
Chentao Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2396669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of Flowering Time by Arabidopsis Photoreceptors. Science, 1998, 279, 1360-1363.	12.6	713
2	Photoexcited CRY2 Interacts with ClB1 to Regulate Transcription and Floral Initiation in <i>Arabidopsis</i> . Science, 2008, 322, 1535-1539.	12.6	615
3	Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2686-2690.	7.1	472
4	CRYPTOCHROMESTRUCTURE ANDSIGNALTRANSDUCTION. Annual Review of Plant Biology, 2003, 54, 469-496.	18.7	416
5	Blue Light-Dependent Interaction of CRY2 with SPA1 Regulates COP1 activity and Floral Initiation in Arabidopsis. Current Biology, 2011, 21, 841-847.	3.9	351
6	<i>Arabidopsis</i> cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes and Development, 2011, 25, 1029-1034.	5.9	321
7	Blue Light Receptors and Signal Transduction. Plant Cell, 2002, 14, S207-S225.	6.6	300
8	The cryptochromes. Genome Biology, 2005, 6, 220.	9.6	300
9	Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2140-2145.	7.1	273
10	Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature, 2002, 417, 763-767.	27.8	271
11	The action mechanisms of plant cryptochromes. Trends in Plant Science, 2011, 16, 684-691.	8.8	259
12	Plant blue-light receptors. Trends in Plant Science, 2000, 5, 337-342.	8.8	250
13	The Cryptochrome Blue Light Receptors. The Arabidopsis Book, 2010, 8, e0135.	0.5	246
14	Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant Journal, 1996, 10, 893-902.	5.7	220
15	Photoreceptors and Regulation of Flowering Time. Plant Physiology, 2000, 123, 39-50.	4.8	196
16	Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant Journal, 1995, 8, 653-658.	5.7	194
17	Blue Light-Dependent in Vivo and in Vitro Phosphorylation of Arabidopsis Cryptochrome 1. Plant Cell, 2003, 15, 2421-2429.	6.6	175
18	Comprehensive profiling of rhizomeâ€associated alternative splicing and alternative polyadenylation in moso bamboo (<i>Phyllostachys edulis</i>). Plant Journal, 2017, 91, 684-699.	5.7	170

#	Article	IF	CITATIONS
19	The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant Journal, 1999, 19, 279-287.	5.7	165
20	Multiple bHLH Proteins form Heterodimers to Mediate CRY2-Dependent Regulation of Flowering-Time in Arabidopsis. PLoS Genetics, 2013, 9, e1003861.	3.5	159
21	Regulation of flowering time in Arabidopsis by K homology domain proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12759-12764.	7.1	150
22	Photoactivation and inactivation of <i>Arabidopsis</i> cryptochrome 2. Science, 2016, 354, 343-347.	12.6	149
23	Mechanisms of Cryptochrome-Mediated Photoresponses in Plants. Annual Review of Plant Biology, 2020, 71, 103-129.	18.7	145
24	Searching for a photocycle of the cryptochrome photoreceptors. Current Opinion in Plant Biology, 2010, 13, 578-586.	7.1	144
25	SUB1, an Arabidopsis Ca2+-Binding Protein Involved in Cryptochrome and Phytochrome Coaction. Science, 2001, 291, 487-490.	12.6	141
26	A Study of Gibberellin Homeostasis and Cryptochrome-Mediated Blue Light Inhibition of Hypocotyl Elongation. Plant Physiology, 2007, 145, 106-118.	4.8	140
27	Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Molecular Biology, 2009, 71, 39-50.	3.9	139
28	<i>Arabidopsis</i> Cryptochrome 2 Completes Its Posttranslational Life Cycle in the Nucleus. Plant Cell, 2007, 19, 3146-3156.	6.6	136
29	Formation of Nuclear Bodies of <i>Arabidopsis</i> CRY2 in Response to Blue Light Is Associated with Its Blue Light–Dependent Degradation. Plant Cell, 2009, 21, 118-130.	6.6	136
30	Blue Light-Dependent Interaction between Cryptochrome2 and CIB1 Regulates Transcription and Leaf Senescence in Soybean. Plant Cell, 2013, 25, 4405-4420.	6.6	119
31	Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 21028-21033.	7.1	118
32	Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20844-20849.	7.1	94
33	A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice. Plant Physiology, 2016, 171, 334-343.	4.8	94
34	Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7289-7294.	7.1	89
35	Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. Journal of Plant Research, 2016, 129, 137-148.	2.4	89
36	Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nature Communications, 2017, 8, 15234.	12.8	81

#	Article	IF	CITATIONS
37	<i>Arabidopsis</i> CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17582-17587.	7.1	78
38	A photoregulatory mechanism of the circadian clock in Arabidopsis. Nature Plants, 2021, 7, 1397-1408.	9.3	76
39	Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants. Photochemistry and Photobiology, 2017, 93, 112-127.	2.5	72
40	Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications. BMC Plant Biology, 2018, 18, 125.	3.6	67
41	CONSTANS-LIKE 7 (COL7) Is Involved in Phytochrome B (phyB)-Mediated Light-Quality Regulation of Auxin Homeostasis. Molecular Plant, 2014, 7, 1429-1440.	8.3	64
42	Beyond the photocycle — how cryptochromes regulate photoresponses in plants?. Current Opinion in Plant Biology, 2018, 45, 120-126.	7.1	61
43	Trp triad-dependent rapid photoreduction is not required for the function of <i>Arabidopsis</i> CRY1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9135-9140.	7.1	57
44	Genome-Wide Profiling of Circular RNAs in the Rapidly Growing Shoots of Moso Bamboo (Phyllostachys edulis). Plant and Cell Physiology, 2019, 60, 1354-1373.	3.1	56
45	A <scp>CRY</scp> – <scp>BIC</scp> negativeâ€feedback circuitry regulating blue light sensitivity of Arabidopsis. Plant Journal, 2017, 92, 426-436.	5.7	53
46	Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis, transport and signaling family genes in moso bamboo (Phyllostachys heterocycla). BMC Genomics, 2017, 18, 870.	2.8	51
47	Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses. Agronomy, 2017, 7, 25.	3.0	48
48	The Blue Light-Dependent Phosphorylation of the CCE Domain Determines the Photosensitivity of Arabidopsis CRY2. Molecular Plant, 2015, 8, 631-643.	8.3	47
49	Photooligomerization Determines Photosensitivity and Photoreactivity of Plant Cryptochromes. Molecular Plant, 2020, 13, 398-413.	8.3	42
50	Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (<i>Dendrocalamus latiflorus Munro</i>). Plant Biotechnology Journal, 2020, 18, 1501-1503.	8.3	40
51	New insights into the mechanisms of phytochrome–cryptochrome coaction. New Phytologist, 2018, 217, 547-551.	7.3	38
52	Cryptochrome-Mediated Light Responses in Plants. The Enzymes, 2014, 35, 167-189.	1.7	37
53	Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice. Journal of Experimental Botany, 2015, 66, 7197-7209.	4.8	36
54	Genome-Wide Characterization and Gene Expression Analyses of GATA Transcription Factors in Moso Bamboo (Phyllostachys edulis). International Journal of Molecular Sciences, 2020, 21, 14.	4.1	33

#	Article	IF	CITATIONS
55	Regulation of Arabidopsis photoreceptor CRY2 by two distinct E3 ubiquitin ligases. Nature Communications, 2021, 12, 2155.	12.8	28
56	Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Tree Physiology, 2020, 40, 538-556.	3.1	27
57	Reconstituting Arabidopsis CRY2 Signaling Pathway in Mammalian Cells Reveals Regulation of Transcription by Direct Binding of CRY2 to DNA. Cell Reports, 2018, 24, 585-593.e4.	6.4	25
58	The Full-Length Transcriptome of Spartina alterniflora Reveals the Complexity of High Salt Tolerance in Monocotyledonous Halophyte. Plant and Cell Physiology, 2020, 61, 882-896.	3.1	25
59	Light Regulation of Gibberellins Metabolism in Seedling Development. Journal of Integrative Plant Biology, 2007, 49, 21-27.	8.5	23
60	Using hybrid transcription factors to study gene function in rice. Science China Life Sciences, 2015, 58, 1160-1162.	4.9	23
61	The Blue Light-Dependent Polyubiquitination and Degradation of Arabidopsis Cryptochrome2 Requires Multiple E3 Ubiquitin Ligases. Plant and Cell Physiology, 2016, 57, 2175-2186.	3.1	23
62	Florigen (II): It is a Mobile Protein. Journal of Integrative Plant Biology, 2007, 49, 1665-1669.	8.5	22
63	Using HEK293T Expression System to Study Photoactive Plant Cryptochromes. Frontiers in Plant Science, 2016, 7, 940.	3.6	20
64	A photoâ€responsive Fâ€box protein <scp>FOF</scp> 2 regulates floral initiation by promoting <i><scp>FLC</scp></i> expression in Arabidopsis. Plant Journal, 2017, 91, 788-801.	5.7	20
65	Light Regulation of Alternative Preâ€ <scp>mRNA</scp> Splicing in Plants. Photochemistry and Photobiology, 2017, 93, 159-165.	2.5	20
66	A structural view of plant CRY2 photoactivation and inactivation. Nature Structural and Molecular Biology, 2020, 27, 401-403.	8.2	19
67	The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species. Bioinformatics, 2019, 35, 3119-3126.	4.1	18
68	Drought induces epitranscriptome and proteome changes in stem-differentiating xylem of <i>Populus trichocarpa</i> . Plant Physiology, 2022, 190, 459-479.	4.8	18
69	Production of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis. Planta, 2021, 254, 50.	3.2	15
70	Cortical Microtubule Organization during Petal Morphogenesis in Arabidopsis. International Journal of Molecular Sciences, 2019, 20, 4913.	4.1	14
71	Phototropin Blue Light Receptors and Light-Induced Movement Responses in Plants. Science Signaling, 2002, 2002, pe5-pe5.	3.6	13
72	Large Scale Profiling of Protein Isoforms Using Label-Free Quantitative Proteomics Revealed the Regulation of Nonsense-Mediated Decay in Moso Bamboo (Phyllostachys edulis). Cells, 2019, 8, 744.	4.1	13

#	Article	IF	CITATIONS
73	Identification and Characterization of the PEBP Family Genes in Moso Bamboo (Phyllostachys) Tj ETQq1 1 0.7843	14.rgBT /0	Dverlock 10
74	PLANT SCIENCES: A CONSTANS Experience Brought to Light. Science, 2004, 303, 965-966.	12.6	12
75	Arabidopsis IPGA1 is a microtubule-associated protein essential for cell expansion during petal morphogenesis. Journal of Experimental Botany, 2019, 70, 5231-5243.	4.8	12
76	The transcriptional dynamics during <i>de novo</i> shoot organogenesis of Ma bamboo (<i>Dendrocalamus latiflorus</i> Munro): implication of the contributions of the abiotic stress response in this process. Plant Journal, 2021, 107, 1513-1532.	5.7	10
77	Preliminary Functional Analysis of the Isoforms of OsHsfA2a (Oryza sativa L.) Generated by Alternative Splicing. Plant Molecular Biology Reporter, 2013, 31, 38-46.	1.8	9
78	The Universally Conserved Residues Are Not Universally Required for Stable Protein Expression or Functions of Cryptochromes. Molecular Biology and Evolution, 2020, 37, 327-340.	8.9	8
79	Florigen: One Found, More to Follow?. Journal of Integrative Plant Biology, 2006, 48, 617-621.	8.5	7
80	Photoreceptor signaling: when COP1 meets VPs. EMBO Journal, 2019, 38, e102962.	7.8	7
81	Photomorphogenesis: When blue meets red. Nature Plants, 2016, 2, 16019.	9.3	6
82	Different response modes and cooperation modulations of blueâ€light receptors in photomorphogenesis. Plant, Cell and Environment, 2021, 44, 1802-1815.	5.7	6
83	Light Regulation of Flowering Time in Arabidopsis. , 2005, , 325-332.		4
84	Characterization of Flowering Time Mutants. Methods in Molecular Biology, 2019, 2026, 193-199.	0.9	1
85	Photoreceptors and Associated Signaling II: Cryptochromes. , 2004, , 885-888.		1