Sean M Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2394546/publications.pdf

Version: 2024-02-01

109	10,698	46	95
papers	citations	h-index	g-index
116	116	116	17896
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	KMT2D-NOTCH Mediates Coronary Abnormalities in Hypoplastic Left Heart Syndrome. Circulation Research, 2022, 131, 280-282.	2.0	3
2	Immune Checkpoint Inhibitor Cardiotoxicity: Understanding Basic Mechanisms and Clinical Characteristics and Finding a Cure. Annual Review of Pharmacology and Toxicology, 2021, 61, 113-134.	4.2	40
3	Myocardial Disease and Long-Distance Space Travel: Solving the Radiation Problem. Frontiers in Cardiovascular Medicine, 2021, 8, 631985.	1.1	28
4	CRISPR/Cas9-based targeting of fluorescent reporters to human iPSCs to isolate atrial and ventricular-specific cardiomyocytes. Scientific Reports, 2021, 11, 3026.	1.6	18
5	Myocarditis Surveillance With High-Sensitivity Troponin I During Cancer Treatment With Immune Checkpoint Inhibitors. JACC: CardioOncology, 2021, 3, 137-139.	1.7	55
6	Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protocols, 2021, 2, 100334.	0.5	24
7	Overexpression of human BAG3P209L in mice causes restrictive cardiomyopathy. Nature Communications, 2021, 12, 3575.	5.8	17
8	Molecular Profiling of the Cardiac Conduction System: the Dawn of a New Era. Current Cardiology Reports, 2021, 23, 103.	1.3	3
9	Single cell RNA sequencing approaches to cardiac development and congenital heart disease. Seminars in Cell and Developmental Biology, 2021, 118, 129-135.	2.3	14
10	Immune checkpoint inhibitor cardiotoxicity: Breaking barriers in the cardiovascular immune landscape. Journal of Molecular and Cellular Cardiology, 2021, 160, 121-127.	0.9	6
11	Purification of Pluripotent Stem Cell-Derived Cardiomyocytes Using CRISPR/Cas9-Mediated Integration of Fluorescent Reporters. Methods in Molecular Biology, 2021, 2158, 223-240.	0.4	6
12	Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome. Circulation, 2021, 144, 1409-1428.	1.6	29
13	Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. Cell Stem Cell, 2020, 27, 574-589.e8.	5. 2	89
14	Next-Generation Surrogate Wnts Support Organoid Growth and Deconvolute Frizzled Pleiotropy InÂVivo. Cell Stem Cell, 2020, 27, 840-851.e6.	5.2	84
15	Patient-Specific Induced Pluripotent Stem Cells Implicate Intrinsic Impaired Contractility in Hypoplastic Left Heart Syndrome. Circulation, 2020, 142, 1605-1608.	1.6	33
16	A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature, 2020, 583, 590-595.	13.7	683
17	Ageing hallmarks exhibit organ-specific temporal signatures. Nature, 2020, 583, 596-602.	13.7	317
18	Single-Cell RNA Sequencing Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells. Circulation, 2020, 142, 1848-1862.	1.6	157

#	Article	IF	CITATIONS
19	4HNE Impairs Myocardial Bioenergetics in Congenital Heart Disease-Induced Right Ventricular Failure. Circulation, 2020, 142, 1667-1683.	1.6	14
20	Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell, 2020, 27, 50-63.e5.	5.2	112
21	Levitating Cells to Sort the Fit and the Fat. Advanced Biology, 2020, 4, 1900300.	3.0	15
22	Cardiovascular Risks in Patients with COVID-19: Potential Mechanisms and Areas of Uncertainty. Current Cardiology Reports, 2020, 22, 34.	1.3	51
23	Simple Lithography-Free Single Cell Micropatterning using Laser-Cut Stencils. Journal of Visualized Experiments, 2020, , .	0.2	10
24	Cardiovascular Complications in Patients with COVID-19: Consequences of Viral Toxicities and Host Immune Response. Current Cardiology Reports, 2020, 22, 32.	1.3	146
25	Transcriptomic Profiling of the Developing Cardiac Conduction System at Single-Cell Resolution. Circulation Research, 2019, 125, 379-397.	2.0	120
26	Bioprinting Approaches to Engineering Vascularized 3D Cardiac Tissues. Current Cardiology Reports, 2019, 21, 90.	1.3	35
27	Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function. Stem Cell Reports, 2019, 13, 960-969.	2.3	62
28	Single-Cell Delineation of Who's on First and Second Heart Fields During Development. Circulation Research, 2019, 125, 411-413.	2.0	4
29	Single cell expression analysis reveals anatomical and cell cycle-dependent transcriptional shifts during heart development. Development (Cambridge), 2019, 146, .	1.2	71
30	Prometheus Unbound in Ya(p) Heart. Developmental Cell, 2019, 48, 741-742.	3.1	0
31	Single Cell Analysis of Endothelial Cells Identified Organ-Specific Molecular Signatures and Heart-Specific Cell Populations and Molecular Features. Frontiers in Cardiovascular Medicine, 2019, 6, 165.	1.1	76
32	Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation. Scientific Reports, 2018, 8, 6618.	1.6	32
33	Fates Aligned: Origins and Mechanisms of Ventricular Conduction System and Ventricular Wall Development. Pediatric Cardiology, 2018, 39, 1090-1098.	0.6	8
34	Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis. Cardiovascular Research, 2018, 114, 1098-1114.	1.8	12
35	Development of Cardiac Muscle. , 2018, , .		0
36	Big bottlenecks in cardiovascular tissue engineering. Communications Biology, 2018, 1, 199.	2.0	66

#	Article	IF	CITATIONS
37	Cardiovascular tissue bioprinting: Physical and chemical processes. Applied Physics Reviews, 2018, 5, 041106.	5.5	36
38	Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature, 2018, 562, 367-372.	13.7	2,061
39	Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovascular Research, 2018, 114, 1828-1842.	1.8	40
40	Genome Editing Redefines Precision Medicine in the Cardiovascular Field. Stem Cells International, 2018, 2018, 1-11.	1.2	8
41	Reassessment of c-Kit in Cardiac Cells. Circulation Research, 2018, 123, 9-11.	2.0	26
42	Single-cell analysis of early progenitor cells that build coronary arteries. Nature, 2018, 559, 356-362.	13.7	190
43	Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Circulation Research, 2018, 123, 443-450.	2.0	110
44	High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Science Translational Medicine, 2017, 9, .	5.8	297
45	Mammalian Heart Regeneration. Circulation Research, 2017, 120, 630-632.	2.0	29
46	YY1 Expression Is Sufficient for the Maintenance of Cardiac Progenitor Cell State. Stem Cells, 2017, 35, 1913-1923.	1.4	13
47	Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials, 2017, 131, 111-120.	5.7	72
48	Partial Reprogramming of Pluripotent Stem Cell-Derived Cardiomyocytes into Neurons. Scientific Reports, 2017, 7, 44840.	1.6	16
49	Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials, 2017, 131, 47-57.	5.7	99
50	Bioengineering cardiac constructs using 3D printing. Journal of 3D Printing in Medicine, 2017, 1, 123-139.	1.0	44
51	Cardiac Regeneration. Circulation Research, 2017, 120, 941-959.	2.0	117
52	Untangling the Biology of Genetic Cardiomyopathies with Pluripotent Stem Cell Disease Models. Current Cardiology Reports, 2017, 19, 30.	1.3	16
53	Nkx2.5+ Cardiomyoblasts Contribute to Cardiomyogenesis in the Neonatal Heart. Scientific Reports, 2017, 7, 12590.	1.6	29
54	Tissue Engineering of 3D Organotypic Microtissues by Acoustic Assembly. Methods in Molecular Biology, 2017, 1576, 301-312.	0.4	12

#	Article	IF	CITATIONS
55	In Vivo Rescue of the Hematopoietic Niche By Pluripotent Stem Cell Complementation of Defective Osteoblast Compartments. Stem Cells, 2017, 35, 2150-2159.	1.4	8
56	Identification of a hybrid myocardial zone in the mammalian heart after birth. Nature Communications, 2017, 8, 87.	5.8	67
57	Strategies for the acquisition of transcriptional and epigenetic information in single cells. Journal of Thoracic Disease, 2017, 9, S9-S16.	0.6	16
58	Cardioprotective Actions of TGF \hat{I}^2 RI Inhibition Through Stimulating Autocrine/Paracrine of Survivin and Inhibiting Wnt in Cardiac Progenitors. Stem Cells, 2016, 34, 445-455.	1.4	16
59	Integrative Analysis of PRKAG2 Cardiomyopathy iPS and Microtissue Models Identifies AMPK as a Regulator of Metabolism, Survival, and Fibrosis. Cell Reports, 2016, 17, 3292-3304.	2.9	73
60	Endocardium Minimally Contributes to Coronary Endothelium in the Embryonic Ventricular Free Walls. Circulation Research, 2016, 118, 1880-1893.	2.0	131
61	iPSC-derived cardiomyocytes reveal abnormal TGF- \hat{l}^2 signalling in left ventricular non-compaction cardiomyopathy. Nature Cell Biology, 2016, 18, 1031-1042.	4.6	148
62	Distilling complexity to advance cardiac tissue engineering. Science Translational Medicine, 2016, 8, 342ps13.	5.8	138
63	Transcriptomic Profiling Maps Anatomically Patterned Subpopulations among Single Embryonic Cardiac Cells. Developmental Cell, 2016, 39, 491-507.	3.1	218
64	Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos. Cell Stem Cell, 2016, 19, 587-592.	5.2	92
65	Regenerative Medicine: Potential Mechanisms of Cardiac Recovery in Takotsubo Cardiomyopathy. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 20.	0.4	0
66	Derivation of Highly Purified Cardiomyocytes from Human Induced Pluripotent Stem Cells Using Small Molecule-modulated Differentiation and Subsequent Glucose Starvation. Journal of Visualized Experiments, 2015, , .	0.2	68
67	Fetal Mammalian Heart Generates a Robust Compensatory Response to Cell Loss. Circulation, 2015, 132, 109-121.	1.6	72
68	Small RNAs Make Big Impact in Cardiac Repair. Circulation Research, 2015, 116, 393-395.	2.0	2
69	Molecular Regulation of Cardiomyocyte Differentiation. Circulation Research, 2015, 116, 341-353.	2.0	170
70	Pharmacological inhibition of TGF \hat{l}^2 receptor improves Nkx2.5 cardiomyoblast-mediated regeneration. Cardiovascular Research, 2015, 105, 44-54.	1.8	24
71	Identification of cardiovascular lineage descendants at single-cell resolution. Development (Cambridge), 2015, 142, 846-57.	1.2	25
72	Lift NIH restrictions on chimera research. Science, 2015, 350, 640-640.	6.0	17

#	Article	IF	CITATIONS
73	Members Only: Hypoxia-Induced Cell-Cycle Activation in Cardiomyocytes. Cell Metabolism, 2015, 22, 365-366.	7.2	3
74	Harnessing the Induction of Cardiomyocyte Proliferation for Cardiac Regenerative Medicine. Current Treatment Options in Cardiovascular Medicine, 2015, 17, 404.	0.4	16
75	Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes. PLoS ONE, 2015, 10, e0135880.	1.1	6
76	Myeloid Zinc Finger 1 (Mzf1) Differentially Modulates Murine Cardiogenesis by Interacting with an Nkx2.5 Cardiac Enhancer. PLoS ONE, 2014, 9, e113775.	1.1	11
77	Somatic Cell Reprogramming into Cardiovascular Lineages. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 340-349.	1.0	8
78	Telocytes in human heart valves. Journal of Cellular and Molecular Medicine, 2014, 18, 759-765.	1.6	78
79	Patching Up Broken Hearts: Cardiac Cell Therapy Gets a Bioengineered Boost. Cell Stem Cell, 2014, 15, 671-673.	5.2	19
80	Insulin-Like Growth Factor Promotes Cardiac Lineage Induction In Vitro by Selective Expansion of Early Mesoderm. Stem Cells, 2014, 32, 1493-1502.	1.4	38
81	Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as an In Vitro Model for Coxsackievirus B3–Induced Myocarditis and Antiviral Drug Screening Platform. Circulation Research, 2014, 115, 556-566.	2.0	134
82	Meta-Analysis of Stem Cell Therapy in Chronic Ischemic Cardiomyopathy. American Journal of Cardiology, 2013, 112, 217-225.	0.7	71
83	Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Research and Therapy, 2013, 4, 150.	2.4	51
84	iPS Cell Modeling of Cardiometabolic Diseases. Journal of Cardiovascular Translational Research, 2013, 6, 46-53.	1.1	16
85	Essential and Unexpected Role of Yin Yang 1 to Promote Mesodermal Cardiac Differentiation. Circulation Research, 2013, 112, 900-910.	2.0	62
86	At a Crossroad. Circulation Research, 2013, 112, 884-890.	2.0	20
87	Early cardiac development: a view from stem cells to embryos. Cardiovascular Research, 2012, 96, 352-362.	1.8	115
88	Reprogramming of Mouse, Rat, Pig, and Human Fibroblasts into iPS Cells. Current Protocols in Molecular Biology, 2012, 97, Unit-23.15	2.9	13
89	Inefficient Reprogramming of Fibroblasts into Cardiomyocytes Using Gata4, Mef2c, and Tbx5. Circulation Research, 2012, 111, 50-55.	2.0	227
90	Epigenetic mechanisms in cardiac development and disease. Acta Biochimica Et Biophysica Sinica, 2012, 44, 92-102.	0.9	54

#	Article	IF	Citations
91	Small molecule regulators of postnatal Nkx2.5 cardiomyoblast proliferation and differentiation. Journal of Cellular and Molecular Medicine, 2012, 16, 961-965.	1.6	24
92	Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 2011, 13, 497-505.	4.6	464
93	Developmental and Regenerative Biology of Multipotent Cardiovascular Progenitor Cells. Circulation Research, 2011, 108, 353-364.	2.0	77
94	Origin of cardiac progenitor cells in the developing and postnatal heart. Journal of Cellular Physiology, 2010, 225, 321-325.	2.0	23
95	The integrative aspects of cardiac physiology and their implications for cellâ€based therapy. Annals of the New York Academy of Sciences, 2010, 1188, 7-14.	1.8	20
96	Promises and pitfalls in cell replacement therapy for heart failure. Drug Discovery Today Disease Mechanisms, 2010, 7, e109-e115.	0.8	7
97	Isolation and Functional Characterization of Pluripotent Stem Cell–Derived Cardiac Progenitor Cells. Current Protocols in Stem Cell Biology, 2010, 14, Unit 1F.10.	3.0	16
98	VISIONS: the art of science. Molecular Reproduction and Development, 2009, 76, 525-525.	1.0	0
99	Generation of Functional Ventricular Heart Muscle from Mouse Ventricular Progenitor Cells. Science, 2009, 326, 426-429.	6.0	202
100	Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 2008, 454, 109-113.	13.7	905
101	Cardiovascular stem cells in regenerative medicine: ready for prime time?. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 201-207.	0.5	11
102	Mesp1 at the Heart of Mesoderm Lineage Specification. Cell Stem Cell, 2008, 3, 1-2.	5.2	39
103	Origins and Fates of Cardiovascular Progenitor Cells. Cell, 2008, 132, 537-543.	13.5	172
104	Developmental Origin of a Bipotential Myocardial and Smooth Muscle Cell Precursor in the Mammalian Heart. Cell, 2006, 127, 1137-1150.	13.5	504
105	α2-Macroglobulin from Rheumatoid Arthritis Synovial Fluid: Functional Analysis Defines a Role for Oxidation in Inflammation. Archives of Biochemistry and Biophysics, 2001, 391, 119-126.	1.4	193
106	Differential regulation of the fibroblast growth factor (FGF) family by α2-macroglobulin: evidence for selective modulation of FGF-2–induced angiogenesis. Blood, 2001, 97, 3450-3457.	0.6	44
107	The Conformation-dependent Interaction of $\hat{l}\pm 2$ -Macroglobulin with Vascular Endothelial Growth Factor. Journal of Biological Chemistry, 2000, 275, 26806-26811.	1.6	42
108	The Binding of Receptor-recognized $\hat{l}\pm 2$ -Macroglobulin to the Low Density Lipoprotein Receptor-related Protein and the $\hat{l}\pm 2$ M Signaling Receptor Is Decoupled by Oxidation. Journal of Biological Chemistry, 1997, 272, 20627-20635.	1.6	27

#	Article	IF	CITATIONS
109	Low-Density Lipoprotein Receptor-Related Protein/ $\hat{l}\pm 2$ -Macroglobulin Receptor on Murine Peritoneal Macrophages Mediates the Binding and Catabolism of Low-Density Lipoprotein. Archives of Biochemistry and Biophysics, 1996, 326, 39-47.	1.4	25