Global investment targets for malaria control and elimination between 2016 and 2030. BMJ Global Health, 2017, 2, e000176.	4.7	52
79	The US President's Malaria Initiative, Plasmodium falciparum transmission and mortality: A modelling study. PLoS Medicine, 2017, 14, e1002448.	8.4	23
80	Modelling the benefits of long-acting or transmission-blocking drugs for reducing Plasmodium falciparum transmission by case management or by mass treatment. Malaria Journal, 2017, 16, 341.	2.3	11
81	Modelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa. ELife, 2017, 6, .	6.0	79
82	Variation in relapse frequency and the transmission potential of <i>Plasmodium vivax</i> malaria. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160048.	2.6	58
83	Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. The Lancet Global Health, 2016, 4, e474-e484.	6.3	107
84	Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa. Malaria Journal, 2016, 15, 10.	2.3	48
85	Estimating malaria transmission intensity from Plasmodium falciparum serological data using antibody density models. Malaria Journal, 2016, 15, 79.	2.3	36
86	Key traveller groups of relevance to spatial malaria transmission: a survey of movement patterns in four sub-Saharan African countries. Malaria Journal, 2016, 15, 200.	2.3	43
87	Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet, The, 2016, 387, 367-375.	13.7	154
88	Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infectious Diseases, The, 2016, 16, 465-472.	9.1	102
89	Provision of malaria treatment for Ebola case contacts. Lancet Infectious Diseases, The, 2016, 16, 391-392.	9.1	0
90	Seasonality in malaria transmission: implications for case-management with long-acting artemisinin combination therapy in sub-Saharan Africa. Malaria Journal, 2015, 14, 321.	2.3	34

#	Article	IF	CITATIONS
91	Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies. Nature, 2015, 528, S86-S93.	27.8	176
92	Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature, 2015, 528, S94-S101.	27.8	115
93	Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings. Nature, 2015, 528, S53-S59.	27.8	74
94	Gradual acquisition of immunity to severe malaria with increasing exposure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142657.	2.6	91
95	Malaria morbidity and mortality in Ebola-affected countries caused by decreased health-care capacity, and the potential effect of mitigation strategies: a modelling analysis. Lancet Infectious Diseases, The, 2015, 15, 825-832.	9.1	141
96	Vaccine approaches to malaria control and elimination: Insights from mathematical models. Vaccine, 2015, 33, 7544-7550.	3.8	21
97	Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infectious Diseases, The, 2015, 15, 1450-1458.	9.1	262
98	Expanding the role of diagnostic and prognostic tools for infectious diseases in resource-poor settings. Nature, 2015, 528, S50-S52.	27.8	28
99	Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission. ELife, 2014, 3, .	6.0	88
100	Contrasting benefits of different artemisinin combination therapies as first-line malaria treatments using model-based cost-effectiveness analysis. Nature Communications, 2014, 5, 5606.	12.8	85
101	Transmission and Control of Plasmodium knowlesi: A Mathematical Modelling Study. PLoS Neglected Tropical Diseases, 2014, 8, e2978.	3.0	44
102	Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa. Nature Communications, 2014, 5, 3136.	12.8	169
103	Dynamics of the Antibody Response to Plasmodium falciparum Infection in African Children. Journal of Infectious Diseases, 2014, 210, 1115-1122.	4.0	124
104	Estimated risk of placental infection and low birthweight attributable to Plasmodium falciparum malaria in Africa in 2010: a modelling study. The Lancet Global Health, 2014, 2, e460-e467.	6.3	101
105	Risk factors for UK Plasmodium falciparum cases. Malaria Journal, 2014, 13, 298.	2.3	9
106	A combined analysis of immunogenicity, antibody kinetics and vaccine efficacy from phase 2 trials of the RTS,S malaria vaccine. BMC Medicine, 2014, 12, 117.	5.5	73
107	The Potential Impact of Adding Ivermectin to a Mass Treatment Intervention to Reduce Malaria Transmission: A Modelling Study. Journal of Infectious Diseases, 2014, 210, 1972-1980.	4.0	83
108	Efficacy of RTS,S malaria vaccines: individual-participant pooled analysis of phase 2 data. Lancet Infectious Diseases, The, 2013, 13, 319-327.	9.1	87

#	Article	IF	CITATIONS
109	Quantifying the mosquito's sweet tooth: modelling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control. Malaria Journal, 2013, 12, 291.	2.3	37
110	The design and statistical power of treatment re-infection studies of the association between pre-erythrocytic immunity and infection with Plasmodium falciparum. Malaria Journal, 2013, 12, 278.	2.3	3
111	Overcoming health systems barriers to successful malaria treatment. Trends in Parasitology, 2013, 29, 164-180.	3.3	58
112	A model of parity-dependent immunity to placental malaria. Nature Communications, 2013, 4, 1609.	12.8	46
113	Interventions for avian influenza A (H5N1) risk management in live bird market networks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9177-9182.	7.1	115
114	THE IMPORTANCE OF MOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA. Evolution; International Journal of Organic Evolution, 2013, 67, 1218-1230.	2.3	253
115	The Relationship between RTS,S Vaccine-Induced Antibodies, CD4+ T Cell Responses and Protection against Plasmodium falciparum Infection. PLoS ONE, 2013, 8, e61395.	2.5	163
116	Estimating Air Temperature and Its Influence on Malaria Transmission across Africa. PLoS ONE, 2013, 8, e56487.	2.5	50
117	The Potential Impact of Improving Appropriate Treatment for Fever on Malaria and Non-Malarial Febrile Illness Management in Under-5s: A Decision-Tree Modelling Approach. PLoS ONE, 2013, 8, e69654.	2.5	17
118	Hitting Hotspots: Spatial Targeting of Malaria for Control and Elimination. PLoS Medicine, 2012, 9, e1001165.	8.4	460
119	Essential epidemiological mechanisms underpinning the transmission dynamics of seasonal influenza. Journal of the Royal Society Interface, 2012, 9, 304-312.	3.4	65
120	Estimating the potential public health impact of seasonal malaria chemoprevention in African children. Nature Communications, 2012, 3, 881.	12.8	135
121	Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nature Communications, 2012, 3, 1237.	12.8	490
122	Outbreaks of H5N1 in poultry in Thailand: the relative role of poultry production types in sustaining transmission and the impact of active surveillance in control. Journal of the Royal Society Interface, 2012, 9, 1836-1845.	3.4	29
123	Identifying Live Bird Markets with the Potential to Act as Reservoirs of Avian Influenza A (H5N1) Virus: A Survey in Northern Viet Nam and Cambodia. PLoS ONE, 2012, 7, e37986.	2.5	66
124	Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks. Biostatistics, 2011, 12, 303-312.	1.5	26
125	The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: a modelling study. Lancet, The, 2011, 378, 256-268.	13.7	305
126	Role of acute infection in HIV transmission – Authors' reply. Lancet, The, 2011, 378, 1914-1915.	13.7	2

#	Article	IF	CITATIONS
127	Modelling the Protective Efficacy of Alternative Delivery Schedules for Intermittent Preventive Treatment of Malaria in Infants and Children. PLoS ONE, 2011, 6, e18947.	2.5	14
128	The Potential Contribution of Mass Treatment to the Control of Plasmodium falciparum Malaria. PLoS ONE, 2011, 6, e20179.	2.5	121
129	Sexual Partnership Patterns in Malawi: Implications for HIV/STI Transmission. Sexually Transmitted Diseases, 2011, 38, 657-666.	1.7	21
130	Costs and cost-effectiveness of malaria control interventions - a systematic review. Malaria Journal, 2011, 10, 337.	2.3	207
131	Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites and Vectors, 2011, 4, 153.	2.5	177
132	Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza. Journal of the Royal Society Interface, 2011, 8, 1079-1089.	3.4	60
133	Efficacy model for antibody-mediated pre-erythrocytic malaria vaccines. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1298-1305.	2.6	15
134	An Application of Hidden Markov Models to the French Variant Creutzfeldt–Jakob Disease Epidemic. Journal of the Royal Statistical Society Series C: Applied Statistics, 2010, 59, 839-853.	1.0	6
135	Protective Efficacy of Intermittent Preventive Treatment of Malaria in Infants (IPTi) Using Sulfadoxine-Pyrimethamine and Parasite Resistance. PLoS ONE, 2010, 5, e12618.	2.5	37
136	Uncertainty in the Tail of the Variant Creutzfeldt-Jakob Disease Epidemic in the UK. PLoS ONE, 2010, 5, e15626.	2.5	58
137	Republished paper: Populations and partnerships: insights from metapopulation and pair models into the epidemiology of gonorrhoea and other sexually transmitted infections. Sexually Transmitted Infections, 2010, 86, iii63-iii69.	1.9	2
138	Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies. PLoS Medicine, 2010, 7, e1000324.	8.4	451
139	Interpreting Tuberculin Skin Tests in a Population With a High Prevalence of HIV, Tuberculosis, and Nonspecific Tuberculin Sensitivity. American Journal of Epidemiology, 2010, 171, 1037-1045.	3.4	8
140	A Bayesian Approach to Quantifying the Effects of Mass Poultry Vaccination upon the Spatial and Temporal Dynamics of H5N1 in Northern Vietnam. PLoS Computational Biology, 2010, 6, e1000683.	3.2	27
141	Populations and partnerships: insights from metapopulation and pair models into the epidemiology of gonorrhoea and other sexually transmitted infections. Sexually Transmitted Infections, 2010, 86, 433-439.	1.9	15
142	Revisiting the circulation time of Plasmodium falciparum gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs. Malaria Journal, 2010, 9, 136.	2.3	223
143	Heterogeneity in malaria exposure and vaccine response: implications for the interpretation of vaccine efficacy trials. Malaria Journal, 2010, 9, 82.	2.3	52
144	Loss of Population Levels of Immunity to Malaria as a Result of Exposure-Reducing Interventions: Consequences for Interpretation of Disease Trends. PLoS ONE, 2009, 4, e4383.	2.5	86

#	Article	IF	CITATIONS
145	Rapid Assessment of Malaria Transmission Using Age-Specific Sero-Conversion Rates. PLoS ONE, 2009, 4, e6083.	2.5	151
146	Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings. Science, 2009, 324, 1557-1561.	12.6	1,665
147	Managing and Reducing Uncertainty in an Emerging Influenza Pandemic. New England Journal of Medicine, 2009, 361, 112-115.	27.0	172
148	Response—Influenza. Science, 2009, 325, 1072-1073.	12.6	2
149	Male Circumcision for HIV Prevention in High HIV Prevalence Settings: What Can Mathematical Modelling Contribute to Informed Decision Making?. PLoS Medicine, 2009, 6, e1000109.	8.4	118
150	A metapopulation modelling framework for gonorrhoea and other sexually transmitted infections in heterosexual populations. Journal of the Royal Society Interface, 2009, 6, 775-791.	3.4	25
151	Poultry movement networks in Cambodia: Implications for surveillance and control of highly pathogenic avian influenza (HPAI/H5N1). Vaccine, 2009, 27, 6345-6352.	3.8	86
152	Submicroscopic Infection in <i>Plasmodium falciparum</i> –Endemic Populations: A Systematic Review and Metaâ€Analysis. Journal of Infectious Diseases, 2009, 200, 1509-1517.	4.0	444
153	Household Transmission of 2009 Pandemic Influenza A (H1N1) Virus in the United States. New England Journal of Medicine, 2009, 361, 2619-2627.	27.0	420
154	Estimating the public health impact of the effect of herpes simplex virus suppressive therapy on plasma HIV-1 viral load. Aids, 2009, 23, 1005-1013.	2.2	17
155	Assessing the severity of the novel influenza A/H1N1 pandemic. BMJ: British Medical Journal, 2009, 339, b2840-b2840.	2.3	212
156	Quantifying the transmissibility of human influenza and its seasonal variation in temperate regions. PLOS Currents, 2009, 1, RRN1125.	1.4	27
157	The Early Transmission Dynamics of H1N1pdm Influenza in the United Kingdom. PLOS Currents, 2009, 1, RRN1130.	1.4	76
158	Changes in Poultry Handling Behavior and Poultry Mortality Reporting among Rural Cambodians in Areas Affected by HPAI/H5N1. PLoS ONE, 2009, 4, e6466.	2.5	13
159	Frequency and patterns of contact with domestic poultry and potential risk of H5N1 transmission to humans living in rural Cambodia. Influenza and Other Respiratory Viruses, 2008, 2, 155-163.	3.4	30
160	Modelling heterogeneity and the impact of chemotherapy and vaccination against human hookworm. Journal of the Royal Society Interface, 2008, 5, 1329-1341.	3.4	14
161	Dried blood spots as a source of anti-malarial antibodies for epidemiological studies. Malaria Journal, 2008, 7, 195.	2.3	192
162	Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials. Malaria Journal, 2008, 7, 125.	2.3	139

#	Article	IF	CITATIONS
163	Can changes in malaria transmission intensity explain prolonged protection and contribute to high protective efficacy of intermittent preventive treatment for malaria in infants?. Malaria Journal, 2008, 7, 54.	2.3	28
164	Mind the Gap: The Role of Time Between Sex With Two Consecutive Partners on the Transmission Dynamics of Gonorrhea. Sexually Transmitted Diseases, 2008, 35, 435-444.	1.7	52
165	Modelling the Impact of Artemisinin Combination Therapy and Long-Acting Treatments on Malaria Transmission Intensity. PLoS Medicine, 2008, 5, e226.	8.4	118
166	Determination of the Processes Driving the Acquisition of Immunity to Malaria Using a Mathematical Transmission Model. PLoS Computational Biology, 2007, 3, e255.	3.2	155
167	Geographical and demographic clustering of gonorrhoea in London. Sexually Transmitted Infections, 2007, 83, 481-487.	1.9	46
168	Control of a highly pathogenic H5N1 avian influenza outbreak in the GB poultry flock. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2287-2295.	2.6	64
169	Quantifying HIV-1 transmission due to contaminated injections. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9794-9799.	7.1	24
170	CD4 Cell Counts of 800 Cells/mm3 or Greater After 7 Years of Highly Active Antiretroviral Therapy Are Feasible in Most Patients Starting With 350 Cells/mm3 or Greater. Journal of Acquired Immune Deficiency Syndromes (1999), 2007, 45, 183-192.	2.1	153
171	Influence of Selected Formation Rules for Finite Population Networks with Fixed Macrostructures: Implications for Individual-Based Model of Infectious Diseases. Mathematical Population Studies, 2007, 14, 237-267.	2.2	12
172	Is there the potential for an epidemic of variant Creutzfeldt–Jakob disease via blood transfusion in the UK?. Journal of the Royal Society Interface, 2007, 4, 675-684.	3.4	26
173	The Transmissibility of Highly Pathogenic Avian Influenza in Commercial Poultry in Industrialised Countries. PLoS ONE, 2007, 2, e349.	2.5	56
174	A note on parameter estimation for variant Creutzfeldt–Jakob disease epidemic models. Statistics in Medicine, 2007, 26, 546-552.	1.6	1
175	Non-parametric estimation of the case fatality ratio with competing risks data: an application to Severe Acute Respiratory Syndrome (SARS). Statistics in Medicine, 2007, 26, 1982-1998.	1.6	39
176	Identification of individuals with gonorrhoea within sexual networks: a population-based study. Lancet, The, 2006, 368, 139-146.	13.7	77
177	Factors determining the potential for onward transmission of variant Creutzfeldt–Jakob disease via surgical instruments. Journal of the Royal Society Interface, 2006, 3, 757-766.	3.4	15
178	Seroprevalence of IgG antibodies to SARS-coronavirus in asymptomatic or subclinical population groups. Epidemiology and Infection, 2006, 134, 211-221.	2.1	83
179	Comparison of the risks of atherosclerotic events versus death from other causes associated with antiretroviral use. Aids, 2006, 20, 1941-1950.	2.2	35
180	Developing a realistic sexual network model of chlamydia transmission in Britain. Theoretical Biology and Medical Modelling, 2006, 3, 3.	2.1	72

#	Article	IF	CITATIONS
181	HIV, sexually transmitted infections, and risk behaviours in male sex workers in London over a 10 year period. Sexually Transmitted Infections, 2006, 82, 359-363.	1.9	43
182	The Effect on Treatment Comparisons of Different Measurement Frequencies in Human Immunodeficiency Virus Observational Databases. American Journal of Epidemiology, 2006, 163, 676-683.	3.4	11
183	Mortality in Patients With Successful Initial Response to Highly Active Antiretroviral Therapy Is Still Higher Than in Non-HIV-Infected Individuals. Journal of Acquired Immune Deficiency Syndromes (1999), 2005, 40, 212-218.	2.1	55
184	Gender difference in HIV-1 RNA viral loads. HIV Medicine, 2005, 6, 170-178.	2.2	57
185	Methods for Estimating the Case Fatality Ratio for a Novel, Emerging Infectious Disease. American Journal of Epidemiology, 2005, 162, 479-486.	3.4	224
186	Patterns of Sex Worker–Client Contacts and Their Implications for the Persistence of Sexually Transmitted Infections. Journal of Infectious Diseases, 2005, 191, S34-S41.	4.0	33
187	Projections of the future course of the primary vCJD epidemic in the UK: inclusion of subclinical infection and the possibility of wider genetic susceptibility. Journal of the Royal Society Interface, 2005, 2, 19-31.	3.4	69
188	Adherence to antiretroviral therapy and its impact on clinical outcome in HIV-infected patients. Journal of the Royal Society Interface, 2005, 2, 349-363.	3.4	24
189	SARS-CoV Antibody Prevalence in All Hong Kong Patient Contacts. Emerging Infectious Diseases, 2004, 10, 1653-1656.	4.3	72
190	Investigating ethnic inequalities in the incidence of sexually transmitted infections: mathematical modelling study. Sexually Transmitted Infections, 2004, 80, 379-385.	1.9	39
191	Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1091-1105.	4.0	412
192	Real-time epidemiology. Significance, 2004, 1, 176-179.	0.4	4
193	Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. Journal of Pathology, 2004, 203, 733-739.	4.5	393
194	PUBLIC HEALTH: Enhanced: Public Health Risk from the Avian H5N1 Influenza Epidemic. Science, 2004, 304, 968-969.	12.6	154
195	Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infectious Diseases, The, 2004, 4, 672-683.	9.1	93
196	The Epidemiology of Severe Acute Respiratory Syndrome in the 2003 Hong Kong Epidemic: An Analysis of All 1755 Patients. Annals of Internal Medicine, 2004, 141, 662.	3.9	293
197	vCJD risk in the Republic of Ireland. BMC Infectious Diseases, 2003, 3, 28.	2.9	12
198	Updated projections of future vCJD deaths in the UK. BMC Infectious Diseases, 2003, 3, 4.	2.9	76

#	Article	IF	CITATIONS
199	Patterns of antiretroviral use in the United States of America: analysis of three observational databases. HIV Medicine, 2003, 4, 24-32.	2.2	33
200	Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet, The, 2003, 361, 1761-1766.	13.7	840
201	Use of observational data in evaluating treatments: antiretroviral therapy and HIV. Expert Review of Anti-Infective Therapy, 2003, 1, 551-562.	4.4	1
202	Commentary: Predicting the unpredictable: the future incidence of variant Creutzfeldt-Jakob disease. International Journal of Epidemiology, 2003, 32, 792-793.	1.9	10
203	Persistence of Two Genotypes of Neisseria gonorrhoeae during Transmission. Journal of Clinical Microbiology, 2003, 41, 5609-5614.	3.9	13
204	Factors determining the pattern of the variant Creutzfeldt-Jakob disease (vCJD) epidemic in the UK. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 689-698.	2.6	60
205	Extending backcalculation to analyse BSE data. Statistical Methods in Medical Research, 2003, 12, 177-190.	1.5	23
206	Short-term projections for variant Creutzfeldt-Jakob disease onsets. Statistical Methods in Medical Research, 2003, 12, 191-201.	1.5	13
207	Transmission Dynamics of the Etiological Agent of SARS in Hong Kong: Impact of Public Health Interventions. Science, 2003, 300, 1961-1966.	12.6	1,004
208	Mortality and progression to AIDS after starting highly active antiretroviral therapy. Aids, 2003, 17, 2227-2236.	2.2	147
209	The epidemiology of HIV/AIDS: contributions to infectious disease epidemiology. , 2003, , 59-87.		1
210	Implications of BSE infection screening data for the scale of the British BSE epidemic and current European infection levels. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2179-2190.	2.6	90
211	Viral Replication Under Combination Antiretroviral Therapy: A Comparison of Four Different Regimens. Journal of Acquired Immune Deficiency Syndromes (1999), 2002, 30, 167-176.	2.1	13
212	Accumulation of prion protein in tonsil and appendix: review of tissue samples. BMJ: British Medical Journal, 2002, 325, 633-634.	2.3	125
213	Incidence of Creutzfeldt-Jakob disease in Switzerland. Lancet, The, 2002, 360, 139-141.	13.7	84
214	The transmission dynamics of BSE and vCJD. Comptes Rendus - Biologies, 2002, 325, 37-47.	0.2	26
215	Antigen-driven T-cell Turnover. Journal of Theoretical Biology, 2002, 219, 177-192.	1.7	6
216	The epidemiology of variant Creutzfeldt–Jakob disease in Europe. Microbes and Infection, 2002, 4, 385-393.	1.9	10

#	Article	IF	CITATIONS
217	Estimating the human health risk from possible BSE infection of the British sheep flock. Nature, 2002, 415, 420-424.	27.8	91
218	Response to comments on the comparison of the effectiveness of non-nucleoside reverse transcriptase inhibitor and protease inhibitor-containing regimens using observational databases. Aids, 2002, 16, 302-303.	2.2	0
219	Comparison of the effectiveness of non-nucleoside reverse transcriptase inhibitor-containing and protease inhibitor-containing regimens using observational databases. Aids, 2001, 15, 1133-1142.	2.2	48
220	Predicted vCJD mortality in Great Britain. Nature, 2000, 406, 583-584.	27.8	187
221	Reduction of the HIV-1-infected T-cell reservoir by immune activation treatment is dose-dependent and restricted by the potency of antiretroviral drugs. Aids, 2000, 14, 659-669.	2.2	54
222	Risks of Acquiring and Transmitting Sexually Transmitted Diseases in Sexual Partner Networks. Sexually Transmitted Diseases, 2000, 27, 579-587.	1.7	91
223	Assessment of the prevalence of vCJD through testing tonsils and appendices for abnormal prion protein. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 23-29.	2.6	37
224	Retrospective study of prion-protein accumulation in tonsil and appendix tissues. Lancet, The, 2000, 355, 1693-1694.	13.7	111
225	A prospective social and molecular investigation of gonococcal transmission. Lancet, The, 2000, 356, 1812-1817.	13.7	51
226	Antigen-driven CD4+ T cell and HIV-1 dynamics: Residual viral replication under highly active antiretroviral therapy. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15167-15172.	7.1	61
227	Sampling biases and missing data in explorations of sexual partner networks for the spread of sexually transmitted diseases. , 1998, 17, 2079-2097.		83
228	Epidemiological determinants of the pattern and magnitude of the vCJD epidemic in Great Britain. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 2443-2452.	2.6	84
229	The Role of Sexual Partnership Networks in the Epidemiology of Gonorrhea. Sexually Transmitted Diseases, 1997, 24, 45-56.	1.7	212
230	Sexual Partner Networks in the Transmission of Sexually Transmitted Diseases. Sexually Transmitted Diseases, 1996, 23, 498-503.	1.7	40
231	Interpreting estimates of coronavirus disease 2019 (COVID-19) vaccine efficacy and effectiveness to inform simulation studies of vaccine impact: a systematic review. Wellcome Open Research, 0, 6, 185.	1.8	17