List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2397747/publications.pdf Version: 2024-02-01

FLISABETTA DEIANA

#	Article	IF	CITATIONS
1	ELTD1 deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma. Neuro-Oncology, 2022, 24, 398-411.	0.6	7
2	Inflammation and neutrophil extracellular traps in cerebral cavernous malformation. Cellular and Molecular Life Sciences, 2022, 79, 206.	2.4	12
3	A murine model of cerebral cavernous malformations with acute hemorrhage. IScience, 2022, 25, 103943.	1.9	5
4	Transcriptome Analysis Reveals Altered Expression of Genes Involved in Hypoxia, Inflammation and Immune Regulation in Pdcd10-Depleted Mouse Endothelial Cells. Genes, 2022, 13, 961.	1.0	6
5	Contact-dependent signaling triggers tumor-like proliferation of CCM3 knockout endothelial cells in co-culture with wild-type cells. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	3
6	Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends in Molecular Medicine, 2021, 27, 314-331.	3.5	272
7	Propranolol Reduces the Development of Lesions and Rescues Barrier Function in Cerebral Cavernous Malformations. Stroke, 2021, 52, 1418-1427.	1.0	27
8	A dual role of YAP in driving TGFβ-mediated endothelial-to-mesenchymal transition. Journal of Cell Science, 2021, 134, .	1.2	14
9	Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion. Developmental Cell, 2021, 56, 2841-2855.e8.	3.1	12
10	Reversibly Modulating the Blood–Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. Nano Letters, 2021, 21, 9805-9815.	4.5	49
11	The multifaceted PDCD10/CCM3 gene. Genes and Diseases, 2021, 8, 798-813.	1.5	20
12	JAM-A Acts via C/EBP-α to Promote Claudin-5 Expression and Enhance Endothelial Barrier Function. Circulation Research, 2020, 127, 1056-1073.	2.0	60
13	Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/l²-catenin signaling. Development (Cambridge), 2020, 147, .	1.2	22
14	Advancing brain barriers RNA sequencing: guidelines from experimental design to publication. Fluids and Barriers of the CNS, 2020, 17, 51.	2.4	16
15	Propranolol for familial cerebral cavernous malformation (Treat_CCM): study protocol for a randomized controlled pilot trial. Trials, 2020, 21, 401.	0.7	37
16	c-Src controls stability of sprouting blood vessels in the developing retina independently of cell-cell adhesion through focal adhesion assembly. Development (Cambridge), 2020, 147, .	1.2	19
17	Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. ELife, 2020, 9, .	2.8	65
18	Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. ELife, 2020, 9, .	2.8	42

#	Article	IF	CITATIONS
19	Transient Photoinactivation of Cell Membrane Protein Activity without Genetic Modification by Molecular Hyperthermia. ACS Nano, 2019, 13, 12487-12499.	7.3	21
20	Endothelial β-Catenin Signaling Supports Postnatal Brain and Retinal Angiogenesis by Promoting Sprouting, Tip Cell Formation, and VEGFR (Vascular Endothelial Growth Factor Receptor) 2 Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2273-2288.	1.1	54
21	Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nature Communications, 2019, 10, 2761.	5.8	87
22	Endothelial cell-derived nidogen-1 inhibits migration of SK-BR-3 breast cancer cells. BMC Cancer, 2019, 19, 312.	1.1	13
23	CDC42 Deletion Elicits Cerebral Vascular Malformations via Increased MEKK3-Dependent KLF4 Expression. Circulation Research, 2019, 124, 1240-1252.	2.0	42
24	Fine-Tuning of Sox17 and Canonical Wnt Coordinates the Permeability Properties of the Blood-Brain Barrier. Circulation Research, 2019, 124, 511-525.	2.0	64
25	Emerging Pharmacologic Targets in Cerebral Cavernous Malformation and Potential Strategies to Alter the Natural History of a Difficult Disease. JAMA Neurology, 2019, 76, 492.	4.5	36
26	A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing. ELife, 2019, 8, .	2.8	38
27	VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression. Circulation Research, 2018, 122, 231-245.	2.0	54
28	Growth Differentiation Factor 6 Promotes Vascular Stability by Restraining Vascular Endothelial Growth Factor Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 353-362.	1.1	25
29	Endothelial trans-differentiation in glioblastoma recurring after radiotherapy. Modern Pathology, 2018, 31, 1361-1366.	2.9	29
30	Vascular Endothelial (VE)-Cadherin, Endothelial Adherens Junctions, and Vascular Disease. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029322.	2.3	75
31	Endothelial cell transitions. Science, 2018, 362, 746-747.	6.0	42
32	Resident Endothelial Progenitors Make Themselves at Home. Cell Stem Cell, 2018, 23, 153-155.	5.2	11
33	CD93 promotes \hat{l}^21 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. Journal of Clinical Investigation, 2018, 128, 3280-3297.	3.9	100
34	Peg3/PW1 Is a Marker of a Subset of Vessel Associated Endothelial Progenitors. Stem Cells, 2017, 35, 1328-1340.	1.4	22
35	The molecular basis of endothelial cell plasticity. Nature Communications, 2017, 8, 14361.	5.8	333
36	SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development (Cambridge), 2017, 144, 2629-2639.	1.2	43

#	Article	IF	CITATIONS
37	Endothelial cell disease: emerging knowledge from cerebral cavernous malformations. Current Opinion in Hematology, 2017, 24, 256-264.	1.2	24
38	Deregulated TGF-β/BMP Signaling in Vascular Malformations. Circulation Research, 2017, 121, 981-999.	2.0	83
39	Endothelial-to-Mesenchymal Transition in Bone Marrow and Spleen of Primary Myelofibrosis. American Journal of Pathology, 2017, 187, 1879-1892.	1.9	17
40	VE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN. Current Biology, 2017, 27, 2219-2225.e5.	1.8	53
41	Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes T-cell–Mediated Immunotherapy. Cancer Research, 2017, 77, 4434-4447.	0.4	52
42	Partial loss of VE-cadherin improves long-term outcome and cerebral blood flow after transient brain ischemia in mice. BMC Neurology, 2016, 16, 144.	0.8	10
43	<scp>KLF</scp> 4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Molecular Medicine, 2016, 8, 6-24.	3.3	141
44	VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nature Communications, 2016, 7, 11017.	5.8	111
45	β-Catenin Is Required for Endothelial Cyp1b1 Regulation Influencing Metabolic Barrier Function. Journal of Neuroscience, 2016, 36, 8921-8935.	1.7	37
46	Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nature Communications, 2016, 7, 12422.	5.8	181
47	The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation. Science Signaling, 2016, 9, ra72.	1.6	35
48	Glycolytic regulation of cell rearrangement in angiogenesis. Nature Communications, 2016, 7, 12240.	5.8	131
49	Oligodendrocytes follow blood vessel trails in the brain. Science, 2016, 351, 341-342.	6.0	6
50	Endothelial Cells Lining Sporadic Cerebral Cavernous Malformation Cavernomas Undergo Endothelial-to-Mesenchymal Transition. Stroke, 2016, 47, 886-890.	1.0	52
51	The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. Journal of General Physiology, 2016, 147, 1472OIA9.	0.9	0
52	The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nature Communications, 2015, 6, 8479.	5.8	50
53	Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Molecular Medicine, 2015, 7, 1403-1417.	3.3	109
54	The role of microvascular endothelial WNT signaling the formation of the blood brain barrier. SpringerPlus, 2015, 4, L47.	1.2	3

#	Article	lF	CITATIONS
55	New insights in the control of vascular permeability. Current Opinion in Hematology, 2015, 22, 267-272.	1.2	52
56	Lessons from the first ecancer symposium on angiogenesis in gastric cancer. Ecancermedicalscience, 2015, 9, 553.	0.6	0
57	A gut-vascular barrier controls the systemic dissemination of bacteria. Science, 2015, 350, 830-834.	6.0	446
58	The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. Journal of Cell Biology, 2015, 211, 1177-1192.	2.3	62
59	The Endothelial Transcription Factor ERG Promotes Vascular Stability and Growth through Wnt/β-Catenin Signaling. Developmental Cell, 2015, 32, 82-96.	3.1	190
60	Sulindac metabolites decrease cerebrovascular malformations in <i>CCM3</i> -knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8421-8426.	3.3	102
61	Vascular Endothelial Growth Factor C Disrupts the Endothelial Lymphatic Barrier to Promote Colorectal Cancer Invasion. Gastroenterology, 2015, 148, 1438-1451.e8.	0.6	114
62	PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nature Communications, 2015, 6, 6364.	5.8	120
63	The Pathological Modifications of the Blood Brain Barrier and Cerebral Cavernous Malformations. FASEB Journal, 2015, 29, 81.1.	0.2	0
64	An EMMPRIN/γ-catenin/Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions. Journal of Cell Science, 2014, 127, 3768-81.	1.2	22
65	Targeting endothelial junctional adhesion molecule―A / EPAC / R apâ€1 axis as a novel strategy to increase stem cell engraftment in dystrophic muscles. EMBO Molecular Medicine, 2014, 6, 239-258.	3.3	35
66	Transcriptional regulation of arterial differentiation via Wnt, Sox and Notch. Current Opinion in Hematology, 2014, 21, 229-234.	1.2	30
67	Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes and Development, 2014, 28, 1592-1603.	2.7	115
68	Differential adhesion drives angiogenesis. Nature Cell Biology, 2014, 16, 305-306.	4.6	12
69	Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. Journal of Cell Biology, 2014, 204, 247-263.	2.3	163
70	Tumor Vessel Normalization by Chloroquine Independent of Autophagy. Cancer Cell, 2014, 26, 190-206.	7.7	358
71	Signaling Pathways in the Specification of Arteries and Veins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2372-2377.	1.1	86
72	VE-cadherin at a glance. Cell and Tissue Research, 2014, 355, 515-522.	1.5	43

#	Article	IF	CITATIONS
73	Progesterone Receptor in the Vascular Endothelium Triggers Physiological Uterine Permeability Preimplantation. Cell, 2014, 156, 549-562.	13.5	62
74	Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization. Journal of Clinical Investigation, 2014, 124, 4335-4350.	3.9	46
75	VE-Cadherin and Endothelial Adherens Junctions: Active Guardians of Vascular Integrity. Developmental Cell, 2013, 26, 441-454.	3.1	637
76	Endothelial adherens junctions at a glance. Journal of Cell Science, 2013, 126, 2545-9.	1.2	152
77	The Role of VE-Cadherin in Vascular Morphogenesis and Permeability Control. Progress in Molecular Biology and Translational Science, 2013, 116, 119-144.	0.9	161
78	Accelerated endothelial wound healing on microstructured substrates under flow. Biomaterials, 2013, 34, 1488-1497.	5.7	71
79	VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nature Communications, 2013, 4, 1672.	5.8	120
80	Sox17 is indispensable for acquisition and maintenance of arterial identity. Nature Communications, 2013, 4, 2609.	5.8	232
81	EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature, 2013, 498, 492-496.	13.7	403
82	Vascular Endothelial Growth Factor-Angiopoietin Chimera With Improved Properties for Therapeutic Angiogenesis. Circulation, 2013, 127, 424-434.	1.6	53
83	Wnt Activation of Immortalized Brain Endothelial Cells as a Tool for Generating a Standardized Model of the Blood Brain Barrier In Vitro. PLoS ONE, 2013, 8, e70233.	1.1	91
84	Vascular endothelial-cadherin and vascular stability. Current Opinion in Hematology, 2012, 19, 218-223.	1.2	156
85	Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood, 2012, 119, 2159-2170.	0.6	87
86	Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nature Communications, 2012, 3, 1208.	5.8	387
87	Ve-ptp Modulates Vascular Integrity by Promoting Adherens Junction Maturation. PLoS ONE, 2012, 7, e51245.	1.1	17
88	The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery?. Pharmacological Research, 2011, 63, 165-171.	3.1	76
89	Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression. PLoS ONE, 2011, 6, e21242.	1.1	49
90	Adhesion molecule signalling: not always a sticky business. Nature Reviews Molecular Cell Biology, 2011, 12, 189-197.	16.1	228

#	Article	IF	CITATIONS
91	Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. Journal of Experimental Medicine, 2011, 208, 1835-1847.	4.2	118
92	Role of synectin in lymphatic development in zebrafish and frogs. Blood, 2010, 116, 3356-3366.	0.6	36
93	News from the Brain: The GPR124 Orphan Receptor Directs Brain-Specific Angiogenesis. Science Translational Medicine, 2010, 2, 58ps53.	5.8	7
94	CCM1 regulates vascular-lumen organization by inducing endothelial polarity. Journal of Cell Science, 2010, 123, 1073-1080.	1.2	157
95	The Role of Wnt Signaling in Physiological and Pathological Angiogenesis. Circulation Research, 2010, 107, 943-952.	2.0	296
96	Inactivation of Junctional Adhesion Molecule-A Enhances Antitumoral Immune Response by Promoting Dendritic Cell and T Lymphocyte Infiltration. Cancer Research, 2010, 70, 1759-1765.	0.4	25
97	The Wnt/β-Catenin Pathway Modulates Vascular Remodeling and Specification by Upregulating Dll4/Notch Signaling. Developmental Cell, 2010, 18, 938-949.	3.1	274
98	Stable Vascular Connections and Remodeling Require Full Expression of VE-Cadherin in Zebrafish Embryos. PLoS ONE, 2009, 4, e5772.	1.1	107
99	<i>Sox7</i> and <i>Sox17</i> are strain-specific modifiers of the lymphangiogenic defects caused by <i>Sox18</i> dysfunction in mice. Development (Cambridge), 2009, 136, 2385-2391.	1.2	82
100	JAM-A promotes neutrophil chemotaxis by controlling integrin internalization and recycling. Journal of Cell Science, 2009, 122, 268-277.	1.2	81
101	VE-Cadherin-Mediated Cell-Cell Interaction Suppresses Sprouting via Signaling to MLC2 Phosphorylation. Current Biology, 2009, 19, 668-674.	1.8	138
102	Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell and Tissue Research, 2009, 335, 17-25.	1.5	181
103	Endothelial cell biology and pathology. Cell and Tissue Research, 2009, 335, 1-3.	1.5	11
104	The Control of Vascular Integrity by Endothelial Cell Junctions: Molecular Basis and Pathological Implications. Developmental Cell, 2009, 16, 209-221.	3.1	692
105	The Molecular Basis of Vascular Lumen Formation in the Developing Mouse Aorta. Developmental Cell, 2009, 17, 505-515.	3.1	315
106	Levels of Circulating Pro-angiogenic Cells Predict Cardiovascular Outcomes in Patients With Chronic Heart Failure. Journal of Cardiac Failure, 2009, 15, 747-755.	0.7	8
107	Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization. Cell, 2009, 136, 839-851.	13.5	727
108	Endothelial cell migration directs testis cord formation. Developmental Biology, 2009, 326, 112-120.	0.9	164

#	Article	IF	CITATIONS
109	Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. Blood, 2009, 113, 6246-6257.	0.6	168
110	VE-cadherin is a critical endothelial regulator of TGF-Î ² signalling. EMBO Journal, 2008, 27, 993-1004.	3.5	146
111	Deciphering the functional role of endothelial junctions by using <i>in vivo</i> models. EMBO Reports, 2008, 9, 742-747.	2.0	27
112	Sox18 induces development of the lymphatic vasculature in mice. Nature, 2008, 456, 643-647.	13.7	483
113	Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nature Cell Biology, 2008, 10, 923-934.	4.6	538
114	Adherens junctions. Current Biology, 2008, 18, R1080-R1082.	1.8	33
115	Unique Role of Junctional Adhesion Molecule-A in Maintaining Mucosal Homeostasis in Inflammatory Bowel Disease. Gastroenterology, 2008, 135, 173-184.	0.6	210
116	Fate Tracing Reveals the Endothelial Origin of Hematopoietic Stem Cells. Cell Stem Cell, 2008, 3, 625-636.	5.2	600
117	Methods of Stochastic Geometry and Related Statistical Problems in the Analysis and Therapy of Tumour Growth and Tumour Driven Angiogenesis. , 2008, , 1-37.		2
118	Wnt∫β-catenin signaling controls development of the blood–brain barrier. Journal of Cell Biology, 2008, 183, 409-417.	2.3	680
119	Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke. DMM Disease Models and Mechanisms, 2008, 1, 275-281.	1.2	66
120	The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 2008, 121, 2115-2122.	1.2	808
121	Sox18 and Sox7 play redundant roles in vascular development. Blood, 2008, 111, 2657-2666.	0.6	179
122	Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. Journal of Cell Science, 2008, 121, 29-37.	1.2	148
123	Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood, 2008, 111, 3498-3506.	0.6	222
124	The Control of Endothelial Cell Functions by Adherens Junctions. Novartis Foundation Symposium, 2007, 283, 4-17.	1.2	33
125	SIRT1 controls endothelial angiogenic functions during vascular growth. Genes and Development, 2007, 21, 2644-2658.	2.7	540
126	Functionally specialized junctions between endothelial cells of lymphatic vessels. Journal of Experimental Medicine, 2007, 204, 2349-2362.	4.2	829

#	Article	IF	CITATIONS
127	JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. Blood, 2007, 110, 1848-1856.	0.6	126
128	Adherens junctions in endothelial cells regulate vessel maintenance and angiogenesis. Thrombosis Research, 2007, 120, S1-S6.	0.8	76
129	Immune Regulation by Microvascular Endothelial Cells: Directing Innate and Adaptive Immunity, Coagulation, and Inflammation. Journal of Immunology, 2007, 178, 6017-6022.	0.4	255
130	Effects of Exercise Training on Endothelial Progenitor Cells in Patients With Chronic Heart Failure. Journal of Cardiac Failure, 2007, 13, 701-708.	0.7	95
131	Hepatocyte-conditioned medium sustains endothelial differentiation of human hematopoietic-endothelial progenitors. Hepatology, 2007, 45, 1218-1228.	3.6	12
132	The role of junctional adhesion molecules in vascular inflammation. Nature Reviews Immunology, 2007, 7, 467-477.	10.6	431
133	Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 298-312.	3.3	86
134	Functionally specialized junctions between endothelial cells of lymphatic vessels. Journal of Cell Biology, 2007, 178, i15-i15.	2.3	1
135	Endothelial cadherins and tumor angiogenesis. Experimental Cell Research, 2006, 312, 659-667.	1.2	134
136	Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. Journal of Cell Biology, 2006, 174, 593-604.	2.3	480
137	The transcellular railway: insights into leukocyte diapedesis. Nature Cell Biology, 2006, 8, 105-107.	4.6	37
138	Generation and characterization of a mouse lymphatic endothelial cell line. Cell and Tissue Research, 2006, 325, 91-100.	1.5	56
139	Importance of Junctional Adhesion Molecule-A for Neointimal Lesion Formation and Infiltration in Atherosclerosis-Prone Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, e10-3.	1.1	63
140	Increase in Vascular Permeability and Vasodilation Are Critical for Proangiogenic Effects of Stem Cell Therapy. Circulation, 2006, 114, 328-338.	1.6	84
141	The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. Journal of Leukocyte Biology, 2006, 80, 714-718.	1.5	121
142	The Multiple Languages of Endothelial Cell-to-Cell Communication. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1431-1438.	1.1	98
143	Junctional adhesion molecule-A deficiency increases hepatic ischemia-reperfusion injury despite reduction of neutrophil transendothelial migration. Blood, 2005, 106, 725-733.	0.6	99
144	VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood, 2005, 105, 2771-2776.	0.6	152

#	Article	IF	CITATIONS
145	A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 2005, 437, 426-431.	13.7	1,457
146	Downregulation of vascular endothelial-cadherin expression is associated with an increase in vascular tumor growth and hemorrhagic complications. Thrombosis and Haemostasis, 2005, 93, 1041-1046.	1.8	27
147	Opposite effects of tumor necrosis factor and soluble fibronectin on junctional adhesion molecule-A in endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L1081-L1088.	1.3	21
148	Expression of junctional adhesion molecule-A prevents spontaneous and random motility. Journal of Cell Science, 2005, 118, 623-632.	1.2	78
149	p120-Catenin Regulates Clathrin-dependent Endocytosis of VE-Cadherin. Molecular Biology of the Cell, 2005, 16, 5141-5151.	0.9	233
150	Endoglin Null Endothelial Cells Proliferate Faster and Are More Responsive to Transforming Growth Factor β1 with Higher Affinity Receptors and an Activated Alk1 Pathway. Journal of Biological Chemistry, 2005, 280, 27800-27808.	1.6	118
151	Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. Journal of Experimental Medicine, 2005, 201, 1825-1835.	4.2	161
152	Junctional adhesion molecule-A-deficient polymorphonuclear cells show reduced diapedesis in peritonitis and heart ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10634-10639.	3.3	113
153	Mesoangioblasts, Vessel-Associated Multipotent Stem Cells, Repair the Infarcted Heart by Multiple Cellular Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 692-697.	1.1	88
154	Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Letters, 2005, 579, 4966-4972.	1.3	272
155	Endothelial Cell Permeability Assays in Culture. , 2004, , 103-113.		2
156	Contribution of JAM-1 to epithelial differentiation and tight-junction biogenesis in the mouse preimplantation embryo. Journal of Cell Science, 2004, 117, 5599-5608.	1.2	98
157	β-Catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. Journal of Cell Biology, 2004, 166, 359-367.	2.3	344
158	Endothelial Cell-to-Cell Junctions: Molecular Organization and Role in Vascular Homeostasis. Physiological Reviews, 2004, 84, 869-901.	13.1	1,097
159	Endothelial cell–cell junctions: happy together. Nature Reviews Molecular Cell Biology, 2004, 5, 261-270.	16.1	1,011
160	VE-Cadherin Expression and Clustering Maintain Low Levels of Survivin in Endothelial Cells. American Journal of Pathology, 2004, 165, 181-189.	1.9	34
161	Gas1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis. Blood, 2004, 103, 3005-3012.	0.6	66
162	Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A–deficient mice. Journal of Clinical Investigation, 2004, 114, 729-738.	3.9	142

#	Article	IF	CITATIONS
163	Skeletal myogenic progenitors in the endothelium of lung and yolk sac. Experimental Cell Research, 2003, 290, 207-216.	1.2	16
164	Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes and Development, 2003, 17, 1835-1840.	2.7	557
165	The conditional inactivation of the β-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. Journal of Cell Biology, 2003, 162, 1111-1122.	2.3	297
166	Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, β-catenin, and the phosphatase DEP-1/CD148. Journal of Cell Biology, 2003, 161, 793-804.	2.3	374
167	Vascular Endothelial Growth Factor Induces Shc Association With Vascular Endothelial Cadherin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 617-622.	1.1	69
168	VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9462-9467.	3.3	308
169	VE-Cadherin Regulates Endothelial Actin Activating Rac and Increasing Membrane Association of Tiam. Molecular Biology of the Cell, 2002, 13, 1175-1189.	0.9	226
170	Keratinocyte junctions and the epidermal barrier. Journal of Cell Biology, 2002, 156, 947-949.	2.3	26
171	A monoclonal antibody to vascular endothelial–cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood, 2002, 100, 905-911.	0.6	188
172	Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Research, 2002, 62, 2567-75.	0.4	91
173	Association of Junctional Adhesion Molecule with Calcium/calmodulin-dependent Serine Protein Kinase (CASK/LIN-2) in Human Epithelial Caco-2 Cells. Journal of Biological Chemistry, 2001, 276, 9291-9296.	1.6	116
174	Interendothelial Junctions and their Role in the Control of Angiogenesis, Vascular Permeability and Leukocyte Transmigration. Thrombosis and Haemostasis, 2001, 86, 308-315.	1.8	186
175	Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood, 2001, 97, 1679-1684.	0.6	276
176	Dynamic modules and heterogeneity of function: a lesson from tyrosine kinase receptors in endothelial cells. EMBO Reports, 2001, 2, 763-767.	2.0	25
177	X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. EMBO Journal, 2001, 20, 4391-4398.	3.5	200
178	Pores in the Sieve and Channels in the Wall: Control of Paracellular Permeability by Junctional Proteins in Endothelial Cells. Microcirculation, 2001, 8, 143-152.	1.0	59
179	Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10733-10738.	3.3	357
180	Pores in the Sieve and Channels in the Wall: Control of Paracellular Permeability by Junctional Proteins in Endothelial Cells. Microcirculation, 2001, 8, 143-152.	1.0	4

#	Article	IF	CITATIONS
181	cDNA cloning, chromosomal mapping, and expression analysis of human VE-Cadherin-2. Mammalian Genome, 2000, 11, 1030-1033.	1.0	12
182	Interaction of Junctional Adhesion Molecule with the Tight Junction Components ZO-1, Cingulin, and Occludin. Journal of Biological Chemistry, 2000, 275, 20520-20526.	1.6	411
183	Development of Endothelial Cell Lines From Embryonic Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1443-1451.	1.1	99
184	Homophilic Interaction of Junctional Adhesion Molecule. Journal of Biological Chemistry, 2000, 275, 30970-30976.	1.6	133
185	Histamine Induces Tyrosine Phosphorylation of Endothelial Cell-to-Cell Adherens Junctions. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2286-2297.	1.1	219
186	Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9815-9820.	3.3	626
187	Regulation of Cadherin Function by Rho and Rac: Modulation by Junction Maturation and Cellular Context. Molecular Biology of the Cell, 1999, 10, 9-22.	0.9	246
188	Leukocyte Recruitment in the Cerebrospinal Fluid of Mice with Experimental Meningitis Is Inhibited by an Antibody to Junctional Adhesion Molecule (Jam). Journal of Experimental Medicine, 1999, 190, 1351-1356.	4.2	268
189	Endothelial adhesion molecules in the development of the vascular tree: the garden of forking paths. Current Opinion in Cell Biology, 1999, 11, 573-581.	2.6	65
190	Molecular Structure and Functional Role of Vascular Tight Junctions. Trends in Cardiovascular Medicine, 1999, 9, 147-152.	2.3	29
191	Identification and characterisation of human Junctional Adhesion Molecule (JAM). Molecular Immunology, 1999, 36, 1175-1188.	1.0	165
192	Targeted Deficiency or Cytosolic Truncation of the VE-cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis. Cell, 1999, 98, 147-157.	13.5	1,167
193	Vascular Endothelial (VE)-Cadherin: Only an Intercellular Glue?. Experimental Cell Research, 1999, 252, 13-19.	1.2	217
194	Junctional Adhesion Molecule, a Novel Member of the Immunoglobulin Superfamily That Distributes at Intercellular Junctions and Modulates Monocyte Transmigration. Journal of Cell Biology, 1998, 142, 117-127.	2.3	1,248
195	Differential Localization of VE- and N-Cadherins in Human Endothelial Cells: VE-Cadherin Competes with N-Cadherin for Junctional Localization. Journal of Cell Biology, 1998, 140, 1475-1484.	2.3	282
196	In Vitro Degradation of Endothelial Catenins by a Neutrophil Protease. Journal of Cell Biology, 1998, 140, 403-407.	2.3	91
197	Identification of a Novel Cadherin (Vascular Endothelial Cadherin-2) Located at Intercellular Junctions in Endothelial Cells. Journal of Biological Chemistry, 1998, 273, 17565-17572.	1.6	62

3

#	Article	IF	CITATIONS
199	Cytokine Regulation of Endothelial Cell Function. , 1998, , 105-134.		2
200	Adhesive Molecules at Luminal Surface and at Intercellular Junctions of the Endothelium in the Regulation of Leukocyte Transendothelial Traffic. , 1998, , 47-55.		0
201	Structure and Functional Role of Endothelial Cell-to-Cell Junctions. , 1998, , 187-201.		Ο
202	Alteration of Interendothelial Adherens Junctions Following Tumor Cell–Endothelial Cell Interactionin Vitro. Experimental Cell Research, 1997, 237, 347-356.	1.2	56
203	Interendothelial junctions: structure, signalling and functional roles. Current Opinion in Cell Biology, 1997, 9, 674-682.	2.6	210
204	Triggering of β1-Integrin Chain Induces Platelet Adhesion to Cultured Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2663-2671.	1.1	0
205	Heterogeneity of Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1193-1202.	1.1	445
206	Intercellular Junctions in the Endothelium and the Control of Vascular Permeability. Annals of the New York Academy of Sciences, 1997, 811, 36-44.	1.8	22
207	Genomic Structure and Chromosomal Mapping of the Mouse VE-Cadherin Gene (Cdh5). Genomics, 1996, 32, 21-28.	1.3	48
208	Thrombin-Induced Increase in Endothelial Permeability Is Associated With Changes in Cell-to-Cell Junction Organization. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 488-496.	1.1	290
209	Catenin-dependent and -independent Functions of Vascular Endothelial Cadherin. Journal of Biological Chemistry, 1995, 270, 30965-30972.	1.6	195
210	Expression of VE (vascular endothelial)-cadherin and other endothelial-specific markers in haemangiomas. Journal of Pathology, 1995, 175, 51-57.	2.1	59
211	Endothelial cellâ€ŧo ell junctions. FASEB Journal, 1995, 9, 910-918.	0.2	422
212	Structural Characteristics and Functional Role of Endothelial Cell to Cell Junctions. Endothelium: Journal of Endothelial Cell Research, 1994, 2, 1-10.	1.7	15
213	Co-expression of endothelial cell and macrophage antigens in Kaposi's sarcoma cells. Journal of Pathology, 1994, 173, 23-31.	2.1	75
214	Inhibition of human monocyte adhesion to endothelial cells by the coumarin derivative, cloricromene. British Journal of Pharmacology, 1994, 111, 575-581.	2.7	6
215	Endothelial integrins and their role in maintaining the integrity of the vessel wall. Kidney International, 1993, 43, 61-65.	2.6	28
216	1 Endothelial cell-to-cell junctions. Structural characteristics and functional role in the regulation of vascular permeability and leukocyte extravasation. Best Practice and Research: Clinical Haematology, 1993, 6, 539-558.	1.1	45

#	Article	IF	CITATIONS
217	Interleukin-1 and Tumor Necrosis Factor Induce Transient Expression of an Inhibitor of Nuclear Factor kB in Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 1993, 1, 161-165.	1.7	8
218	Cytokine regulation of endothelial cell function. FASEB Journal, 1992, 6, 2591-2599.	0.2	643
219	Cloricromene inhibits the activation of human platelets by ADP alone or in combination with adrenaline. European Journal of Pharmacology, 1990, 187, 541-545.	1.7	8
220	The Role of Cytokines in the Symbiotic Relationship between Leukocytes and Vascular Endothelia. , 1989, , 121-127.		0
221	Modulation of endothelial function by interleukin-1. Biochemical Pharmacology, 1987, 36, 301-305.	2.0	33
222	Pharmacokinetics of enteric-coated aspirin and inhibition of platelet thromboxane A2 and vascular prostacyclin generation in humans. Clinical Pharmacology and Therapeutics, 1987, 42, 175-180.	2.3	17
223	Effects of dipyridamole and low-dose aspirin therapy on platelet adhesion to vascular subendothelium. American Journal of Cardiology, 1986, 58, 1261-1264.	0.7	21
224	Current Issues in Thrombosis Prevention with Antiplatelet Drugs. Drugs, 1986, 31, 517-549.	4.9	32
225	Differential Salicylate-Aspirin Interaction on Vascular Prostacyclin and Platelet Thromboxane Synthesis in Patients Undergoing Saphenectomy. Experimental Biology and Medicine, 1985, 180, 533-537.	1.1	6
226	Inhibition of human platelet thromboxane generation by aspirin in the absence of measurable drug levels in peripheral blood. Biochemical Pharmacology, 1985, 34, 1839-1841.	2.0	21
227	Platelet Adhesion to Subendothelium - Effect of Shear Rate, Hematocrit and Platelet Count on the Dynamic Equilibrium Between Platelets Adhering to and Detaching from the Surface. Thrombosis and Haemostasis, 1985, 54, 857-861.	1.8	19
228	Specific binding of human fibrinogen to cultured human fibroblasts. Evidence for the involvement of the E domain. FEBS Journal, 1984, 139, 657-662.	0.2	38
229	Maternal smoking and prostacyclin production by cultured endothelial cells from umbilical arteries. American Journal of Obstetrics and Gynecology, 1984, 148, 1127-1130.	0.7	36
230	Success rate of primary human endothelial cell culture from umbilical cords is influenced by maternal and fetal factors and interval from delivery. In Vitro, 1983, 19, 807-810.	1.2	11
231	Recovery of prostacyclin production by cultured bovine smooth muscle cells after aspirin inhibition: effect of serum replacement and concentration in culture medium. Biochemical Pharmacology, 1983, 32, 710-713.	2.0	10
232	REDUCED PROSTACYCLIN PRODUCTION BY CULTURED ENDOTHELIAL CELLS FROM UMBILICAL ARTERIES OF BABIES BORN TO WOMEN WHO SMOKE. Lancet, The, 1982, 320, 609-610.	6.3	19
233	Evidence that Vascular Endothelial Cells Can Induce the Retraction of Fibrin Clots. Experimental Biology and Medicine, 1981, 168, 204-207.	1.1	51
234	Impaired Thromboxane Production by Newly Formed Platelets after Aspirin Administration to Thrombocytopenic Rats. British Journal of Haematology, 1980, 46, 465-469.	1.2	23

#	Article	IF	CITATIONS
235	Differences in inhibition of PGI2 production by aspirin in rabbit artery and vein segments. Thrombosis Research, 1980, 20, 447-460.	0.8	49
236	Bleeding time in laboratory animals. II - A comparison of different assay conditions in rats. Thrombosis Research, 1979, 15, 191-197.	0.8	183
237	Bleeding time in laboratory animals. III - Do tail bleeding times in rats only measure a platelet defect? (The aspirin puzzle). Thrombosis Research, 1979, 15, 199-207.	0.8	36
238	Prostaglandins I2 and E1 reduce rabbit and human platelet adherence without inhibiting serotonin release from adherent platelets. Thrombosis Research, 1979, 15, 273-279.	0.8	41
239	Role of the lung in the development of cardiovascular modifications during ADP infusion in the rat. Thrombosis Research, 1978, 12, 47-57.	0.8	2
240	Contribution of Platelets to the Cardiovascular Effects of ADP in the Rat. Thrombosis and Haemostasis, 1978, 39, 135-145.	1.8	13