List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/239735/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession. Chemosphere, 2021, 284, 131378.                                                                      | 8.2 | 6         |
| 2  | Cyanobacterial Classification with the Toxicity Using MALDI Biotyper. Journal of the American Society for Mass Spectrometry, 2020, 31, 1572-1578.                                                                                     | 2.8 | 5         |
| 3  | Densification of cyanobacteria from a lake leading to production of β yclocitral and related volatile organic compounds and species change. Phycological Research, 2018, 66, 161-166.                                                 | 1.6 | 6         |
| 4  | Effects of Light and Potassium Ion on Buoyancy Regulation with Gas Vesicle in a Cyanobacterium Microcystis aeruginosa NIES-843. Water, Air, and Soil Pollution, 2018, 229, 1.                                                         | 2.4 | 7         |
| 5  | Multi-imaging of Cytokinin and Abscisic Acid on the Roots of Rice ( <i>Oryza sativa</i> ) Using<br>Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Journal of Agricultural and Food<br>Chemistry, 2017, 65, 7624-7628. | 5.2 | 24        |
| 6  | Application of MALDI Biotyper to cyanobacterial profiling. Rapid Communications in Mass Spectrometry, 2017, 31, 325-332.                                                                                                              | 1.5 | 10        |
| 7  | FVIIa-sTF and Thrombin Inhibitory Activities of Compounds Isolated from Microcystis aeruginosa K-139.<br>Marine Drugs, 2017, 15, 275.                                                                                                 | 4.6 | 5         |
| 8  | Determination of FVIIa-sTF Inhibitors in Toxic Microcystis Cyanobacteria by LC-MS Technique. Marine<br>Drugs, 2016, 14, 7.                                                                                                            | 4.6 | 6         |
| 9  | Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis.<br>Environmental Science and Pollution Research, 2016, 23, 11998-12006.                                                                       | 5.3 | 19        |
| 10 | Cyanobacterial Blue Color Formation during Lysis under Natural Conditions. Applied and Environmental Microbiology, 2015, 81, 2667-2675.                                                                                               | 3.1 | 45        |
| 11 | Microbial degradation of linear peptides by strain B-9 of Sphingosinicella and its application in peptide quantification using liquid chromatography-mass spectrometry. Journal of Bioscience and Bioengineering, 2015, 119, 724-728. | 2.2 | 5         |
| 12 | Molecular Analysis of the Cyanobacterial Community in Gastric Contents of Egrets with Symptoms of<br>Steatitis. Open Microbiology Journal, 2015, 9, 160-166.                                                                          | 0.7 | 1         |
| 13 | Blue Color Formation of Cyanobacteria with β-Cyclocitral. Journal of Chemical Ecology, 2009, 35, 1295-1301.                                                                                                                           | 1.8 | 39        |
| 14 | Electron Microscopic Study on Lysis of a Cyanobacterium Microcystis. Journal of Health Science, 2009, 55, 578-585.                                                                                                                    | 0.9 | 26        |
| 15 | Optical Resolution of 1,2-Diamino Compounds Using Advanced Marfey's Method. Journal of the Mass<br>Spectrometry Society of Japan, 2009, 57, 71-74.                                                                                    | 0.1 | 1         |
| 16 | Diversity within the Microcystin Biosynthetic Gene Clusters among the Genus Microcystis. Microbes and Environments, 2007, 22, 380-390.                                                                                                | 1.6 | 11        |
| 17 | Detection and identification of microcystins in the drinking water of Haimen City, China. Natural Toxins, 2006, 4, 277-283.                                                                                                           | 1.0 | 55        |
| 18 | Comprehensive analysis system using liquid chromatography–mass spectrometry for the biosynthetic study of peptides produced by cyanobacteria. Journal of Chromatography A, 2004, 1033, 107-113.                                       | 3.7 | 30        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Production of Secondary Metabolites by Freshwater Cyanobacteria. Chemical and Pharmaceutical Bulletin, 2004, 52, 889-899.                                                                                                                                         | 1.3 | 87        |
| 20 | Isolation and Structural Characterization of Siderophores, Madurastatins, Produced by a Pathogenic Actinomadura madurae. Journal of Antibiotics, 2004, 57, 125-135.                                                                                               | 2.0 | 49        |
| 21 | Trace Analysis of Microcystins in Environmental Samples. Journal of AOAC INTERNATIONAL, 2001, 84, 1636-1642.                                                                                                                                                      | 1.5 | 9         |
| 22 | Co-production of microcystins and aeruginopeptins by natural cyanobacterial bloom. Environmental Toxicology, 2001, 16, 298-305.                                                                                                                                   | 4.0 | 40        |
| 23 | Insecticidal compounds against mosquito larvae fromOscillatoria agardhii strain 27. Environmental<br>Toxicology, 2000, 15, 114-119.                                                                                                                               | 4.0 | 39        |
| 24 | β-Cyanoalanine Production by Marine Bacteria on Cyanide-Free Medium and Its Specific Inhibitory<br>Activity toward Cyanobacteria. Applied and Environmental Microbiology, 2000, 66, 718-722.                                                                      | 3.1 | 55        |
| 25 | Chromatographic Determination of the Absolute Configuration of an Acyclic Secondary Alcohol<br>Using Difluorodinitrobenzene. Analytical Chemistry, 2000, 72, 4142-4147.                                                                                           | 6.5 | 13        |
| 26 | Nostophycin, a Novel Cyclic Peptide from the Toxic CyanobacteriumNostocsp. 152. Journal of Organic<br>Chemistry, 1999, 64, 5777-5782.                                                                                                                             | 3.2 | 54        |
| 27 | Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. Journal of<br>Applied Phycology, 1998, 10, 391-397.                                                                                                                    | 2.8 | 73        |
| 28 | High-performance liquid chromatographic separation of microcystins derivatized with a highly fluorescent dienophile. Natural Toxins, 1998, 5, 201-207.                                                                                                            | 1.0 | 19        |
| 29 | Temporal variabilities of the concentrations of intra- and extracellular microcystin and<br>toxicMicrocystis species in a hypertrophic lake, Lake Suwa, Japan (1991-1994). Environmental Toxicology<br>and Water Quality, 1998, 13, 61-72.                        | 0.5 | 170       |
| 30 | Persistence and Decomposition of Hepatotoxic Microcystins Produced by Cyanobacteria in Natural Environment. Toxin Reviews, 1998, 17, 385-403.                                                                                                                     | 1.5 | 54        |
| 31 | A Coupled Assay System for the Lysis of Cyanobacteria Japanese Journal of Water Treatment Biology,<br>1998, 34, 67-75.                                                                                                                                            | 0.1 | 14        |
| 32 | A Nonempirical Method Using LC/MS for Determination of the Absolute Configuration of Constituent<br>Amino Acids in a Peptide:Â Combination of Marfey's Method with Mass Spectrometry and Its Practical<br>Application. Analytical Chemistry, 1997, 69, 5146-5151. | 6.5 | 400       |
| 33 | Identification and estimation of microcystins in freshwater mussels. Natural Toxins, 1997, 5, 31-35.                                                                                                                                                              | 1.0 | 64        |
| 34 | Stability of microcystins from cyanobacteria—III. Effect of pH and temperature. Phycologia, 1996, 35,<br>83-88.                                                                                                                                                   | 1.4 | 140       |
| 35 | Microcystin levels during 1992–95 for lakes sagami and tsukuiâ€ <del>j</del> apan. Natural Toxins, 1996, 4, 189-194.<br>                                                                                                                                          | 1.0 | 43        |
| 36 | Trace analysis of microcystins. Phycologia, 1996, 35, 36-41.                                                                                                                                                                                                      | 1.4 | 18        |

3

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Reliable and sensitive method for determination of microcystins in complicated matrices by frit-fast atom bombardment liquid chromatography/mass spectrometry. Natural Toxins, 1995, 3, 41-49.                                                                        | 1.0 | 43        |
| 38 | Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity.<br>Natural Toxins, 1995, 3, 78-86.                                                                                                                                  | 1.0 | 136       |
| 39 | Structure Elucidation of Glykenin, Glycosidic Antibiotics from Basidiomycetes sp. VII. Structure<br>Elucidation of the GK Components Using Tandem Mass Spectrometry Journal of the Mass<br>Spectrometry Society of Japan, 1995, 43, 37-44.                            | 0.1 | 2         |
| 40 | Structure Elucidation of Glykenin, Glycosidic Antibiotics from Basidiomycetes sp. VI. Structure<br>Characterization of the GK Components Using Frit-FAB LC/MS Journal of the Mass Spectrometry<br>Society of Japan, 1995, 43, 27-35.                                  | 0.1 | 1         |
| 41 | Improvement of Chemical Analysis of Antibiotics. Part XIX1: Determination of Tetracycline Antibiotics<br>in Milk by Liquid Chromatography and Thin-Layer Chromatography/Fast Atom Bombardment Mass<br>Spectrometry. Journal of AOAC INTERNATIONAL, 1994, 77, 891-895. | 1.5 | 25        |
| 42 | Crossâ€Reactivity and Neutralizing Ability of Monoclonal Antibodies against Microcystins.<br>Microbiology and Immunology, 1994, 38, 389-392.                                                                                                                          | 1.4 | 11        |
| 43 | Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Natural Toxins, 1993, 1, 353-360.                                                                                           | 1.0 | 120       |
| 44 | Fast atom bombardment mass spectral study of tetracycline antibiotics. Organic Mass Spectrometry,<br>1993, 28, 1512-1515.                                                                                                                                             | 1.3 | 8         |
| 45 | Seasonal variations ofmicrocystis species and toxic heptapeptide microcystins in lake suwa.<br>Environmental Toxicology and Water Quality, 1993, 8, 425-435.                                                                                                          | 0.5 | 72        |
| 46 | Improvement in the Selectivity of the Chemigram Approach in Gas Chromatography/Infrared<br>Spectroscopy. Analytical Sciences, 1993, 9, 279-283.                                                                                                                       | 1.6 | 2         |
| 47 | Discrepancy Between the Theoretical Plate Number (N) and Peak Resolution (Rs) for Optimizing the<br>Flow Rate in Countercurrent Chromatography. Journal of Liquid Chromatography and Related<br>Technologies, 1992, 15, 2707-2719.                                    | 1.0 | 9         |
| 48 | Development of a condensation technique for thin-layer chromatography/fast-atom bombardment<br>mass spectrometry of non-visible compounds. Rapid Communications in Mass Spectrometry, 1992, 6,<br>89-94.                                                              | 1.5 | 25        |
| 49 | Release of heptapeptide toxin (microcystin) during the decomposition process ofMicrocystis aeruginosa. Natural Toxins, 1992, 1, 48-53.                                                                                                                                | 1.0 | 83        |
| 50 | Structure-Function Relationships of Microcystins, Liver Tumor Promoters, in Interaction with<br>Protein Phosphatase. Japanese Journal of Cancer Research, 1991, 82, 993-996.                                                                                          | 1.7 | 119       |
| 51 | Separation and identification of food dyes by thin-layer chromatography/liquid secondary ion mass spectrometry. Biological Mass Spectrometry, 1991, 20, 522-528.                                                                                                      | 0.5 | 24        |
| 52 | Optimization of a high speed countercurrent chromatograph for analytical separations. Journal of<br>High Resolution Chromatography, 1991, 14, 306-311.                                                                                                                | 1.4 | 7         |
| 53 | Structural Investigation of the Antibiotic Sporaviridin. XV. Preparative-Scale Preparation of Sporaviridin Components by HSCCC. Journal of Liquid Chromatography and Related Technologies, 1990, 13, 2373-2388.                                                       | 1.0 | 12        |
| 54 | Diagnostic and Clinically Important Aspects of Cyanobacterial (Blue-Green Algae) Toxicoses. Journal of Veterinary Diagnostic Investigation, 1989, 1, 359-365.                                                                                                         | 1.1 | 68        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of food dyes by TLC/SIMS with a condensation technique. Organic Mass Spectrometry, 1989, 24, 74-75.                                                                                           | 1.3 | 18        |
| 56 | Heptapeptide toxin production during the batch culture of two Microcystis species (Cyanobacteria).<br>Journal of Applied Phycology, 1989, 1, 161-165.                                                        | 2.8 | 79        |
| 57 | Syntheses and antitumor activities of 1R,2R-cyclohexanediamine Pt(II) complexes containing dicarboxylates Chemical and Pharmaceutical Bulletin, 1987, 35, 221-228.                                           | 1.3 | 17        |
| 58 | Optimization of operating conditions for desorption chemical ionization mass spectrometry. Organic Mass Spectrometry, 1985, 20, 236-242.                                                                     | 1.3 | 8         |
| 59 | Structural investigation of the antibiotic sporaviridin: 11—Molecular secondary ion mass spectral studies on the constituent pentasaccharides viridopentaoses. Organic Mass Spectrometry, 1985, 20, 582-588. | 1.3 | 12        |
| 60 | Structural Characterization of Abscisic Acid and Related Metabolites by Chemical Ionization Mass Spectrometry. Agricultural and Biological Chemistry, 1984, 48, 685-694.                                     | 0.3 | 1         |
| 61 | Molecular secondary ion mass spectrometry of oligosaccharides assisted by amide matrices Journal of the Mass Spectrometry Society of Japan, 1984, 32, 121-128.                                               | 0.1 | 1         |
| 62 | Sequence determination of permethylated oligosaccharides by chemical ionization mass spectrometry.<br>Biomedical Mass Spectrometry, 1983, 10, 5-12.                                                          | 1.9 | 24        |
| 63 | Structural characterization of underivatized menthyl glycosides using chemical ionization mass spectrometry. Biomedical Mass Spectrometry, 1983, 10, 608-613.                                                | 1.9 | 6         |
| 64 | The Selective Formose Reaction in Dimethylformamide in the Presence of Vitamin B <sub>1</sub> .<br>Journal of Carbohydrate Chemistry, 1983, 2, 343-348.                                                      | 1.1 | 11        |
| 65 | A Selective Synthesis of 3,3-Di-C-(hydroxymethyl)-3-deoxy-furanorono-1,4-lactone in the Formose<br>Reaction. Journal of Carbohydrate Chemistry, 1982, 1, 325-330.                                            | 1.1 | 12        |
| 66 | Application of emitter chemical ionization mass spectrometry to structural characterization of aminoglycoside antibiotics—2. Organic Mass Spectrometry, 1982, 17, 247-252.                                   | 1.3 | 28        |
| 67 | Diethanolamine assisted secondary ion mass spectrometry of naturally occurring complex oligosaccharides. Organic Mass Spectrometry, 1982, 17, 386-391.                                                       | 1.3 | 43        |
| 68 | Chemical ionization mass spectrometry of macrolide antibiotics. Ill—M-4365 and related compounds.<br>Biological Mass Spectrometry, 1981, 8, 332-336.                                                         | 0.5 | 16        |
| 69 | Site of protonation and bond cleavages in chemical ionization mass spectrometry. Organic Mass Spectrometry, 1981, 16, 188-188.                                                                               | 1.3 | 6         |