## Liang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2394822/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 2008, 455, 644-647.                                 | 27.8 | 1,554     |
| 2  | High-sensitivity diamond magnetometer with nanoscale resolution. Nature Physics, 2008, 4, 810-816.                                    | 16.7 | 1,409     |
| 3  | Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466,<br>730-734.                           | 27.8 | 968       |
| 4  | Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators.<br>Nature Photonics, 2014, 8, 524-529. | 31.4 | 910       |
| 5  | Room-Temperature Quantum Bit Memory Exceeding One Second. Science, 2012, 336, 1283-1286.                                              | 12.6 | 707       |
| 6  | Strongly Coupled Magnons and Cavity Microwave Photons. Physical Review Letters, 2014, 113, 156401.                                    | 7.8  | 693       |
| 7  | Majorana Fermions in Equilibrium and in Driven Cold-Atom Quantum Wires. Physical Review Letters, 2011, 106, 220402.                   | 7.8  | 606       |
| 8  | Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature, 2016, 536, 441-445.                | 27.8 | 603       |
| 9  | A quantum network of clocks. Nature Physics, 2014, 10, 582-587.                                                                       | 16.7 | 435       |
| 10 | Cavity magnomechanics. Science Advances, 2016, 2, e1501286.                                                                           | 10.3 | 395       |
| 11 | Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New Journal of Physics, 2014, 16, 045014.         | 2.9  | 394       |
| 12 | Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Physical<br>Review B, 2009, 79, .               | 3.2  | 329       |
| 13 | Anti-parity–time symmetry with flying atoms. Nature Physics, 2016, 12, 1139-1145.                                                     | 16.7 | 298       |
| 14 | Magnon dark modes and gradient memory. Nature Communications, 2015, 6, 8914.                                                          | 12.8 | 293       |
| 15 | Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae. Science, 2009, 326, 267-272.             | 12.6 | 277       |
| 16 | Optimal architectures for long distance quantum communication. Scientific Reports, 2016, 6, 20463.                                    | 3.3  | 262       |
| 17 | A Schrödinger cat living in two boxes. Science, 2016, 352, 1087-1091.                                                                 | 12.6 | 244       |
| 18 | Quantum memory with millisecond coherence in circuit QED. Physical Review B, 2016, 94, .                                              | 3.2  | 237       |

| #  | Article                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Symmetries and conserved quantities in Lindblad master equations. Physical Review A, 2014, 89, .                                  | 2.5  | 231       |
| 20 | Quantum repeater with encoding. Physical Review A, 2009, 79, .                                                                    | 2.5  | 224       |
| 21 | Topological Properties of Linear Circuit Lattices. Physical Review Letters, 2015, 114, 173902.                                    | 7.8  | 210       |
| 22 | Cavity QED with atomic mirrors. New Journal of Physics, 2012, 14, 063003.                                                         | 2.9  | 205       |
| 23 | Ultrafast and Fault-Tolerant Quantum Communication across Long Distances. Physical Review Letters, 2014, 112, 250501.             | 7.8  | 204       |
| 24 | New Class of Quantum Error-Correcting Codes for a Bosonic Mode. Physical Review X, 2016, 6, .                                     | 8.9  | 198       |
| 25 | Robust Quantum State Transfer in Random Unpolarized Spin Chains. Physical Review Letters, 2011, 106,<br>040505.                   | 7.8  | 194       |
| 26 | Scalable architecture for a room temperature solid-state quantum information processor. Nature Communications, 2012, 3, 800.      | 12.8 | 190       |
| 27 | Distributed quantum computation based on small quantum registers. Physical Review A, 2007, 76, .                                  | 2.5  | 188       |
| 28 | Implementing a universal gate set on a logical qubit encoded in an oscillator. Nature<br>Communications, 2017, 8, 94.             | 12.8 | 183       |
| 29 | Performance and structure of single-mode bosonic codes. Physical Review A, 2018, 97, .                                            | 2.5  | 172       |
| 30 | Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies. PRX Quantum, 2021, 2, .                | 9.2  | 172       |
| 31 | Routing entanglement in the quantum internet. Npj Quantum Information, 2019, 5, .                                                 | 6.7  | 169       |
| 32 | Electromagnetically induced transparency at a chiral exceptional point. Nature Physics, 2020, 16, 334-340.                        | 16.7 | 156       |
| 33 | Deterministic teleportation of a quantum gate between two logical qubits. Nature, 2018, 561, 368-373.                             | 27.8 | 154       |
| 34 | Unconventional Josephson Signatures of Majorana Bound States. Physical Review Letters, 2011, 107, 236401.                         | 7.8  | 143       |
| 35 | On-demand quantum state transfer and entanglement between remote microwave cavity memories.<br>Nature Physics, 2018, 14, 705-710. | 16.7 | 143       |
| 36 | Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Physics, 2010, 6, 912-918.       | 16.7 | 142       |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Quantum Noise Theory of Exceptional Point Amplifying Sensors. Physical Review Letters, 2019, 123, 180501.                                                                             | 7.8  | 140       |
| 38 | Achieving the Heisenberg limit in quantum metrology using quantum error correction. Nature Communications, 2018, 9, 78.                                                               | 12.8 | 139       |
| 39 | Coherent Quantum Optical Control with Subwavelength Resolution. Physical Review Letters, 2008, 100, 093005.                                                                           | 7.8  | 135       |
| 40 | Cavity State Manipulation Using Photon-Number Selective Phase Gates. Physical Review Letters, 2015, 115, 137002.                                                                      | 7.8  | 121       |
| 41 | Fault-tolerant detection of a quantum error. Science, 2018, 361, 266-270.                                                                                                             | 12.6 | 113       |
| 42 | Bias-preserving gates with stabilized cat qubits. Science Advances, 2020, 6, .                                                                                                        | 10.3 | 105       |
| 43 | Controlled release of multiphoton quantum states from a microwave cavity memory. Nature Physics, 2017, 13, 882-887.                                                                   | 16.7 | 101       |
| 44 | Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes. PRX Quantum, 2022, 3, .                                                                                      | 9.2  | 101       |
| 45 | Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With<br>Gottesman-Kitaev-Preskill Codes. IEEE Transactions on Information Theory, 2019, 65, 2563-2582. | 2.4  | 100       |
| 46 | Universal control of an oscillator with dispersive coupling to a qubit. Physical Review A, 2015, 92, .                                                                                | 2.5  | 99        |
| 47 | Anyonic interferometry and protected memories in atomic spin lattices. Nature Physics, 2008, 4, 482-488.                                                                              | 16.7 | 97        |
| 48 | A CNOT gate between multiphoton qubits encoded in two cavities. Nature Communications, 2018, 9,<br>652.                                                                               | 12.8 | 95        |
| 49 | Geometry and Response of Lindbladians. Physical Review X, 2016, 6, .                                                                                                                  | 8.9  | 94        |
| 50 | Coherence and Control of Quantum Registers Based on Electronic Spin in a Nuclear Spin Bath.<br>Physical Review Letters, 2009, 102, 210502.                                            | 7.8  | 92        |
| 51 | Heisenberg-Limited Atom Clocks Based on Entangled Qubits. Physical Review Letters, 2014, 112, 190403.                                                                                 | 7.8  | 92        |
| 52 | Demonstration of a chip-based optical isolator with parametric amplification. Nature<br>Communications, 2016, 7, 13657.                                                               | 12.8 | 89        |
| 53 | Interface between Topological and Superconducting Qubits. Physical Review Letters, 2011, 106, 130504.                                                                                 | 7.8  | 88        |
| 54 | Entanglement of bosonic modes through an engineered exchange interaction. Nature, 2019, 566, 509-512.                                                                                 | 27.8 | 88        |

| #  | Article                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Hardware-Efficient Quantum Random Access Memory with Hybrid Quantum Acoustic Systems. Physical<br>Review Letters, 2019, 123, 250501.       | 7.8  | 86        |
| 56 | Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica, 2020, 7, 1291.                                                  | 9.3  | 84        |
| 57 | Imaging mesoscopic nuclear spin noise with a diamond magnetometer. Journal of Chemical Physics, 2010, 133, 124105.                         | 3.0  | 82        |
| 58 | Microwave-optical quantum frequency conversion. Optica, 2021, 8, 1050.                                                                     | 9.3  | 81        |
| 59 | Holonomic Quantum Control with Continuous Variable Systems. Physical Review Letters, 2016, 116, 140502.                                    | 7.8  | 77        |
| 60 | Cavity piezo-mechanics for superconducting-nanophotonic quantum interface. Nature Communications, 2020, 11, 3237.                          | 12.8 | 76        |
| 61 | Environment-Assisted Precision Measurement. Physical Review Letters, 2011, 106, 140502.                                                    | 7.8  | 75        |
| 62 | Modern description of Rayleigh's criterion. Physical Review A, 2019, 99, .                                                                 | 2.5  | 73        |
| 63 | Efficient Multiphoton Sampling of Molecular Vibronic Spectra on a Superconducting Bosonic<br>Processor. Physical Review X, 2020, 10, .     | 8.9  | 73        |
| 64 | Cat Codes with Optimal Decoherence Suppression for a Lossy Bosonic Channel. Physical Review Letters, 2017, 119, 030502.                    | 7.8  | 69        |
| 65 | Topologically protected quantum state transfer in a chiral spin liquid. Nature Communications, 2013,<br>4, 1585.                           | 12.8 | 67        |
| 66 | Stabilized Cat in a Driven Nonlinear Cavity: A Fault-Tolerant Error Syndrome Detector. Physical<br>Review X, 2019, 9, .                    | 8.9  | 64        |
| 67 | Superstrong coupling of thin film magnetostatic waves with microwave cavity. Journal of Applied Physics, 2016, 119, .                      | 2.5  | 62        |
| 68 | Intracity Quantum Communication via Thermal Microwave Networks. Physical Review X, 2017, 7, .                                              | 8.9  | 58        |
| 69 | Deep Neural Network Probabilistic Decoder for Stabilizer Codes. Scientific Reports, 2017, 7, 11003.                                        | 3.3  | 58        |
| 70 | Slow Light Beam Splitter. Physical Review Letters, 2008, 101, 043601.                                                                      | 7.8  | 57        |
| 71 | Proposal for Heralded Generation and Detection of Entangled Microwave–Optical-Photon Pairs.<br>Physical Review Letters, 2020, 124, 010511. | 7.8  | 57        |
| 72 | Programmable Interference between Two Microwave Quantum Memories. Physical Review X, 2018, 8, .                                            | 8.9  | 56        |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Efficient Generation of a Near-visible Frequency Comb via Cherenkov-like Radiation from a Kerr<br>Microcomb. Physical Review Applied, 2018, 10, .                                          | 3.8  | 54        |
| 74 | Optimal approach to quantum communication using dynamic programming. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17291-17296.              | 7.1  | 53        |
| 75 | Encoding an Oscillator into Many Oscillators. Physical Review Letters, 2020, 125, 080503.                                                                                                  | 7.8  | 53        |
| 76 | Coherence of an Optically Illuminated Single Nuclear Spin Qubit. Physical Review Letters, 2008, 100, 073001.                                                                               | 7.8  | 51        |
| 77 | Nonequilibrium Steady State of a Nanometric Biochemical System:Â Determining the Thermodynamic<br>Driving Force from Single Enzyme Turnover Time Traces. Nano Letters, 2005, 5, 2373-2378. | 9.1  | 50        |
| 78 | Error-corrected gates on an encoded qubit. Nature Physics, 2020, 16, 822-826.                                                                                                              | 16.7 | 50        |
| 79 | Ancilla-Free Quantum Error Correction Codes for Quantum Metrology. Physical Review Letters, 2019, 122, 040502.                                                                             | 7.8  | 49        |
| 80 | Quantum-limited measurements of atomic scattering properties. Physical Review A, 2007, 76, .                                                                                               | 2.5  | 48        |
| 81 | Efficient classical simulation of noisy random quantum circuits in one dimension. Quantum - the Open<br>Journal for Quantum Science, 0, 4, 318.                                            | 0.0  | 47        |
| 82 | Many-body protected entanglement generation in interacting spin systems. Physical Review A, 2008, 77, .                                                                                    | 2.5  | 46        |
| 83 | Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality. Nature<br>Communications, 2015, 6, 8970.                                                  | 12.8 | 46        |
| 84 | Pair-cat codes: autonomous error-correction with low-order nonlinearity. Quantum Science and Technology, 2019, 4, 035007.                                                                  | 5.8  | 46        |
| 85 | Parity-time symmetry in optical microcavity systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 222001.                                                        | 1.5  | 45        |
| 86 | High-Fidelity Measurement of Qubits Encoded in Multilevel Superconducting Circuits. Physical Review<br>X, 2020, 10, .                                                                      | 8.9  | 45        |
| 87 | Quantum control of bosonic modes with superconducting circuits. Science Bulletin, 2021, 66, 1789-1805.                                                                                     | 9.0  | 45        |
| 88 | Distributed quantum sensing enhanced by continuous-variable error correction. New Journal of Physics, 2020, 22, 022001.                                                                    | 2.9  | 44        |
| 89 | Magneto-Josephson effects in junctions with Majorana bound states. Physical Review B, 2013, 87, .                                                                                          | 3.2  | 43        |
| 90 | Optimized Entanglement Purification. Quantum - the Open Journal for Quantum Science, 0, 3, 123.                                                                                            | 0.0  | 43        |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | High-fidelity fast quantum transport with imperfect controls. Physical Review A, 2009, 79, .                                                                        | 2.5 | 42        |
| 92  | Unforgeable noise-tolerant quantum tokens. Proceedings of the National Academy of Sciences of the<br>United States of America, 2012, 109, 16079-16082.              | 7.1 | 42        |
| 93  | Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip.<br>Physical Review A, 2016, 94, .                                      | 2.5 | 40        |
| 94  | Quantum channel construction with circuit quantum electrodynamics. Physical Review B, 2017, 95, .                                                                   | 3.2 | 40        |
| 95  | Overcoming erasure errors with multilevel systems. New Journal of Physics, 2017, 19, 013026.                                                                        | 2.9 | 40        |
| 96  | Floquet Cavity Electromagnonics. Physical Review Letters, 2020, 125, 237201.                                                                                        | 7.8 | 39        |
| 97  | Overcoming lossy channel bounds using a single quantum repeater node. Applied Physics B: Lasers and Optics, 2016, 122, 1.                                           | 2.2 | 37        |
| 98  | Quantum logic between remote quantum registers. Physical Review A, 2013, 87, .                                                                                      | 2.5 | 35        |
| 99  | Subwavelength-width optical tunnel junctions for ultracold atoms. Physical Review A, 2016, 94, .                                                                    | 2.5 | 35        |
| 100 | Engineering bilinear mode coupling in circuit QED: Theory and experiment. Physical Review A, 2019, 99, .                                                            | 2.5 | 34        |
| 101 | Error-Detected State Transfer and Entanglement in a Superconducting Quantum Network. PRX Quantum, 2021, 2, .                                                        | 9.2 | 34        |
| 102 | Diffusion-induced decoherence of stored optical vortices. Physical Review A, 2008, 77, .                                                                            | 2.5 | 32        |
| 103 | Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Physical<br>Review A, 2014, 90, .                                         | 2.5 | 32        |
| 104 | Direct Measurement of Topological Numbers with Spins in Diamond. Physical Review Letters, 2016, 117, 060503.                                                        | 7.8 | 32        |
| 105 | Radiative Cooling of a Superconducting Resonator. Physical Review Letters, 2020, 124, 033602.                                                                       | 7.8 | 32        |
| 106 | Electromagnetically induced transparency with noisy lasers. Physical Review A, 2009, 80, .                                                                          | 2.5 | 31        |
| 107 | Chipâ€Based Optical Isolator and Nonreciprocal Parityâ€Time Symmetry Induced by Stimulated Brillouin<br>Scattering. Laser and Photonics Reviews, 2020, 14, 1900278. | 8.7 | 31        |
| 108 | Quantum Coding with Low-Depth Random Circuits. Physical Review X, 2021, 11, .                                                                                       | 8.9 | 28        |

Liang Jiang

| #   | Article                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Implementing and Characterizing Precise Multiqubit Measurements. Physical Review X, 2016, 6, .                                                  | 8.9 | 27        |
| 110 | Resilience of Quantum Random Access Memory to Generic Noise. PRX Quantum, 2021, 2, .                                                            | 9.2 | 27        |
| 111 | Quantum repeaters based on concatenated bosonic and discrete-variable quantum codes. Npj Quantum<br>Information, 2021, 7, .                     | 6.7 | 27        |
| 112 | Detuning-enhanced cavity spin squeezing. Physical Review A, 2015, 91, .                                                                         | 2.5 | 26        |
| 113 | Path-Independent Quantum Gates with Noisy Ancilla. Physical Review Letters, 2020, 125, 110503.                                                  | 7.8 | 26        |
| 114 | Cavity electro-optic circuit for microwave-to-optical conversion in the quantum ground state.<br>Physical Review A, 2021, 103, .                | 2.5 | 26        |
| 115 | One-shot entanglement generation over long distances in noisy quantum networks. Physical Review A, 2008, 78, .                                  | 2.5 | 25        |
| 116 | Asymptotic Theory of Quantum Channel Estimation. PRX Quantum, 2021, 2, .                                                                        | 9.2 | 25        |
| 117 | Universal dynamical decoupling of multiqubit states from environment. Physical Review A, 2011, 84, .                                            | 2.5 | 23        |
| 118 | Quantum repeater architecture with hierarchically optimized memory buffer times. Quantum Science and Technology, 2019, 4, 025010.               | 5.8 | 23        |
| 119 | Optimal probes and error-correction schemes in multi-parameter quantum metrology. Quantum - the<br>Open Journal for Quantum Science, 0, 4, 288. | 0.0 | 23        |
| 120 | One-way quantum repeaters with quantum Reed-Solomon codes. Physical Review A, 2018, 97, .                                                       | 2.5 | 22        |
| 121 | Preparation of decoherence-free cluster states with optical superlattices. Physical Review A, 2009, 79,                                         | 2.5 | 21        |
| 122 | Entanglement of microwave-optical modes in a strongly coupled electro-optomechanical system.<br>Physical Review A, 2020, 101, .                 | 2.5 | 21        |
| 123 | Quantum Limits of Superresolution in a Noisy Environment. Physical Review Letters, 2021, 126, 120502.                                           | 7.8 | 21        |
| 124 | Optimal approximate quantum error correction for quantum metrology. Physical Review Research, 2020, 2, .                                        | 3.6 | 21        |
| 125 | Engineering fast bias-preserving gates on stabilized cat qubits. Physical Review Research, 2022, 4,                                             | 3.6 | 21        |
| 126 | New perspectives on covariant quantum error correction. Quantum - the Open Journal for Quantum Science, 0, 5, 521.                              | 0.0 | 20        |

| #   | Article                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Classical simulation of lossy boson sampling using matrix product operators. Physical Review A, 2021, 104, .                                        | 2.5  | 20        |
| 128 | Environment-assisted metrology with spin qubits. Physical Review A, 2012, 85, .                                                                     | 2.5  | 19        |
| 129 | Magneto-Josephson effects and Majorana bound states in quantum wires. New Journal of Physics, 2013, 15, 115001.                                     | 2.9  | 19        |
| 130 | Demonstrating non-Abelian statistics of Majorana fermions using twist defects. Physical Review B, 2015, 92, .                                       | 3.2  | 19        |
| 131 | Role of syndrome information on a one-way quantum repeater using teleportation-based error correction. Physical Review A, 2016, 94, .               | 2.5  | 19        |
| 132 | All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect. Physical Review<br>Letters, 2018, 120, 203902.                     | 7.8  | 19        |
| 133 | Quantum Transduction with Adaptive Control. Physical Review Letters, 2018, 120, 020502.                                                             | 7.8  | 18        |
| 134 | Stochastic estimation of dynamical variables. Quantum Science and Technology, 2019, 4, 035003.                                                      | 5.8  | 18        |
| 135 | Induced transparency by interference or polarization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1  | 18        |
| 136 | Fast entanglement distribution with atomic ensembles and fluorescent detection. Physical Review A, 2010, 81, .                                      | 2.5  | 16        |
| 137 | Experimental Realization of High-Efficiency Counterfactual Computation. Physical Review Letters, 2015, 115, 080501.                                 | 7.8  | 16        |
| 138 | Coherent Gate Operations in Hybrid Magnonics. Physical Review Letters, 2021, 126, 207202.                                                           | 7.8  | 16        |
| 139 | Robust readout of bosonic qubits in the dispersive coupling regime. Physical Review A, 2018, 98, .                                                  | 2.5  | 15        |
| 140 | Enhanced energy-constrained quantum communication over bosonic Gaussian channels. Nature Communications, 2020, 11, 457.                             | 12.8 | 15        |
| 141 | On-chip interaction-free measurements via the quantum Zeno effect. Physical Review A, 2014, 90, .                                                   | 2.5  | 14        |
| 142 | Quantum repeaters based on two species trapped ions. New Journal of Physics, 2019, 21, 073002.                                                      | 2.9  | 14        |
| 143 | Perfect coherent transfer in an on-chip reconfigurable nanoelectromechanical network. Physical Review B, 2020, 101, .                               | 3.2  | 14        |
| 144 | Sub-Hertz resonance by weak measurement. Nature Communications, 2020, 11, 1752.                                                                     | 12.8 | 14        |

| #   | Article                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Stabilizing a Bosonic Qubit Using Colored Dissipation. Physical Review Letters, 2022, 128, 110502.                                                                             | 7.8  | 14        |
| 146 | Multimode photon blockade. Nature Physics, 2022, 18, 879-884.                                                                                                                  | 16.7 | 14        |
| 147 | Topological phase transitions, Majorana modes, and quantum simulation of the Su–Schrieffer–Heeger<br>model with nearest-neighbor interactions. Physical Review B, 2020, 101, . | 3.2  | 13        |
| 148 | Deterministic Grover search with a restricted oracle. Physical Review Research, 2022, 4, .                                                                                     | 3.6  | 12        |
| 149 | Classical Simulation of Boson Sampling Based on Graph Structure. Physical Review Letters, 2022, 128, .                                                                         | 7.8  | 12        |
| 150 | Modeling of On-Chip Optical Nonreciprocity with an Active Microcavity. Photonics, 2015, 2, 498-508.                                                                            | 2.0  | 11        |
| 151 | Measurement-only topological quantum computation without forced measurements. New Journal of Physics, 2016, 18, 123027.                                                        | 2.9  | 11        |
| 152 | Coherent Pulse Echo in Hybrid Magnonics with Multimode Phonons. Physical Review Applied, 2021, 16, .                                                                           | 3.8  | 11        |
| 153 | Quantum advantages for Pauli channel estimation. Physical Review A, 2022, 105, .                                                                                               | 2.5  | 11        |
| 154 | Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth. Physical Review Letters, 2012, 109, 233006.                                                                   | 7.8  | 10        |
| 155 | Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals. Physical Review Letters, 2015, 115, 150503.                                                      | 7.8  | 10        |
| 156 | Complex Kinetics of Fluctuating Enzymes: Phase Diagram Characterization of a Minimal Kinetic Scheme.<br>Chemistry - an Asian Journal, 2010, 5, 1129-1138.                      | 3.3  | 9         |
| 157 | Optimized tomography of continuous variable systems using excitation counting. Physical Review A, 2016, 94, .                                                                  | 2.5  | 9         |
| 158 | Photon Pair Condensation by Engineered Dissipation. Physical Review Letters, 2019, 123, 063602.                                                                                | 7.8  | 9         |
| 159 | Single-shot number-resolved detection of microwave photons with error mitigation. Physical Review<br>A, 2021, 103, .                                                           | 2.5  | 9         |
| 160 | Phonon-induced spin squeezing based on geometric phase. Physical Review A, 2015, 92, .                                                                                         | 2.5  | 8         |
| 161 | Universal quantum computing with parafermions assisted by a half-fluxon. Physical Review B, 2019, 100, .                                                                       | 3.2  | 8         |
| 162 | Saturating the quantum Cramér–Rao bound using LOCC. Quantum Science and Technology, 2020, 5,<br>025005.                                                                        | 5.8  | 8         |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Photon-Number-Dependent Hamiltonian Engineering for Cavities. Physical Review Applied, 2021, 15, .                                                                  | 3.8 | 7         |
| 164 | Quantum Metrological Power of Continuous-Variable Quantum Networks. Physical Review Letters, 2022, 128, 180503.                                                     | 7.8 | 7         |
| 165 | Concurrent remote entanglement with quantum error correction against photon losses. Physical<br>Review A, 2016, 94, .                                               | 2.5 | 6         |
| 166 | Key Device and Materials Specifications for a Repeater Enabled Quantum Internet. IEEE Transactions on<br>Quantum Engineering, 2021, 2, 1-9.                         | 4.9 | 6         |
| 167 | Distributed quantum phase sensing for arbitrary positive and negative weights. Physical Review<br>Research, 2022, 4, .                                              | 3.6 | 6         |
| 168 | Phase-engineered bosonic quantum codes. Physical Review A, 2021, 103, .                                                                                             | 2.5 | 5         |
| 169 | Coherent manipulation of graph states composed of finite-energy Gottesman-Kitaev-Preskill-encoded<br>qubits. Physical Review A, 2022, 105, .                        | 2.5 | 4         |
| 170 | SCALABLE QUANTUM NETWORKS BASED ON FEW-QUBIT REGISTERS. International Journal of Quantum Information, 2010, 08, 93-104.                                             | 1.1 | 3         |
| 171 | Spin correlations and entanglement in partially magnetised ensembles of fermions. Journal of Physics<br>B: Atomic, Molecular and Optical Physics, 2016, 49, 214002. | 1.5 | 3         |
| 172 | Filtration and extraction of quantum states from classical inputs. Physical Review A, 2016, 94, .                                                                   | 2.5 | 3         |
| 173 | Nanoscale magnetic sensing using spin qubits in diamond. , 2009, , .                                                                                                |     | 2         |
| 174 | Quantum Repeaters Based on Two-Species Trapped lons. , 2018, , .                                                                                                    |     | 2         |
| 175 | Field-gradient measurement using a Stern-Gerlach atomic interferometer with butterfly geometry.<br>Physical Review A, 2020, 102, .                                  | 2.5 | 2         |
| 176 | Engineering Kerr-cat qubits for hardware efficient quantum error correction. , 2022, , .                                                                            |     | 2         |
| 177 | Universal interference-based construction of Gaussian operations in hybrid quantum systems. Npj<br>Quantum Information, 2022, 8, .                                  | 6.7 | 2         |
| 178 | Error-corrected quantum sensing. , 2019, , .                                                                                                                        |     | 1         |
| 179 | PT-Symmetry and on-Chip Optical Nonreciprocity in Active-Passive-Coupled Microtoroids. , 2014, , .                                                                  |     | 1         |
| 180 | Adaptive Circuit Learning for Quantum Metrology. , 2021, , .                                                                                                        |     | 1         |

Liang Jiang

| #   | Article                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Algebraic structure of path-independent quantum control. Physical Review Research, 2022, 4, .        | 3.6 | 1         |
| 182 | Parity-time symmetry and nonreciprocal light transmission in high-Q microcavity systems. , 2015, , . |     | 0         |
| 183 | Optimized architectures for long distance quantum communication. , 2017, , .                         |     | 0         |
| 184 | Optimized Access-Time Scheduling in Quantum Networks Using Realistic Quantum Memories. , 2018, , .   |     | 0         |
| 185 | Trapped Ion Implementation of Memory-Assisted Extended Quantum Key Distribution. , 2014, , .         |     | 0         |
| 186 | Observation of parity-time symmetry in an optical system formed by moving atoms. , 2014, , .         |     | 0         |
| 187 | Efficient visible frequency microcomb generation with 22% conversion efficiency. , 2017, , .         |     | 0         |
| 188 | Sub-Hertz Resonance by Weak Measurement. , 2019, , .                                                 |     | 0         |
| 189 | Quantum repeaters based on two species trapped ions. , 2019, , .                                     |     | 0         |
| 190 | Quantum memory decoherence-mitigating architecture for quantum repeaters. , 2019, , .                |     | 0         |
| 191 | Entanglement as a resource for quantum networking 2019                                               |     | 0         |