
Piero Salatino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2395414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. European Physical Journal Plus, 2018, 133, 1.	2.6	247
2	Comminution of carbons in fluidized bed combustion. Progress in Energy and Combustion Science, 1991, 17, 297-326.	31.2	125
3	Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. Journal of Chemical Technology and Biotechnology, 2014, 89, 178-195.	3.2	124
4	Attrition of sorbents during fluidized bed calcination and sulphation. Powder Technology, 2000, 107, 153-167.	4.2	116
5	Microstructural changes and loss of gasification reactivity of chars upon heat treatment. Fuel, 1998, 77, 1483-1493.	6.4	110
6	Transient fluidization and segregation of binary mixtures of particles. AICHE Journal, 2000, 46, 2175-2182.	3.6	108
7	Comminution of limestone during batch fluidized-bed calcination and sulfation. AICHE Journal, 1997, 43, 363-373.	3.6	107
8	Segregation of fluidized binary mixtures of granular solids. AICHE Journal, 2004, 50, 3095-3106.	3.6	106
9	The relevance of thermal annealing to the evolution of coal char gasification reactivity. Carbon, 1997, 35, 141-151.	10.3	105
10	A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres. Fuel, 1999, 78, 1575-1581.	6.4	103
11	Self-segregation of high-volatile fuel particles during devolatilization in a fluidized bed reactor. Powder Technology, 2002, 128, 11-21.	4.2	88
12	Probing the chemical nature of surface oxides during coal char oxidation by high-resolution XPS. Carbon, 2015, 90, 181-196.	10.3	88
13	Modelling fluidized bed combustion of high-volatile solid fuels. Chemical Engineering Science, 2002, 57, 1175-1196.	3.8	87
14	Combustion and Attrition of Biomass Chars in a Fluidized Bed. Energy & amp; Fuels, 2006, 20, 91-102.	5.1	87
15	Attrition of Limestone by Impact Loading in Fluidized Beds. Energy & Fuels, 2007, 21, 2566-2572.	5.1	84
16	A Thermogravimetric Study of Nonfossil Solid Fuels. 2. Oxidative Pyrolysis and Char Combustion. Energy & Fuels, 2002, 16, 661-668.	5.1	83
17	Gasification of a coal char by oxygen and carbon dioxide. Carbon, 1998, 36, 443-452.	10.3	75
18	Post-combustion carbon capture mediated by carbonic anhydrase. Separation and Purification Technology, 2013, 107, 331-339.	7.9	75

#	Article	IF	CITATIONS
19	Oxidative pyrolysis of solid fuels. Journal of Analytical and Applied Pyrolysis, 2004, 71, 959-970.	5.5	73
20	Segregation of fuel particles and volatile matter during devolatilization in a fluidized bed reactor—II. Experimental. Chemical Engineering Science, 1997, 52, 1909-1922.	3.8	70
21	Fluidized bed combustion of pelletized biomass and waste-derived fuels. Combustion and Flame, 2008, 155, 21-36.	5.2	69
22	Butanol production by bioconversion of cheese whey in a continuous packed bed reactor. Bioresource Technology, 2013, 138, 259-265.	9.6	67
23	An experimental characterization of Calcium Looping integrated with concentrated solar power. Chemical Engineering Journal, 2018, 331, 794-802.	12.7	65
24	Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 603-608.	3.0	64
25	Analysis of char–slag interaction and near-wall particle segregation in entrained-flow gasification of coal. Combustion and Flame, 2010, 157, 874-883.	5.2	61
26	Heat transfer in directly irradiated fluidized beds. Solar Energy, 2016, 129, 85-100.	6.1	60
27	Diagnostics of carbon gasification by raman microprobe spectroscopy. Proceedings of the Combustion Institute, 2000, 28, 2369-2374.	3.9	59
28	Continuous succinic acid fermentation by Actinobacillus succinogenes in a packed-bed biofilm reactor. Biotechnology for Biofuels, 2018, 11, 138.	6.2	59
29	Fluidized bed calcium looping: The effect of SO 2 on sorbent attrition and CO 2 capture capacity. Chemical Engineering Journal, 2012, 207-208, 445-449.	12.7	58
30	Fluidized Bed Combustion of a Biomass Char (Robinia pseudoacacia). Energy & Fuels, 2000, 14, 781-790.	5.1	57
31	A model of integrated calcium looping for CO 2 capture and concentrated solar power. Solar Energy, 2015, 120, 208-220.	6.1	57
32	Assessment of Thermodeactivation during Gasification of a Bituminous Coal Char. Energy & Fuels, 1999, 13, 1154-1159.	5.1	55
33	Fluidization of solids with CO2 at pressures from ambient to supercritical. AICHE Journal, 2000, 46, 901-910.	3.6	54
34	Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions: Part 1. Assessment of six limestones. Chemical Engineering Journal, 2013, 231, 537-543.	12.7	54
35	An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1. Journal of Biotechnology, 2006, 123, 464-477.	3.8	51
36	CFD simulations of segregating fluidized bidisperse mixtures of particles differing in size. Chemical Engineering Journal, 2010, 156, 432-445.	12.7	51

#	Article	IF	CITATIONS
37	Relevance of structure, fragmentation and reactivity of coal to combustion and oxy-combustion. Fuel, 2017, 201, 65-80.	6.4	51
38	Modelling attrition of limestone during calcination and sulfation in a fluidized bed reactor. Powder Technology, 1998, 95, 119-128.	4.2	50
39	The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions. Experimental Thermal and Fluid Science, 2010, 34, 352-358.	2.7	50
40	Evolution of Reactivity of Highly Porous Chars from Raman Microscopy. Combustion Science and Technology, 2000, 153, 65-82.	2.3	49
41	The attrition behaviour of oxygen-carriers under inert and reacting conditions. Chemical Engineering Science, 2012, 71, 449-467.	3.8	49
42	Olive mill wastewater remediation by means of Pleurotus ostreatus. Biochemical Engineering Journal, 2006, 31, 180-187.	3.6	48
43	Patterns and kinetics of pyrolysis of tobacco under inert and oxidative conditions. Journal of Analytical and Applied Pyrolysis, 2007, 79, 227-233.	5.5	48
44	Reactivation by water hydration of the CO2 capture capacity of a calcium looping sorbent. Fuel, 2014, 127, 109-115.	6.4	48
45	Assessment of anthraquinone-dye conversion by free and immobilized crude laccase mixtures. Enzyme and Microbial Technology, 2008, 42, 521-530.	3.2	47
46	Char–Wall Interaction and Properties of Slag Waste in Entrained-Flow Gasification of Coal. Energy & Fuels, 2011, 25, 3671-3677.	5.1	47
47	Improving the thermal performance of fluidized beds for concentrated solar power and thermal energy storage. Powder Technology, 2016, 290, 97-101.	4.2	46
48	Secondary fragmentation of char particles during combustion in a fluidized bed. Combustion and Flame, 1989, 77, 79-90.	5.2	45
49	Attrition of Limestone During Fluidized Bed Calcium Looping Cycles for CO ₂ Capture. Combustion Science and Technology, 2012, 184, 929-941.	2.3	45
50	Segregation of fuel particles and volatile matter during devolatilization in a fluidized bed reactor—I. Model development. Chemical Engineering Science, 1997, 52, 1893-1908.	3.8	43
51	Butanol production from hexoses and pentoses by fermentation of Clostridium acetobutylicum. Anaerobe, 2015, 34, 146-155.	2.1	43
52	Combustion and percolative fragmentation of carbons. Combustion and Flame, 1993, 95, 342-350.	5.2	42
53	The relevance of attrition to the fate of ashes during fluidized-bed combustion of a biomass. Proceedings of the Combustion Institute, 2000, 28, 2279-2286.	3.9	42
54	Mixing and segregation in fluidized bed thermochemical conversion of biomass. Powder Technology, 2017, 316, 29-40.	4.2	42

#	Article	IF	CITATIONS
55	Directly irradiated fluidized bed reactor for thermochemical energy storage and solar fuels production. Powder Technology, 2020, 366, 460-469.	4.2	42
56	Fluidized Beds for Concentrated Solar Thermal Technologies—A Review. Frontiers in Energy Research, 2021, 9, .	2.3	42
57	Hydrodynamic interaction between a coarse gas-emitting particle and a gas fluidized bed of finer solids. Powder Technology, 2003, 133, 79-90.	4.2	41
58	CFD simulation of bubbling fluidized bidisperse mixtures: Effect of integration methods and restitution coefficient. Chemical Engineering Science, 2013, 102, 324-334.	3.8	41
59	Immobilization of a <i>Pleurotus ostreatus</i> Laccase Mixture on Perlite and Its Application to Dye Decolourisation. BioMed Research International, 2014, 2014, 1-11.	1.9	40
60	The influence of char surface oxidation on thermal annealing and loss of combustion reactivity. Proceedings of the Combustion Institute, 2005, 30, 2223-2230.	3.9	39
61	Fluidized bed combustion and fragmentation of wet sewage sludge. Experimental Thermal and Fluid Science, 2012, 43, 97-104.	2.7	39
62	Bio-butanol separation by adsorption on various materials: Assessment of isotherms and effects of other ABE-fermentation compounds. Separation and Purification Technology, 2018, 191, 328-339.	7.9	39
63	A comparative characterization study of Ca-looping natural sorbents. Applied Energy, 2013, 108, 373-382.	10.1	38
64	Enhancement of Sulfur Uptake by Hydration of Spent Limestone for Fluidized-Bed Combustion Application. Industrial & Engineering Chemistry Research, 2001, 40, 2495-2501.	3.7	37
65	The influence of thermal annealing on oxygen uptake and combustion rates of a bituminous coal char. Proceedings of the Combustion Institute, 2007, 31, 1889-1895.	3.9	37
66	Flue gas desulfurization under simulated oxyfiring fluidized bed combustion conditions: The influence of limestone attrition and fragmentation. Chemical Engineering Science, 2010, 65, 556-561.	3.8	37
67	Biosuccinic Acid from Lignocellulosic-Based Hexoses and Pentoses by Actinobacillus succinogenes: Characterization of the Conversion Process. Applied Biochemistry and Biotechnology, 2017, 183, 1465-1477.	2.9	37
68	Poly-β-hydroxybutyrate (PHB) production by Synechocystis PCC6803 from CO2: Model development. Algal Research, 2018, 29, 49-60.	4.6	37
69	The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel. Fuel Processing Technology, 2003, 84, 229-241.	7.2	36
70	Improving the performance of calcium looping for solar thermochemical energy storage and CO2 capture. Fuel, 2021, 298, 120791.	6.4	36
71	Effects of viscosity and relaxation time on the hydrodynamics of gas–liquid systems. Chemical Engineering Science, 2011, 66, 3392-3399.	3.8	35
72	Kinetic study of a novel thermo-stable α-carbonic anhydrase for biomimetic CO2 capture. Enzyme and Microbial Technology, 2013, 53, 271-277.	3.2	35

#	Article	IF	CITATIONS
73	Reactivation by Steam Hydration of Sorbents for Fluidized-Bed Calcium Looping. Energy & Fuels, 2015, 29, 4436-4446.	5.1	35
74	Solar-driven production of lime for ordinary Portland cement formulation. Solar Energy, 2018, 173, 759-768.	6.1	35
75	A descriptive model of carbon attrition in the fluidized combustion of a coal char. Chemical Engineering Science, 1985, 40, 1905-1916.	3.8	34
76	A Thermogravimetric Study of Nonfossil Solid Fuels. 1. Inert Pyrolysis. Energy & Fuels, 2002, 16, 653-660.	5.1	34
77	Hydration-induced reactivation of spent sorbents for fluidized bed calcium looping (double looping). Fuel Processing Technology, 2014, 120, 71-78.	7.2	34
78	Rotation-assisted Abrasive Fluidised Bed Machining of AlSi10Mg parts made through Selective Laser Melting Technology. Procedia Manufacturing, 2020, 47, 1043-1049.	1.9	34
79	Some issues in modelling bubbling and circulating fluidized-bed coal combustors. Powder Technology, 1995, 82, 301-316.	4.2	33
80	Sulphation of limestones in a fluidized bed combustor: The relationship between particle attrition and microstructure. Canadian Journal of Chemical Engineering, 2008, 86, 347-355.	1.7	33
81	Continuous lactose fermentation by Clostridium acetobutylicum – Assessment of acidogenesis kinetics. Bioresource Technology, 2011, 102, 1608-1614.	9.6	32
82	Kinetic study of butanol production from various sugars by Clostridium acetobutylicum using a dynamic model. Biochemical Engineering Journal, 2015, 99, 156-166.	3.6	32
83	Modelling of a concentrated solar power – photovoltaics hybrid plant for carbon dioxide capture and utilization via calcium looping and methanation. Energy Conversion and Management, 2021, 230, 113792.	9.2	32
84	A predictive model of carbon attrition in fluidized bed combustion and gasification of a graphite. Chemical Engineering Science, 1989, 44, 1091-1099.	3.8	31
85	Loss of gasification reactivity toward O2 and CO2 upon heat treatment of carbons. Proceedings of the Combustion Institute, 2002, 29, 485-493.	3.9	31
86	An assessment of water and steam reactivation of a fluidized bed spent sorbent for enhanced SO2 capture. Powder Technology, 2008, 180, 129-134.	4.2	31
87	Primary fragmentation of limestone under oxy-firing conditions in a bubbling fluidized bed. Fuel Processing Technology, 2011, 92, 1449-1456.	7.2	31
88	Performance of Natural Sorbents during Calcium Looping Cycles: A Comparison between Fluidized Bed and Thermo-Gravimetric Tests. Energy & Fuels, 2013, 27, 6048-6054.	5.1	31
89	Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions: Part 2. Assessment of dolomite vs. limestone. Chemical Engineering Journal, 2013, 231, 544-549.	12.7	31
90	Gas and solid flow patterns in the loop-seal of a circulating fluidized bed. Powder Technology, 2014, 264, 197-202.	4.2	31

#	Article	IF	CITATIONS
91	A novel autothermal fluidized bed reactor for concentrated solar thermal applications. Chemical Engineering Journal, 2020, 398, 125702.	12.7	31
92	Hydrodynamics and mass transfer in a lab-scale three-phase internal loop airlift. Chemical Engineering Journal, 2003, 96, 45-54.	12.7	30
93	Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels. Applied Energy, 2015, 157, 449-461.	10.1	30
94	The influence of sorbent properties and reaction temperature on sorbent attrition, sulfur uptake, and particle sulfation pattern during fluidized-bed desulfurization. Combustion Science and Technology, 2002, 174, 151-169.	2.3	29
95	Numerical simulations of lateral solid mixing in gas-fluidized beds. Chemical Engineering Science, 2014, 120, 117-129.	3.8	29
96	Effect of steam on the performance of Ca-based sorbents in calcium looping processes. Powder Technology, 2017, 316, 578-584.	4.2	29
97	Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture. Biochemical Engineering Journal, 2018, 138, 1-11.	3.6	29
98	Cu/γ-Al2O3 catalyst for the combustion of methane in a fluidized bed reactor. Catalysis Today, 2002, 75, 317-324.	4.4	28
99	Dolomite attrition during fluidized-bed calcination and sulfation. Combustion Science and Technology, 2003, 175, 2201-2216.	2.3	28
100	Azo-dye conversion by means of Pseudomonas sp. OX1. Enzyme and Microbial Technology, 2007, 41, 646-652.	3.2	28
101	Continuous Succinic Acid Fermentation by Actinobacillus Succinogenes: Assessment of Growth and Succinic Acid Production Kinetics. Applied Biochemistry and Biotechnology, 2019, 187, 782-799.	2.9	28
102	Fluidization of solids with CO2 at pressures and temperatures ranging from ambient to nearly critical conditions. Chemical Engineering Science, 1993, 48, 617-621.	3.8	27
103	Limestone fragmentation and attrition during fluidized bed oxyfiring. Fuel, 2010, 89, 827-832.	6.4	27
104	A semi-detailed kinetic model of char combustion with consideration of thermal annealing. Proceedings of the Combustion Institute, 2011, 33, 1763-1770.	3.9	27
105	Photobioreactors for microalgal cultures: A Lagrangian model coupling hydrodynamics and kinetics. Biotechnology Progress, 2015, 31, 1259-1272.	2.6	27
106	Fluidised bed machining of metal additive manufactured parts. AIP Conference Proceedings, 2019, , .	0.4	27
107	<i>110th Anniversary:</i> Calcium Looping Coupled with Concentrated Solar Power for Carbon Capture and Thermochemical Energy Storage. Industrial & Engineering Chemistry Research, 2019, 58, 21262-21272.	3.7	27
108	Steam hydration–reactivation of FBC ashes for enhanced in situ desulphurization. Fuel, 2009, 88, 1092-1098.	6.4	26

#	Article	IF	CITATIONS
109	Modeling of an aerobic biofilm reactor with doubleâ€ŀimiting substrate kinetics: Bifurcational and dynamical analysis. Biotechnology Progress, 2011, 27, 1599-1613.	2.6	26
110	Structure and activity of magnetic cross-linked enzyme aggregates of bovine carbonic anhydrase as promoters of enzymatic CO 2 capture. Biochemical Engineering Journal, 2017, 127, 188-195.	3.6	26
111	Comparison of pyrolysis test rigs for oxy-fuel conditions. Fuel Processing Technology, 2017, 156, 461-472.	7.2	26
112	Bio-butanol recovery by adsorption/desorption processes. Separation and Purification Technology, 2020, 235, 116145.	7.9	26
113	Butanol production by Clostridium acetobutylicum in a series of packed bed biofilm reactors. Chemical Engineering Science, 2016, 152, 678-688.	3.8	25
114	Multiphase flow patterns in entrained-flow slagging gasifiers: Physical modelling of particle–wall impact at near-ambient conditions. Fuel Processing Technology, 2016, 141, 106-116.	7.2	25
115	Pyrolysis and Thermal Annealing of Coal and Biomass in CO ₂ -Rich Atmospheres. Energy & Fuels, 2018, 32, 10701-10708.	5.1	25
116	Fluidized-bed combustion of a biomass char: The influence of carbon attrition and fines postocombustion on fixed carbon conversion. Proceedings of the Combustion Institute, 1998, 27, 3103-3110.	0.3	24
117	Assessment of ettringite from hydrated FBC residues as a sorbent for fluidized bed desulphurizationâ~†. Fuel, 2003, 82, 2299-2307.	6.4	24
118	A model of the dynamics of a fluidized bed combustor burning biomass. Combustion and Flame, 2005, 140, 371-384.	5.2	24
119	Reuse of Fly Ash from a Fluidized Bed Combustor for Sulfur Uptake:  The Role of Ettringite in Hydration-Induced Reactivation. Energy & Fuels, 2005, 19, 1822-1827.	5.1	24
120	A single particle model of the fluidized bed combustion of a char particle with a coherent ash skeleton: Application to granulated sewage sludge. Fuel Processing Technology, 2007, 88, 577-584.	7.2	24
121	Strategies for dephenolization of raw olive mill wastewater by means of <i>Pleurotus ostreatus</i> . Journal of Industrial Microbiology and Biotechnology, 2012, 39, 719-729.	3.0	24
122	Directly irradiated fluidized bed reactors for thermochemical processing and energy storage: Application to calcium looping. AIP Conference Proceedings, 2017, , .	0.4	24
123	A novel fluidized bed "thermochemical battery―for energy storage in concentrated solar thermal technologies. Energy Conversion and Management, 2021, 236, 113994.	9.2	24
124	The combined effect of H2O and SO2 on CO2 uptake and sorbent attrition during fluidised bed calcium looping. Proceedings of the Combustion Institute, 2019, 37, 4379-4387.	3.9	23
125	A fractal approach to the analysis of low temperature combustion rate of a coal char: I. Experimental results. Carbon, 1993, 31, 501-508.	10.3	22
126	Reactivation by Water Hydration of Spent Sorbent for Fluidized-Bed Combustion Application: Influence of Hydration Time. Industrial & Engineering Chemistry Research, 2004, 43, 5692-5701.	3.7	22

#	Article	IF	CITATIONS
127	Overlapping of heterogeneous and purely thermally activated solid-state processes in the combustion of a bituminous coal. Combustion and Flame, 2006, 144, 578-591.	5.2	22
128	Attrition of limestones by impact loading in fluidized beds: The influence of reaction conditions. Fuel Processing Technology, 2010, 91, 1022-1027.	7.2	22
129	Gasification of Waste Biomass Chars by Carbon Dioxide via Thermogravimetry—Effect of Catalysts. Combustion Science and Technology, 2012, 184, 64-77.	2.3	22
130	Particulate and gaseous emissions during fluidized bed combustion of semi-dried sewage sludge: Effect of bed ash accumulation on NOx formation. Waste Management, 2013, 33, 1397-1402.	7.4	22
131	The effect of steam on CO2 uptake and sorbent attrition in fluidised bed calcium looping: The influence of process conditions and sorbent properties. Separation and Purification Technology, 2017, 189, 101-107.	7.9	22
132	A fractal approach to the analysis of low temperature combustion rate of a coal char. II: Model development. Carbon, 1994, 32, 51-59.	10.3	21
133	Bifurcational and dynamical analysis of a continuous biofilm reactor. Journal of Biotechnology, 2008, 135, 295-303.	3.8	21
134	A Population Balance Model on Sorbent in CFB Combustors: The Influence of Particle Attrition. Industrial & Engineering Chemistry Research, 2011, 50, 9704-9711.	3.7	21
135	Local and global hydrodynamics in a two-phase internal loop airlift. Chemical Engineering Science, 2007, 62, 7068-7077.	3.8	20
136	Analysis of the energy efficiency of solar aided biomass gasification for pure hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 14622-14632.	7.1	20
137	Modelling oxy-pyrolysis of sewage sludge in a rotary kiln reactor. Fuel, 2018, 231, 468-478.	6.4	19
138	Effect of exposure to SO2 and H2O during the carbonation stage of fluidised bed calcium looping on the performance of sorbents of different nature. Chemical Engineering Journal, 2019, 377, 120626.	12.7	19
139	Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon. Journal of Instrumentation, 2020, 15, P02024-P02024.	1.2	19
140	The fate of fixed carbon during the fluidized-bed combustion of a coal and two waste-derived fuels. Proceedings of the Combustion Institute, 1996, 26, 3243-3251.	0.3	18
141	Analysis of the dynamics of heat transfer between a hot wire probe and gas fluidized beds. Powder Technology, 1999, 102, 53-63.	4.2	18
142	Fluidized bed combustion of tyre derived fuel. Experimental Thermal and Fluid Science, 2003, 27, 465-471.	2.7	18
143	Fluidization and attrition of pyroclastic granular solids. Journal of Volcanology and Geothermal Research, 2004, 138, 27-42.	2.1	18
144	Laser diagnostics of hydrodynamics and gas-mixing induced by bubble bursting at the surface of gas-fluidized beds. Chemical Engineering Science, 2007, 62, 94-108.	3.8	18

#	Article	IF	CITATIONS
145	Self-fluidization of subaerial rapid granular flows. Powder Technology, 2008, 182, 323-333.	4.2	18
146	Mechanochemical activation of high-carbon fly ash for enhanced carbon reburning. Proceedings of the Combustion Institute, 2011, 33, 2743-2753.	3.9	18
147	Solar-Driven Torrefaction of a Lignin-Rich Biomass Residue in a Directly Irradiated Fluidized Bed Reactor. Combustion Science and Technology, 2019, 191, 1609-1627.	2.3	18
148	SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range. European Physical Journal C, 2021, 81, 1.	3.9	18
149	Continuous succinic acid production by immobilized cells of Actinobacillus succinogenes in a fluidized bed reactor: Entrapment in alginate beads. Biochemical Engineering Journal, 2021, 169, 107968.	3.6	18
150	Modeling fragmentation by percolation in combustion of carbons. Powder Technology, 1991, 66, 47-52.	4.2	17
151	Flow Structures and Gas-Mixing Induced by Bubble Bursting at the Surface of an Incipiently Gas-Fluidized Bed. Industrial & Engineering Chemistry Research, 2004, 43, 5738-5753.	3.7	17
152	A fluid-bed continuous classifier of polydisperse granular solids. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 638-644.	5.3	17
153	Continuous xylose fermentation by Clostridium acetobutylicum – Kinetics and energetics issues under acidogenesis conditions. Bioresource Technology, 2014, 164, 155-161.	9.6	17
154	Wall effects in entrained particle-laden flows: The role of particle stickiness on solid segregation and build-up of wall deposits. Powder Technology, 2014, 266, 282-291.	4.2	17
155	A single particle model of lime sulphation with a fractal formulation of product layer diffusion. Chemical Engineering Science, 2016, 156, 115-120.	3.8	17
156	Modeling of slurry staged bubble column for biomimetic CO 2 capture. International Journal of Greenhouse Gas Control, 2016, 47, 200-209.	4.6	17
157	X-ray imaging of horizontal jets in gas fluidised bed nozzles. Chemical Engineering Science, 2017, 164, 53-62.	3.8	17
158	Impact experiments of char and ash particles relevant to entrained-flow coal gasifiers. Fuel, 2017, 202, 665-674.	6.4	17
159	Attrition phenomena during fluidized bed combustion of granulated and mechanically dewatered sewage sludges. Proceedings of the Combustion Institute, 2005, 30, 3017-3024.	3.9	16
160	Continuous lactose fermentation by Clostridium acetobutylicum—Assessment of energetics and product yields of the acidogenesis. Enzyme and Microbial Technology, 2012, 50, 165-172.	3.2	16
161	Continuous lactose fermentation by Clostridium acetobutylicum – Assessment of solventogenic kinetics. Bioresource Technology, 2015, 180, 330-337.	9.6	16
162	Continuous xylose fermentation by Clostridium acetobutylicum – Assessment of solventogenic kinetics. Bioresource Technology, 2015, 192, 142-148.	9.6	16

#	Article	IF	CITATIONS
163	A twin-bed test reactor for characterization of calcium looping sorbents. Powder Technology, 2017, 316, 585-591.	4.2	16
164	Hydrodynamics of compartmented fluidized beds under uneven fluidization conditions. Powder Technology, 2017, 316, 476-491.	4.2	16
165	Cryogenic Characterization of FBK RGB-HD SiPMs. Journal of Instrumentation, 2017, 12, P09030-P09030.	1.2	16
166	Steam reactivation of a spent sorbent for enhanced SO2 capture in FBC. AICHE Journal, 2006, 52, 4090-4098.	3.6	15
167	Fluidization and de-aeration of pyroclastic mixtures: The influence of fines content, polydispersity and shear flow. Journal of Volcanology and Geothermal Research, 2007, 164, 284-292.	2.1	15
168	Characterization of the devolatilization rate of solid fuels in fluidized beds by timeâ€resolved pressure measurements. AICHE Journal, 2012, 58, 632-645.	3.6	15
169	Entrained-flow gasification of coal under slagging conditions: Relevance of fuel–wall interaction and char segregation to the properties of solid wastes. Fuel, 2013, 114, 44-55.	6.4	15
170	Attrition phenomena relevant to fluidized bed combustion and gasification systems. , 2013, , 254-315.		15
171	Modelling entrained-flow slagging gasification of solid fuels with near-wall particle segregation. Chemical Engineering Journal, 2019, 377, 119962.	12.7	15
172	Char/ash deposition and near-wall segregation in slagging entrained-flow gasification of solid fuels: from experiments to closure equations. Fuel, 2020, 264, 116864.	6.4	15
173	Heat treatment-induced loss of combustion reactivity of a coal char: the effect of exposure to oxygen. Experimental Thermal and Fluid Science, 2004, 28, 735-741.	2.7	14
174	Investigation of Char–Slag Interaction Regimes in Entrained-Flow Gasifiers: Linking Experiments with Numerical Simulations. Combustion Science and Technology, 2012, 184, 871-887.	2.3	14
175	Assessment of the thermochemistry of oxygen chemisorption and surface oxide desorption during looping combustion of coal char. Proceedings of the Combustion Institute, 2013, 34, 2787-2793.	3.9	14
176	Characterization of technical grade carbonic anhydrase as biocatalyst for CO ₂ capture in potassium carbonate solutions. , 2018, 8, 279-291.		14
177	Efficient succinic acid production from highâ€sugarâ€content beverages by <i>Actinobacillus succinogenes</i> . Biotechnology Progress, 2019, 35, e2863.	2.6	14
178	Particle residence time distributions in a vortex-based solar particle receiver-reactor: An experimental, numerical and theoretical study. Chemical Engineering Science, 2020, 214, 115421.	3.8	14
179	Catalytic combustion of methane and propane in a fluidized-bed reactor. Proceedings of the Combustion Institute, 2002, 29, 827-834.	3.9	13
180	Assessment of gas-fluidized beds mixing and hydrodynamics by zirconia sensors. AICHE Journal, 2006, 52, 185-198.	3.6	13

#	Article	IF	CITATIONS
181	Assessment of Sorbent Reactivation by Water Hydration for Fluidized Bed Combustion Application. Journal of Energy Resources Technology, Transactions of the ASME, 2006, 128, 90-98.	2.3	13
182	Devolatilization and ash comminution of two different sewage sludges under fluidized bed combustion conditions. Experimental Thermal and Fluid Science, 2010, 34, 387-395.	2.7	13
183	A lab-scale cold flow model reactor to investigate near-wall particle segregation relevant to entrained-flow slagging coal gasifiers. Fuel, 2014, 117, 1267-1273.	6.4	13
184	Fluidised bed drying of powdered materials: Effects of operating conditions. Powder Technology, 2017, 308, 158-164.	4.2	13
185	Influence of Abrasive Materials in Fluidised Bed Machining of AlSi10Mg Parts Made through Selective Laser Melting Technology. Key Engineering Materials, 2019, 813, 129-134.	0.4	13
186	Immobilization of carbonic anhydrase for CO2 capture and utilization. Applied Microbiology and Biotechnology, 2022, 106, 3419-3430.	3.6	13
187	A THEORETICAL APPROACH TO THE CHARACTERIZATION OF CARBON ATTRITION IN A FLUIDIZED BED COMBUSTOR. Chemical Engineering Communications, 1987, 62, 285-301.	2.6	12
188	Catalytic combustion of methane in a fluidized bed reactor under fuel-lean conditions. Combustion Science and Technology, 2002, 174, 361-375.	2.3	12
189	Modelling the SO2–limestone reaction under periodically changing oxidizing/reducing conditions: the influence of cycle time on reaction rate. Chemical Engineering Science, 2002, 57, 631-641.	3.8	12
190	Hydration products of FBC wastes as SO2 sorbents: comparison between ettringite and calcium hydroxide. Fuel Processing Technology, 2008, 89, 47-54.	7.2	12
191	Analysis of an Explosion in a Wool-Processing Plant. Industrial & Engineering Chemistry Research, 2012, 51, 7713-7718.	3.7	12
192	Numerical simulation of hydrogen production by chemical looping reforming in a dual fluidized bed reactor. Powder Technology, 2017, 316, 614-627.	4.2	12
193	Experimental characterization of particle-wall interaction relevant to entrained-flow gasification of biomass. Fuel, 2017, 209, 674-684.	6.4	12
194	Particle residence time distributions in a vortex-based solar particle receiver-reactor: The influence of receiver tilt angle. Solar Energy, 2019, 190, 126-138.	6.1	12
195	Impact fragmentation of limestone-based sorbents for calcium looping: The effect of steam and sulphur dioxide. Fuel Processing Technology, 2020, 208, 106499.	7.2	12
196	Looping cycles for low carbon technologies: A survey of recent research activities in Naples. Fuel, 2020, 268, 117371.	6.4	12
197	Pyrolysis and combustion of a solid refinery waste. Fuel, 2020, 267, 117258.	6.4	12
198	The influence of heat treatment and weathering on the gasification reactivity of Montana lignite. Proceedings of the Combustion Institute, 1998, 27, 2991-2999.	0.3	11

#	Article	IF	CITATIONS
199	Combustion of lignin-rich residues with coal in a pilot-scale bubbling fluidized bed reactor. Powder Technology, 2017, 316, 718-724.	4.2	11
200	Particle–wall interaction in entrained-flow slagging coal gasifiers: Granular flow simulation and experiments in a cold flow model reactor. International Journal of Multiphase Flow, 2017, 91, 142-154.	3.4	11
201	Mechanism and Thermochemistry of Coal Char Oxidation and Desorption of Surface Oxides. Energy & Fuels, 2017, 31, 2308-2316.	5.1	11
202	Evaluation of two sorbents for the sorption-enhanced methanation in a dual fluidized bed system. Biomass Conversion and Biorefinery, 2021, 11, 111-119.	4.6	11
203	Attrition of spherical electrode carbon particles during batch fluidized combustion. Canadian Journal of Chemical Engineering, 1988, 66, 163-167.	1.7	10
204	The Relevance of Macerals in the Combustion of a Coal Char in the Chemical Kinetic Regime. Combustion Science and Technology, 1989, 63, 63-73.	2.3	10
205	Modeling gasification and percolation of ash-bearing porous carbon particles. Proceedings of the Combustion Institute, 2000, 28, 2163-2170.	3.9	10
206	Development of a sound-assisted fluidized bed filter/afterburner for particle-laden gas clean-up. Powder Technology, 2008, 180, 102-108.	4.2	9
207	The influence of reactivation by hydration of spent SO2 sorbents on their impact fragmentation in fluidized bed combustors. Chemical Engineering Journal, 2010, 162, 1067-1074.	12.7	9
208	OPTIMIZATION OF SOLVENT RECOVERY IN THE PRODUCTION OF BUTANOL BY FERMENTATION. Environmental Engineering and Management Journal, 2012, 11, 1499-1504.	0.6	9
209	A TECHNO-ECONOMIC ANALYSIS OF BIODIESEL PRODUCTION FROM MICROALGAE. Environmental Engineering and Management Journal, 2013, 12, 1563-1573.	0.6	9
210	Experimental characterization of granular materials for directly irradiated fluidized bed solar receivers. AIP Conference Proceedings, 2019, , .	0.4	8
211	Modelling of a combined biomass CLC combustion and renewable-energy-based methane production system for CO2 utilization. Powder Technology, 2020, 373, 421-432.	4.2	8
212	The influence of temperature on the nature and stability of surface-oxides formed by oxidation of char. Renewable and Sustainable Energy Reviews, 2021, 137, 110595.	16.4	8
213	Performance of limestoneâ€based sorbent for sorptionâ€enhanced gasification in dual interconnected fluidized bed reactors. AICHE Journal, 2023, 69, e17588.	3.6	8
214	Characterization of calcium looping sorbents with a novel twin bed reactor. Fuel Processing Technology, 2018, 172, 49-54.	7.2	7
215	On the agglomeration tendency of carbonaceous fuels in fluidized beds. Fuel, 2020, 277, 118187.	6.4	7
216	In vivo immobilized carbonic anhydrase and its effect on the enhancement of CO2 absorption rate. Journal of Biotechnology, 2021, 336, 41-49.	3.8	7

#	Article	IF	CITATIONS
217	Fluidized bed combustion of solid lignin-rich residues from bioethanol production. Powder Technology, 2020, 371, 170-179.	4.2	7
218	CO2 CAPTURE BY BIOMIMETIC ADSORPTION: ENZYME MEDIATED CO2 ABSORPTION FOR POST-COMBUSTION CARBON SEQUESTRATION AND STORAGE PROCESS. Environmental Engineering and Management Journal, 2013, 12, 1595-1603.	0.6	7
219	Computations of the performance of fluidized coal combustors. Powder Technology, 1985, 43, 163-167.	4.2	6
220	The Influence of Coal Macerals on Carbon Attrition During the Fluidized Bed Combustion of Coal Char. Combustion Science and Technology, 1992, 83, 135-143.	2.3	6
221	Sound-Assisted Fluidized Bed Combustion of Fine Particles. Combustion Science and Technology, 2000, 153, 83-93.	2.3	6
222	Chapter 25 Attrition in Fluidised Beds. Handbook of Powder Technology, 2007, 12, 1019-1053.	0.1	6
223	Preliminary Assessment of a Concept of Looping Combustion of Carbon. Industrial & Engineering Chemistry Research, 2009, 48, 102-109.	3.7	6
224	A novel threeâ€phase airlift reactor without circulation of solids. Canadian Journal of Chemical Engineering, 2010, 88, 574-578.	1.7	6
225	Experimental and numerical analysis of jet penetration and gas evolution in a single-nozzle distributor fluidized bed. Chemical Engineering Journal, 2022, 437, 135391.	12.7	6
226	On the Design of Thermal Breathing Devices for Liquid Storage Tanks. Chemical Engineering Research and Design, 1999, 77, 354-359.	5.6	5
227	Bioenergy II: An Assessment of the Kinetics of Butanol Production by Clostridium acetobutylicum. International Journal of Chemical Reactor Engineering, 2009, 7, .	1.1	5
228	Unstable steady state operations of substrate inhibited cultures by dissolved oxygen control. Journal of Biotechnology, 2011, 156, 302-308.	3.8	5
229	Development of a dry bottom ash extraction/afterburning system from pulverized fuel co-fired utility boilers. Proceedings of the Combustion Institute, 2013, 34, 2855-2863.	3.9	5
230	Nonlinear Analysis of Substrate-Inhibited Continuous Cultures Operated with Feedback Control on Dissolved Oxygen. Industrial & Engineering Chemistry Research, 2013, 52, 13422-13431.	3.7	5
231	Eulerian Modeling of Lateral Solid Mixing in Gas-fluidized Suspensions. Procedia Engineering, 2015, 102, 1491-1499.	1.2	5
232	Fluidized bed CaO hydration-dehydration cycles for application to sorption-enhanced methanation. Combustion Science and Technology, 2019, 191, 1724-1733.	2.3	5
233	Experimental and numerical study of a hybrid solar-combustor system for energy efficiency increasing. Fuel, 2020, 263, 116732.	6.4	5
234	Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions. Renewable and Sustainable Energy Reviews, 2021, 137, 110453.	16.4	5

#	Article	IF	CITATIONS
235	PRESSURE DROP IN FLOW OF A NEARLY CRITICAL FLUID THROUGH PACKED BEDS OF SPHERES. Chemical Engineering Communications, 1990, 93, 101-109.	2.6	4
236	Limestone Attrition under Simulated Oxyfiring Fluidized-Bed Combustion Conditions. Chemical Engineering and Technology, 2009, 32, 380-385.	1.5	4
237	Bioreactors for Azo-Dye Conversion. Handbook of Environmental Chemistry, 2010, , 101-131.	0.4	4
238	Beneficiation of coal fly ashes by oxygen chemisorption. Experimental Thermal and Fluid Science, 2012, 43, 76-81.	2.7	4
239	Flow Structures and Mixing Patterns in the Freeboard of Gas-Fluidized Bed Reactors. Industrial & Engineering Chemistry Research, 2014, 53, 9296-9302.	3.7	4
240	Dynamic modeling of a solar receiver/thermal energy storage system based on a compartmented dense gas fluidized bed. AIP Conference Proceedings, 2017, , .	0.4	4
241	Dolomite-based binders manufactured using concentrated solar energy in a fluidised bed reactor. Solar Energy, 2022, 232, 471-482.	6.1	4
242	Smoldering Combustion in Cigarette Smoking and Generation of Combustion Byproducts. Environmental Engineering Science, 2008, 25, 1389-1398.	1.6	3
243	Modelling and experimental characterization of unsaturated flow in absorbent and swelling porous media. Chemical Engineering Science, 2020, 224, 115765.	3.8	3
244	TECHNO-ECONOMIC ANALYSIS OF A BUTANOL RECOVERY PROCESS BASED ON GAS STRIPPING TECHNIQUE. Environmental Engineering and Management Journal, 2017, 16, 1005-1016.	0.6	3
245	Immobilization of carbonic anhydrase for biomimetic CO2 capture in slurry absorber. New Biotechnology, 2014, 31, S20-S21.	4.4	2
246	Evolution of the academic FabLab at University of Naples Federico II. Journal of Physics: Conference Series, 2018, 1065, 022013.	0.4	2
247	Limestone calcination–carbonation in a fluidized bed reactor/receiver for thermochemical energy storage applications. AIP Conference Proceedings, 2019, , .	0.4	2
248	Modelling and Experimental Characterization of Unsaturated Flow in Absorbent and Swelling Porous Media: Material Characterization. Transport in Porous Media, 2020, 134, 725-753.	2.6	2
249	Steam Reactivation of FB Spent Sorbent for Enhanced SO2 Capture: The Relationship Between Microstructural Properties and Sulphur Uptake. , 2005, , .		2
250	Sorbent Inventory and Particle Size Distribution in Air-Blown Circulating Fluidized Bed Combustors: The Influence of Particle Attrition and Fragmentation. , 2009, , 966-971.		2
251	Performance of Ca-Based Sorbents for Calcium Looping Processes: Role of Steam. Advanced Science Letters, 2017, 23, 5920-5922.	0.2	2
252	Sustainability assessment of biotechnological processes: LCA and LCC of second-generation biobutanol production. , 2022, , 365-382.		2

#	Article	IF	CITATIONS
253	Modelling diffusion-limited gasification of carbons by branching pore models. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 64, 77-84.	0.1	1
254	Assessment of Sorbent Reactivation by Water Hydration for Fluidized Bed Combustion Application. , 2003, , 429.		1
255	Shear-assisted fluidized bed powder-coating. Powder Technology, 2012, 215-216, 151-155.	4.2	1
256	Application of the Carbon Looping (CarboLoop) Concept in a Novel Twin-Bed Reactor. Energy Procedia, 2017, 120, 447-453.	1.8	1
257	Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation. AIP Conference Proceedings, 2017, , .	0.4	1
258	Immobilization of carbonic anhydrase for enhancement of CO2 reactive absorption. New Biotechnology, 2018, 44, S44.	4.4	1
259	An Experimental Characterization of Powder/Substrate Interaction during Direct Metal Deposition for Additive Manufacturing. Key Engineering Materials, 0, 813, 435-440.	0.4	1
260	On how mild oxidation affects the structure of carbons: Comparative analysis by different techniques. Applications in Energy and Combustion Science, 2020, 1-4, 100006.	1.5	1
261	A tribute to Leopoldo Massimilla. Powder Technology, 1995, 82, 217-218.	4.2	0
262	Reply to the letter â€~Kinetics of decomposition measured using thermobalance' by Juan A. Conesa. Fuel, 2001, 80, 2125.	6.4	0
263	Set up of an experimental protocol for the investigation of graphite combustion in supersonic flow. Experimental Thermal and Fluid Science, 2014, 56, 9-15.	2.7	0
264	Continuous butanol production by Clostridium acetobutylicum in a series of packed bed reactors. New Biotechnology, 2016, 33, S60.	4.4	0
265	Torrefaction of a lignin-rich biogenic waste in a directly irradiated fluidized bed reactor. AIP Conference Proceedings, 2018, , .	0.4	0
266	A Grain-Scale Study of Swelling Composite Porous Media Made of Fibres and Particles. Computer Aided Chemical Engineering, 2020, , 583-588.	0.5	0
267	The Influence of Sorbent Properties and Reaction Conditions on Attrition of Limestone by Impact Loading in Fluidized Beds. , 2009, , 486-491.		0
268	An Innovative Lab-Scale Apparatus for the Characterization of Calcium Looping Sorbents. Advanced Science Letters, 2017, 23, 5923-5926.	0.2	0