Pedro Bekinschtein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2396715/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Psychological symptoms, mental fatigue and behavioural adherence after 72 continuous days of strict lockdown during the COVID-19 pandemic in Argentina. BJPsych Open, 2022, 8, e10.	0.7	20
2	Serotonin Type 2a Receptor in the Prefrontal Cortex Controls Perirhinal Cortex Excitability During Object Recognition Memory Recall. Neuroscience, 2022, , .	2.3	3
3	Dentate Gyrus Somatostatin Cells are Required for Contextual Discrimination During Episodic Memory Encoding. Cerebral Cortex, 2021, 31, 1046-1059.	2.9	24
4	Molecular mechanisms within the dentate gyrus and the perirhinal cortex interact during discrimination of similar nonspatial memories. Hippocampus, 2021, 31, 140-155.	1.9	6
5	Sooner than you think: A very early affective reaction to the COVID-19 pandemic and quarantine in Argentina. Journal of Affective Disorders, 2021, 282, 495-503.	4.1	35
6	Leucineâ€rich repeats and immunoglobulinâ€like domains 1 deficiency affects hippocampal dendrite complexity and impairs cognitive function. Developmental Neurobiology, 2021, 81, 774-785.	3.0	0
7	Functional connectivity of anterior retrosplenial cortex in object recognition memory. Neurobiology of Learning and Memory, 2021, 186, 107544.	1.9	6
8	The spontaneous location recognition task for assessing spatial pattern separation and memory across a delay in rats and mice. Nature Protocols, 2021, 16, 5616-5633.	12.0	12
9	Editorial: Cellular and Molecular Mechanisms of Neurotrophin Function in the Nervous System. Frontiers in Cellular Neuroscience, 2020, 14, 101.	3.7	8
10	Neurophotonics Approaches for the Study of Pattern Separation. Frontiers in Neural Circuits, 2020, 14, 26.	2.8	0
11	Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Frontiers in Cellular Neuroscience, 2019, 13, 363.	3.7	740
12	GDNF and GFRα1 Are Required for Proper Integration of Adult-Born Hippocampal Neurons. Cell Reports, 2019, 29, 4308-4319.e4.	6.4	33
13	Plasticity Mechanisms of Memory Consolidation and Reconsolidation in the Perirhinal Cortex. Neuroscience, 2018, 370, 46-61.	2.3	24
14	A retrieval-specific mechanism of adaptive forgetting in the mammalian brain. Nature Communications, 2018, 9, 4660.	12.8	28
15	NMDA receptors and BDNF are necessary for discrimination of overlapping spatial and non-spatial memories in perirhinal cortex and hippocampus. Neurobiology of Learning and Memory, 2018, 155, 337-343.	1.9	21
16	5-HT2a receptor in mPFC influences context-guided reconsolidation of object memory in perirhinal cortex. ELife, 2018, 7, .	6.0	17
17	Molecular Mechanisms in Perirhinal Cortex Selectively Necessary for Discrimination of Overlapping Memories, but Independent of Memory Persistence. ENeuro, 2017, 4, ENEURO.0293-17.2017.	1.9	17
18	Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice. Frontiers in Pharmacology, 2015, 6, 298.	3.5	26

Pedro Bekinschtein

#	Article	IF	CITATIONS
19	Molecular Mechanisms of Memory Consolidation, Reconsolidation, and Persistence. Neural Plasticity, 2015, 2015, 1-2.	2.2	12
20	Cognitive enhancing effects of voluntary exercise, caloric restriction and environmental enrichment: a role for adult hippocampal neurogenesis and pattern separation?. Current Opinion in Behavioral Sciences, 2015, 4, 179-185.	3.9	9
21	Medial prefrontal cortex role in recognition memory in rodents. Behavioural Brain Research, 2015, 292, 241-251.	2.2	87
22	The orexigenic hormone acyl-ghrelin increases adult hippocampal neurogenesis and enhances pattern separation. Psychoneuroendocrinology, 2015, 51, 431-439.	2.7	63
23	Adult hippocampal neurogenesis and its role in cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 573-587.	2.8	73
24	Brainâ€derived neurotrophic factor interacts with adultâ€born immature cells in the dentate gyrus during consolidation of overlapping memories. Hippocampus, 2014, 24, 905-911.	1.9	77
25	Role of PFC during retrieval of recognition memory in rodents. Journal of Physiology (Paris), 2014, 108, 252-255.	2.1	11
26	BDNF and memory processing. Neuropharmacology, 2014, 76, 677-683.	4.1	296
27	BDNF in the Dentate Gyrus Is Required for Consolidation of "Pattern-Separated―Memories. Cell Reports, 2013, 5, 759-768.	6.4	108
28	Role of Medial Prefrontal Cortex Serotonin 2A Receptors in the Control of Retrieval of Recognition Memory in Rats. Journal of Neuroscience, 2013, 33, 15716-15725.	3.6	55
29	Attenuating the persistence of fear memory storage using a single dose of antidepressant. Molecular Psychiatry, 2013, 18, 7-8.	7.9	15
30	Persistence of Long-Term Memory Storage: New Insights into its Molecular Signatures in the Hippocampus and Related Structures. , 2013, , 239-247.		0
31	Maintenance of long-term memory storage is dependent on late posttraining Egr-1 expression. Neurobiology of Learning and Memory, 2012, 98, 220-227.	1.9	36
32	Persistence of Long-Term Memory Storage: New Insights into its Molecular Signatures in the Hippocampus and Related Structures. , 2012, , 205-213.		0
33	Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable?. Seminars in Cell and Developmental Biology, 2011, 22, 536-542.	5.0	207
34	Persistence of Long-Term Memory Storage: New Insights into its Molecular Signatures in the Hippocampus and Related Structures. Neurotoxicity Research, 2010, 18, 377-385.	2.7	76
35	Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 349-354.	7.1	136
36	BDNF Activates mTOR to Regulate GluR1 Expression Required for Memory Formation. PLoS ONE, 2009, 4, e6007.	2.5	230

Pedro Bekinschtein

#	Article	IF	CITATIONS
37	Reviews: BDNF and Memory Formation and Storage. Neuroscientist, 2008, 14, 147-156.	3.5	260
38	Do memories consolidate to persist or do they persist to consolidate?. Behavioural Brain Research, 2008, 192, 61-69.	2.2	58
39	BDNF is essential to promote persistence of long-term memory storage. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2711-2716.	7.1	559
40	Persistence of Long-Term Memory Storage Requires a Late Protein Synthesis- and BDNF- Dependent Phase in the Hippocampus. Neuron, 2007, 53, 261-277.	8.1	550
41	mTOR signaling in the hippocampus is necessary for memory formation. Neurobiology of Learning and Memory, 2007, 87, 303-307.	1.9	163
42	Cathepsin-L Influences the Expression of Extracellular Matrix in Lymphoid Organs and Plays a Role in the Regulation of Thymic Output and of Peripheral T Cell Number. Journal of Immunology, 2005, 174, 7022-7032.	0.8	55
43	Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learning and Memory, 2005, 12, 504-510.	1.3	112
44	Gene expression during memory formation. Neurotoxicity Research, 2004, 6, 189-203.	2.7	34
45	One-trial aversive learning induces late changes in hippocampal CaMKIIα, Homer 1a, Syntaxin 1a and ERK2 protein levels. Molecular Brain Research, 2004, 132, 1-12.	2.3	51
46	Neonatal infection with a milk-borne virus is independent of β7 integrin- and L-selectin-expressing lymphocytes. European Journal of Immunology, 2002, 32, 945-956.	2.9	10
47	Alterations during Positive Selection in the Thymus of nackt CD4â€Deficient Mice. Scandinavian Journal of Immunology, 2000, 52, 555-562.	2.7	0
48	Alterations during Positive Selection in the Thymus of nackt CD4-Deficient Mice. Scandinavian Journal of Immunology, 2000, 52, 555-562.	2.7	2
49	Characterization of Two Infectious Mouse Mammary Tumour Viruses: Superantigenicity and Tumorigenicity. Scandinavian Journal of Immunology, 1999, 49, 269-277.	2.7	20