
Anil Vasudevan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2396294/publications.pdf Version: 2024-02-01

ANII VASHDEVAN

#	Article	IF	CITATIONS
1	Development of Orally Efficacious Allosteric Inhibitors of TNFα via Fragment-Based Drug Design. Journal of Medicinal Chemistry, 2021, 64, 417-429.	6.4	17
2	What is in Our Kit? An Analysis of Building Blocks Used in Medicinal Chemistry Parallel Libraries. Journal of Medicinal Chemistry, 2021, 64, 17115-17122.	6.4	32
3	Controlling cellular distribution of drugs with permeability modifying moieties. MedChemComm, 2019, 10, 974-984.	3.4	4
4	Highâ€Throughput Reaction Screening with Nanomoles of Solid Reagents Coated on Glass Beads. Angewandte Chemie - International Edition, 2019, 58, 7987-7991.	13.8	60
5	Covalent binders in drug discovery. Progress in Medicinal Chemistry, 2019, 58, 1-62.	10.4	32
6	Highâ€Throughput Reaction Screening with Nanomoles of Solid Reagents Coated on Glass Beads. Angewandte Chemie, 2019, 131, 8071-8075.	2.0	11
7	A Dualâ€Purpose Bromocoumarin Tag Enables Deep Profiling of the Cellular Cysteinome. Proteomics, 2019, 19, 1800433.	2.2	0
8	Design of Aminobenzothiazole Inhibitors of Rho Kinases 1 and 2 by Using Protein Kinase A as a Structure Surrogate. ChemBioChem, 2018, 19, 613-621.	2.6	6
9	Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners' Perspective. Journal of Medicinal Chemistry, 2018, 61, 8504-8535.	6.4	55
10	Identification of Selective Dual ROCK1 and ROCK2 Inhibitors Using Structure-Based Drug Design. Journal of Medicinal Chemistry, 2018, 61, 11074-11100.	6.4	23
11	De Novo Design, Synthesis, and Biological Evaluation of 3,4-Disubstituted Pyrrolidine Sulfonamides as Potent and Selective Glycine Transporter 1 Competitive Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 7486-7502.	6.4	17
12	Discovery of Novel Aminotetralines and Aminochromanes as Selective and Competitive Glycine Transporter 1 (GlyT1) Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 7503-7524.	6.4	12
13	Novel Modes of Inhibition of Wild-Type Isocitrate Dehydrogenase 1 (IDH1): Direct Covalent Modification of His315. Journal of Medicinal Chemistry, 2018, 61, 6647-6657.	6.4	34
14	Current Innovations in Medicinal Chemistry and Chemical Biology. ACS Medicinal Chemistry Letters, 2018, 9, 513-514.	2.8	2
15	Development of inverse electron demand Diels–Alder ligation and TR-FRET assays for the determination of ligand–protein target occupancy in live cells. MedChemComm, 2017, 8, 789-795.	3.4	8
16	SAR and characterization of non-substrate isoindoline urea inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3317-3325.	2.2	14
17	Integrated Platform for Expedited Synthesis–Purification–Testing of Small Molecule Libraries. ACS Medicinal Chemistry Letters, 2017, 8, 461-465.	2.8	57
18	Cell-Surface Receptor–Ligand Interaction Analysis with Homogeneous Time-Resolved FRET and Metabolic Glycan Engineering: Application to Transmembrane and GPI-Anchored Receptors. Journal of the American Chemical Society, 2017, 139, 16822-16829.	13.7	18

ANIL VASUDEVAN

#	Article	IF	CITATIONS
19	Are We There Yet? Applying Thermodynamic and Kinetic Profiling on Embryonic Ectoderm Development (EED) Hit-to-Lead Program. Journal of Medicinal Chemistry, 2017, 60, 8321-8335.	6.4	11
20	Glycanâ€Mediated, Ligandâ€Controlled Click Chemistry for Drugâ€Target Identification. ChemBioChem, 2016, 17, 150-154.	2.6	4
21	2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification. Journal of the American Chemical Society, 2016, 138, 14609-14615.	13.7	100
22	Design strategies to address kinetics of drug binding and residence time. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2019-2027.	2.2	69
23	Emerging technologies for metabolite generation and structural diversification. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5471-5483.	2.2	61
24	Hit to Lead optimization of a novel class of squarate-containing polo-like kinases inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7615-7622.	2.2	12
25	LOPHTOR: a convenient flow-based photochemical reactor. Tetrahedron Letters, 2010, 51, 4007-4009.	1.4	60
26	Lead Optimization Strategies and Tactics Applied to the Discovery of Melanin Concentrating Hormone Receptor 1 Antagonists. Current Topics in Medicinal Chemistry, 2007, 7, 1471-1488.	2.1	10
27	Screening for Cardiovascular Safety:Â A Structureâ d'Activity Approach for Guiding Lead Selection of Melanin Concentrating Hormone Receptor 1 Antagonists. Journal of Medicinal Chemistry, 2006, 49, 2339-2352.	6.4	33
28	Discovery and Optimization of Anthranilic Acid Sulfonamides as Inhibitors of Methionine Aminopeptidase-2:Â A Structural Basis for the Reduction of Albumin Binding. Journal of Medicinal Chemistry, 2006, 49, 3832-3849.	6.4	57
29	Efficient Pd-catalyzed synthesis of 2-arylaminopyrimidines via microwave irradiation. Tetrahedron Letters, 2006, 47, 4881-4884.	1.4	24
30	A post aza Baylis–Hillman/Heck coupling approach towards the synthesis of constrained scaffolds. Tetrahedron Letters, 2006, 47, 8591-8593.	1.4	57
31	Development of sulfonamide compounds as potent methionine aminopeptidase type II inhibitors with antiproliferative properties. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3574-3577.	2.2	47
32	Lack of efficacy of melanin-concentrating hormone-1 receptor antagonists in models of depression and anxiety. European Journal of Pharmacology, 2006, 540, 115-120.	3.5	49
33	A post-Ugi carbonylation/intramolecular amidation approach toward the synthesis of macrolactams. Tetrahedron Letters, 2005, 46, 1697-1701.	1.4	20
34	Identification of aminopiperidine benzamides as MCHr1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3412-3416.	2.2	18
35	Aminopiperidine indazoles as orally efficacious melanin concentrating hormone receptor-1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5293-5297.	2.2	35
36	Synthesis of Diazepinones via Intramolecular Transamidation ChemInform, 2005, 36, no.	0.0	0

ANIL VASUDEVAN

#	Article	IF	CITATIONS
37	Synthesis and Evaluation of 2-Amino-8-alkoxy Quinolines as MCHr1 Antagonists. Part 2 ChemInform, 2005, 36, no.	0.0	Ο
38	A Post-Ugi Carbonylation/Intramolecular Amidation Approach Toward the Synthesis of Macrolactams ChemInform, 2005, 36, no.	0.0	0
39	Identification of Aminopiperidine Benzamides as MCHr1 Antagonists ChemInform, 2005, 36, no.	0.0	0
40	Identification of ortho-amino benzamides and nicotinamides as MCHr1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4174-4179.	2.2	18
41	Discovery and Characterization of Aminopiperidinecoumarin Melanin Concentrating Hormone Receptor 1 Antagonists. Journal of Medicinal Chemistry, 2005, 48, 5888-5891.	6.4	50
42	Identification of 2-(4-Benzyloxyphenyl)-N- [1-(2-pyrrolidin-1-yl-ethyl)-1H-indazol-6-yl]acetamide, an Orally Efficacious Melanin-Concentrating Hormone Receptor 1 Antagonist for the Treatment of Obesity. Journal of Medicinal Chemistry, 2005, 48, 1318-1321.	6.4	91
43	Neutral, Metal-free Hydration of Alkynes Using Microwave Irradiation in ÂSuperheated Water. Synlett, 2004, 2004, 631-634.	1.8	42
44	Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 1. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4873-4877.	2.2	29
45	Heterocyclic Ketones as Inhibitors of Histone Deacetylase ChemInform, 2004, 35, no.	0.0	Ο
46	Neutral, Metal-Free Hydration of Alkynes Using Microwave Irradiation in Superheated Water ChemInform, 2004, 35, no.	0.0	0
47	Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 2. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4879-4882.	2.2	37
48	Synthesis and evaluation of 2-amino-8-alkoxy quinolines as MCHr1 antagonists. Part 3. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4883-4886.	2.2	22
49	Synthesis of Diazepinones via Intramolecular Transamidation. Organic Letters, 2004, 6, 3361-3364.	4.6	33
50	Heterocyclic ketones as inhibitors of histone deacetylase. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3909-3913.	2.2	55
51	Standardization Protocols and Optimized Precursor Sets for the Efficient Application of Automated Parallel Synthesis to Lead Optimization: A Mitsunobu Example ChemInform, 2003, 34, no.	0.0	Ο
52	Synthesis and Evaluation of Potent Pyrrolidine H3 Antagonists ChemInform, 2003, 34, no.	0.0	0
53	Aminoalkoxybiphenylnitriles as Histamine-3 Receptor Ligands ChemInform, 2003, 34, no.	0.0	0
54	Microwave-Assisted C—H Bond Activation: A Rapid Entry into Functionalized Heterocycles ChemInform, 2003, 34, no.	0.0	0

ANIL VASUDEVAN

#	Article	IF	CITATIONS
55	Microwave-Assisted Câ^'H Bond Activation:  A Rapid Entry into Functionalized Heterocycles. Organic Letters, 2003, 5, 2131-2134.	4.6	118
56	Standardization Protocols and Optimized Precursor Sets for the Efficient Application of Automated Parallel Synthesis to Lead Optimization:Â A Mitsunobu Example. ACS Combinatorial Science, 2002, 4, 442-456.	3.3	32
57	Synthesis and evaluation of potent pyrrolidine H3 antagonists. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3055-3058.	2.2	23
58	Aminoalkoxybiphenylnitriles as histamine-3 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3077-3079.	2.2	46
59	Potent, Highly Selective, and Non-Thiol Inhibitors of Protein Geranylgeranyltransferase-I. Journal of Medicinal Chemistry, 1999, 42, 1333-1340.	6.4	79
60	Structure-Based Design and Synthesis of Lipophilic 2,4-Diamino-6-Substituted Quinazolines and Their Evaluation as Inhibitors of Dihydrofolate Reductases and Potential Antitumor Agents1. Journal of Medicinal Chemistry, 1998, 41, 3426-3434.	6.4	64
61	Selective inhibition of type-I geranylgeranyltransferase in vitro and in whole cells by CAAL peptidomimetics. Bioorganic and Medicinal Chemistry, 1998, 6, 293-299.	3.0	42
62	Inhibiting geranylgeranylation blocks growth and promotes apoptosis in pulmonary vascular smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L55-L63.	2.9	47
63	Conformationally Restricted Analogues of Trimethoprim:Â 2,6-Diamino-8-substituted Purines as Potential Dihydrofolate Reductase Inhibitors fromPneumocystis cariniiandToxoplasma gondii1. Journal of Medicinal Chemistry, 1997, 40, 3032-3039.	6.4	47
64	Synthesis and Biological Evaluation of Nonclassical 2,4-Diamino-5-methylpyrido[2,3-d]pyrimidines with Novel Side Chain Substituents as Potential Inhibitors of Dihydrofolate Reductases. Journal of Medicinal Chemistry, 1997, 40, 479-485.	6.4	27
65	2,4-Diamino-5-deaza-6-Substituted Pyrido[2,3-d]pyrimidine Antifolates as Potent and Selective Nonclassical Inhibitors of Dihydrofolate Reductases1,2. Journal of Medicinal Chemistry, 1996, 39, 1438-1446.	6.4	116
66	6-Substituted 2,4-Diamino-5-methylpyrido[2,3-d]pyrimidines as Inhibitors of Dihydrofolate Reductases from Pneumocystis carinii and Toxoplasma gondii and as Antitumor Agents. Journal of Medicinal Chemistry, 1995, 38, 1778-1785.	6.4	60