## Ramalingam Saravanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2397059/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Barrier Layer of the Atlantic warm pool: Formation mechanism and influence on the mean climate.<br>Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 18162.                                              | 1.7  | 38        |
| 2  | Ocean fronts and eddies force atmospheric rivers and heavy precipitation in western North America.<br>Nature Communications, 2021, 12, 1268.                                                                                 | 12.8 | 29        |
| 3  | Central American mountains inhibit eastern North Pacific seasonal tropical cyclone activity. Nature<br>Communications, 2021, 12, 4422.                                                                                       | 12.8 | 10        |
| 4  | Evaluation of a Coupled Modeling Approach for the Investigation of the Effects of SST Mesoscale<br>Variability on the Atmosphere. Journal of Advances in Modeling Earth Systems, 2021, 13,<br>e2020MS002412.                 | 3.8  | 2         |
| 5  | An Unprecedented Set of Highâ€Resolution Earth System Simulations for Understanding Multiscale<br>Interactions in Climate Variability and Change. Journal of Advances in Modeling Earth Systems, 2020,<br>12, e2020MS002298. | 3.8  | 104       |
| 6  | High-Resolution Tropical Channel Model Simulations of Tropical Cyclone Climatology and<br>Intraseasonal-to-Interannual Variability. Journal of Climate, 2019, 32, 7871-7895.                                                 | 3.2  | 10        |
| 7  | Tropical Pacific Ocean Dynamical Response to Short-Term Sulfate Aerosol Forcing. Journal of Climate, 2019, 32, 8205-8221.                                                                                                    | 3.2  | 6         |
| 8  | PIRATA: A Sustained Observing System for Tropical Atlantic Climate Research and Forecasting. Earth and Space Science, 2019, 6, 577-616.                                                                                      | 2.6  | 63        |
| 9  | Predictive Statistical Representations of Observed and Simulated Rainfall Using Generalized Linear<br>Models. Journal of Climate, 2019, 32, 3409-3427.                                                                       | 3.2  | 6         |
| 10 | A Modeling Strategy for the Investigation of the Effect of Mesoscale SST Variability on Atmospheric<br>Dynamics. Geophysical Research Letters, 2019, 46, 3982-3989.                                                          | 4.0  | 15        |
| 11 | Midlatitude Mesoscale Ocean-Atmosphere Interaction and Its Relevance to S2S Prediction. , 2019, , 183-200.                                                                                                                   |      | 8         |
| 12 | The Response of Atlantic Tropical Cyclones to Suppression of African Easterly Waves. Geophysical<br>Research Letters, 2018, 45, 471-479.                                                                                     | 4.0  | 47        |
| 13 | The Influence of ENSO Flavors on Western North Pacific Tropical Cyclone Activity. Journal of Climate, 2018, 31, 5395-5416.                                                                                                   | 3.2  | 80        |
| 14 | Satellite-Observed Precipitation Response to Ocean Mesoscale Eddies. Journal of Climate, 2018, 31, 6879-6895.                                                                                                                | 3.2  | 35        |
| 15 | A teleconnection between Atlantic sea surface temperature and eastern and central North Pacific tropical cyclones. Geophysical Research Letters, 2017, 44, 1167-1174.                                                        | 4.0  | 32        |
| 16 | Importance of Resolving Kuroshio Front and Eddy Influence in Simulating the North Pacific Storm<br>Track. Journal of Climate, 2017, 30, 1861-1880.                                                                           | 3.2  | 115       |
| 17 | Climate Impacts of CALIPSOâ€Guided Corrections to Black Carbon Aerosol Vertical Distributions in a<br>Global Climate Model. Geophysical Research Letters, 2017, 44, 10,549.<br>                                              | 4.0  | 0         |
| 18 | Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño.<br>Nature Geoscience, 2016, 9, 155-160.                                                                                       | 12.9 | 56        |

1

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?. Scientific Reports, 2015, 5, 17785.                                                                                                                       | 3.3  | 141       |
| 20 | Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American<br>Meteorological Society, 2015, 96, 997-1017.                                                                                       | 3.3  | 158       |
| 21 | Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American<br>Meteorological Society, 2015, 96, 1440.                                                                                           | 3.3  | 2         |
| 22 | Winter Extreme Flux Events in the Kuroshio and Gulf Stream Extension Regions and Relationship with<br>Modes of North Pacific and Atlantic Variability. Journal of Climate, 2015, 28, 4950-4970.                                    | 3.2  | 17        |
| 23 | Impact of Atlantic SST and high frequency atmospheric variability on the 1993 and 2008 Midwest<br>floods: Regional climate model simulations of extreme climate events. Climatic Change, 2015, 129,<br>397-411.                    | 3.6  | 21        |
| 24 | The Impact of the El Niño–Southern Oscillation and Atlantic Meridional Mode on Seasonal Atlantic<br>Tropical Cyclone Activity. Journal of Climate, 2014, 27, 5311-5328.                                                            | 3.2  | 82        |
| 25 | Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nature Communications, 2014, 5, 3098.                                                                    | 12.8 | 151       |
| 26 | Influence of Mean Flow on the ENSO–Vertical Wind Shear Relationship over the Northern Tropical Atlantic. Journal of Climate, 2012, 25, 858-864.                                                                                    | 3.2  | 13        |
| 27 | Ocean barrier layers' effect on tropical cyclone intensification. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14343-14347.                                                         | 7.1  | 202       |
| 28 | An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model. Climate Dynamics, 2012, 39, 2443-2463.                                                                                             | 3.8  | 48        |
| 29 | Statistical significance of trends in monthly heavy precipitation over the US. Climate Dynamics, 2012, 38, 1375-1387.                                                                                                              | 3.8  | 10        |
| 30 | Effect of Atlantic Meridional Overturning Circulation on Tropical Atlantic Variability: A Regional<br>Coupled Model Study. Journal of Climate, 2011, 24, 3323-3343.                                                                | 3.2  | 11        |
| 31 | The Role of the Wind–Evaporation–Sea Surface Temperature (WES) Feedback as a Thermodynamic<br>Pathway for the Equatorward Propagation of High-Latitude Sea Ice–Induced Cold Anomalies. Journal<br>of Climate, 2011, 24, 1350-1361. | 3.2  | 23        |
| 32 | Free and Forced Variability of the Tropical Atlantic Ocean: Role of the Wind–Evaporation–Sea Surface<br>Temperature Feedback. Journal of Climate, 2010, 23, 5958-5977.                                                             | 3.2  | 20        |
| 33 | Effect of Atlantic Meridional Overturning Circulation Changes on Tropical Atlantic Sea Surface<br>Temperature Variability: A 2½-Layer Reduced-Gravity Ocean Model Study. Journal of Climate, 2010, 23,<br>312-332.                 | 3.2  | 13        |
| 34 | The role of the wind-evaporation-sea surface temperature (WES) feedback in air–sea coupled tropical variability. Atmospheric Research, 2009, 94, 19-36.                                                                            | 4.1  | 13        |
| 35 | On the interpretation of Caribbean paleoâ€ŧemperature reconstructions during the Younger Dryas.<br>Geophysical Research Letters, 2009, 36, .                                                                                       | 4.0  | 26        |
|    |                                                                                                                                                                                                                                    |      |           |

Seasonal-to-decadal prediction using climate models: successes and challenges. , 2008, , 318-328.

Ramalingam Saravanan

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Pacific meridional mode and El Niño—Southern Oscillation. Geophysical Research Letters, 2007, 34, .                                                                                                         | 4.0  | 289       |
| 38 | Tropical Pacific and Atlantic Climate Variability in CCSM3. Journal of Climate, 2006, 19, 2451-2481.                                                                                                        | 3.2  | 139       |
| 39 | The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 2006,<br>443, 324-328.                                                                                     | 27.8 | 206       |
| 40 | Simulated precipitation response to SST forcing and potential predictability in the region of the South Atlantic convergence zone. Climate Dynamics, 2005, 24, 105-114.                                     | 3.8  | 38        |
| 41 | Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Climate Dynamics, 2005, 25, 517-535.                                                                                         | 3.8  | 58        |
| 42 | Dynamical elements of predicting boreal spring tropical Atlantic sea-surface temperatures. Dynamics of Atmospheres and Oceans, 2005, 39, 61-85.                                                             | 1.8  | 31        |
| 43 | The preconditioning role of Tropical Atlantic Variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Climate Dynamics, 2004, 22, 839-855.         | 3.8  | 120       |
| 44 | Predictability of Linear Coupled Systems. Part II: An Application to a Simple Model of Tropical Atlantic<br>Variability. Journal of Climate, 2004, 17, 1487-1503.                                           | 3.2  | 13        |
| 45 | Predictability of Linear Coupled Systems. Part I: Theoretical Analyses. Journal of Climate, 2004, 17, 1474-1486.                                                                                            | 3.2  | 24        |
| 46 | The Effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part II:<br>Direct and Indirect Components of the Response. Journal of Climate, 2004, 17, 877-889.               | 3.2  | 253       |
| 47 | The Effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part I:<br>Main Features and Storm Track Characteristics of the Response. Journal of Climate, 2004, 17, 857-876. | 3.2  | 242       |
| 48 | Tropical Atlantic seasonal predictability: The roles of El Niño remote influence and thermodynamic<br>air-sea feedback. Geophysical Research Letters, 2003, 30, n/a-n/a.                                    | 4.0  | 45        |
| 49 | Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time Scales. Science, 2003, 302, 1027-1030.                                                                                                | 12.6 | 904       |
| 50 | Variability of the South Atlantic Convergence Zone Simulated by an Atmospheric General Circulation<br>Model. Journal of Climate, 2002, 15, 745-763.                                                         | 3.2  | 90        |
| 51 | A Hybrid Coupled Model Study of Tropical Atlantic Variability. Journal of Climate, 2001, 14, 361-390.                                                                                                       | 3.2  | 110       |
| 52 | The Community Climate System Model. Bulletin of the American Meteorological Society, 2001, 82, 2357-2376.                                                                                                   | 3.3  | 131       |
| 53 | The role of ocean dynamics in producing decadal climate variability in the North Pacific. Climate Dynamics, 2001, 18, 51-70.                                                                                | 3.8  | 89        |
| 54 | North Atlantic climate variability: phenomena, impacts and mechanisms. International Journal of Climatology, 2001, 21, 1863-1898.                                                                           | 3.5  | 860       |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Effect of Local Sea Surface Temperatures on Atmospheric Circulation over the Tropical Atlantic Sector. Journal of Climate, 2000, 13, 2195-2216.                                      | 3.2 | 195       |
| 56 | The Three-Dimensional Structure of Breaking Rossby Waves in the Polar Wintertime Stratosphere.<br>Journals of the Atmospheric Sciences, 2000, 57, 3663-3685.                             | 1.7 | 65        |
| 57 | Decadal Variability and Predictability in the Midlatitude Ocean–Atmosphere System. Journal of<br>Climate, 2000, 13, 1073-1097.                                                           | 3.2 | 35        |
| 58 | Interaction between Tropical Atlantic Variability and El Niño–Southern Oscillation. Journal of<br>Climate, 2000, 13, 2177-2194.                                                          | 3.2 | 319       |
| 59 | The response of atmospheric heat transport to zonally averaged SST trends. Tellus, Series A: Dynamic<br>Meteorology and Oceanography, 1999, 51, 815-832.                                 | 1.7 | 8         |
| 60 | Oceanic mixed layer feedback and tropical Atlantic variability. Geophysical Research Letters, 1999, 26,<br>3629-3632.                                                                    | 4.0 | 21        |
| 61 | Interdecadal interactions between the tropics and midlatitudes in the Pacific Basin. Geophysical Research Letters, 1999, 26, 615-618.                                                    | 4.0 | 190       |
| 62 | Origins of the midlatitude Pacific decadal variability. Geophysical Research Letters, 1999, 26, 1453-1456.                                                                               | 4.0 | 77        |
| 63 | Co-rotating stationary states and vertical alignment of geostrophic vortices with thin cores. Journal of Fluid Mechanics, 1998, 357, 321-349.                                            | 3.4 | 32        |
| 64 | Atmospheric Low-Frequency Variability and Its Relationship to Midlatitude SST Variability: Studies<br>Using the NCAR Climate System Model*. Journal of Climate, 1998, 11, 1386-1404.     | 3.2 | 133       |
| 65 | Advective Ocean–Atmosphere Interaction: An Analytical Stochastic Model with Implications for<br>Decadal Variability. Journal of Climate, 1998, 11, 165-188.                              | 3.2 | 163       |
| 66 | Stochasticity and Spatial Resonance in Interdecadal Climate Fluctuations. Journal of Climate, 1997, 10, 2299-2320.                                                                       | 3.2 | 88        |
| 67 | Sensitivity of the Thermohaline Circulation to Surface Buoyancy Forcing in a Two-Dimensional Ocean<br>Model. Journal of Physical Oceanography, 1996, 26, 1039-1058.                      | 1.7 | 8         |
| 68 | Multiple Equilibria, Natural Variability, and Climate Transitions in an Idealized Ocean–Atmosphere<br>Model. Journal of Climate, 1995, 8, 2296-2323.                                     | 3.2 | 63        |
| 69 | Three-dimensional quasi-geostrophic contour dynamics, with an application to stratospheric vortex dynamics. Quarterly Journal of the Royal Meteorological Society, 1994, 120, 1267-1297. | 2.7 | 65        |
| 70 | Equatorial Superrotation and Maintenance of the General Circulation in Two-Level Models. Journals of the Atmospheric Sciences, 1993, 50, 1211-1227.                                      | 1.7 | 77        |
| 71 | A Multiwave Model of the Quasi-biennial Oscillation. Journals of the Atmospheric Sciences, 1990, 47, 2465-2474.                                                                          | 1.7 | 45        |
| 72 | Chaos in a periodically forced Lorenz system. Physical Review A, 1985, 31, 520-522.                                                                                                      | 2.5 | 10        |

| #  | Article                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Limit cycles in a forced Lorenz system. Physics Letters, Section A: General, Atomic and Solid State<br>Physics, 1984, 104, 33-35.          | 2.1 | 4         |
| 74 | On the Role of the South Atlantic Atmospheric Circulation in Tropical Atlantic Variability.<br>Geophysical Monograph Series, 0, , 143-156. | 0.1 | 14        |
| 75 | Thermodynamic Coupling and Predictability of Tropical Sea Surface Temperature. Geophysical Monograph Series, 0, , 171-180.                 | 0.1 | 15        |