Rob S Macleod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2394393/publications.pdf

Version: 2024-02-01

143 papers 6,888 citations

94433 37 h-index 79 g-index

150 all docs

150 docs citations

150 times ranked 4946 citing authors

#	Article	IF	Citations
1	Reducing Line-of-Block Artifacts in Cardiac Activation Maps Estimated Using ECG Imaging: A Comparison of Source Models and Estimation Methods. IEEE Transactions on Biomedical Engineering, 2022, 69, 2041-2052.	4.2	8
2	Reconstruction of cardiac position using body surface potentials. Computers in Biology and Medicine, 2022, 142, 105174.	7.0	3
3	Shortâ€term natural course of esophageal thermal injury after ablation for atrial fibrillation. Journal of Cardiovascular Electrophysiology, 2022, 33, 1450-1459.	1.7	1
4	The Impact of Torso Signal Processing on Noninvasive Electrocardiographic Imaging Reconstructions. IEEE Transactions on Biomedical Engineering, 2021, 68, 436-447.	4.2	13
5	Estimation and Validation of Cardiac Conduction Velocity and Wavefront Reconstruction Using Epicardial and Volumetric Data. IEEE Transactions on Biomedical Engineering, 2021, 68, 3290-3300.	4.2	12
6	Electrocardiographic Imaging for Atrial Fibrillation: A Perspective From Computer Models and Animal Experiments to Clinical Value. Frontiers in Physiology, 2021, 12, 653013.	2.8	20
7	Quantifying the spatiotemporal influence of acute myocardial ischemia on volumetric conduction velocity. Journal of Electrocardiology, 2021, 66, 86-94.	0.9	3
8	Transient recovery of epicardial and torso ST-segment ischemic signals during cardiac stress tests: A possible physiological mechanism. Journal of Electrocardiology, 2021, 69S, 38-44.	0.9	3
9	The electrocardiographic forward problem: A benchmark study. Computers in Biology and Medicine, 2021, 134, 104476.	7.0	7
10	Area Available for Atrial Fibrillation to Propagate Is an Important Determinant of Recurrence After Ablation. JACC: Clinical Electrophysiology, 2021, 7, 896-908.	3.2	5
11	Validating Patient-Specific Finite Element Models of Direct Electrocortical Stimulation. Frontiers in Neuroscience, 2021, 15, 691701.	2.8	6
12	The effect of interpolating low amplitude leads on the inverse reconstruction of cardiac electrical activity. Computers in Biology and Medicine, 2021, 136, 104666.	7.0	3
13	Pharmacological and simulated exercise cardiac stress tests produce different ischemic signatures in high-resolution experimental mapping studies. Journal of Electrocardiology, 2021, 68, 56-64.	0.9	2
14	Combining endocardial mapping and electrocardiographic imaging (ECGI) for improving PVC localization: A feasibility study. Journal of Electrocardiology, 2021, 69S, 51-54.	0.9	2
15	Uncertainty Quantification of the Effects of Segmentation Variability in ECGI. Lecture Notes in Computer Science, 2021, 12738, 515-522.	1.3	9
16	Simultaneous Multi-heartbeat ECGI Solution with a Time-Varying Forward Model: A Joint Inverse Formulation. Lecture Notes in Computer Science, 2021, 12738, 493-502.	1.3	2
17	Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. Hearts, 2021, 2, 514-542.	0.9	14
18	The Role of Myocardial Fiber Direction in Epicardial Activation Patterns via Uncertainty Quantification., 2021, 48,.		4

#	Article	IF	Citations
19	Uncertainty Quantification in Simulations of Myocardial Ischemia. , 2021, 48, .		3
20	Myocardial Ischemia Detection Using Body Surface Potential Mappings and Machine Learning. , 2021, 48,		1
21	Validating defibrillation simulation in a human-shaped phantom. Heart Rhythm, 2020, 17, 661-668.	0.7	4
22	Effective Ablation Settings That Predict Chronic Scar After Left Atrial Ablation. JACC: Clinical Electrophysiology, 2020, 6, 143-152.	3.2	7
23	Reproducibility of clinical late gadolinium enhancement magnetic resonance imaging in detecting left atrial scar after atrial fibrillation ablation. Journal of Cardiovascular Electrophysiology, 2020, 31, 2824-2832.	1.7	7
24	Identifying locations of re-entrant drivers from patient-specific distribution of fibrosis in the left atrium. PLoS Computational Biology, 2020, 16, e1008086.	3.2	22
25	Novel experimental model for studying the spatiotemporal electrical signature of acute myocardial ischemia: a translational platform. Physiological Measurement, 2020, 41, 015002.	2.1	20
26	Direct comparison of a novel antitachycardia pacing algorithm against present methods using virtual patient modeling. Heart Rhythm, 2020, 17, 1602-1608.	0.7	26
27	Improving Localization of Cardiac Geometry Using ECGI. , 2020, 47, .		5
28	Novel Experimental Preparation to Assess Electrocardiographic Imaging Reconstruction Techniques. , 2020, 47, .		6
29	Effect of Myocardial Fiber Direction on Epicardial Activation Patterns. , 2020, 47, .		1
30	Experimental Validation of a Novel Extracellular-Based Source Representation of Acute Myocardial Ischemia., 2020, 47,.		3
31	Quantifying the Spatiotemporal Influence of Acute Myocardial Ischemia on Volumetric Conduction Velocity., 2020, 47,.		1
32	High-Capacity Cardiac Signal Acquisition System for Flexible, Simultaneous, Multidomain Acquisition. , 2020, 47, .		5
33	Real-time magnetic resonance imaging-guided cryoablation of the pulmonary veins with acute freeze-zone and chronic lesion assessment. Europace, 2019, 21, 154-162.	1.7	19
34	Fully Automatic Left Atrium Segmentation From Late Gadolinium Enhanced Magnetic Resonance Imaging Using a Dual Fully Convolutional Neural Network. IEEE Transactions on Medical Imaging, 2019, 38, 515-524.	8.9	90
35	GRÖMeR: A Pipeline for Geodesic Refinement of Mesh Registration. Lecture Notes in Computer Science, 2019, 11504, 37-45.	1.3	12
36	Spatial Downsampling of Surface Sources in the Forward Problem of Electrocardiography. Lecture Notes in Computer Science, 2019, , 29-36.	1.3	6

#	Article	IF	Citations
37	Regions of High Dominant Frequency in Chronic Atrial Fibrillation Anchored to Areas of Atrial Fibrosis. , 2019, 46, .		1
38	Correcting Undersampled Cardiac Sources in Equivalent Double Layer Forward Simulations. Lecture Notes in Computer Science, 2019, 11504, 147-155.	1.3	4
39	Experimental Validation of Image-Based Modeling of Torso Surface Potentials During Acute Myocardial Ischemia. , 2019, 46, .		0
40	Validation of Intramural Wavefront Reconstruction and Estimation of 3D Conduction Velocity., 2019, 46,.		1
41	A Unified Pipeline for ECG Imaging Testing. , 2019, 46, .		0
42	Optimizing the Reconstruction of Cardiac Potentials Using a Novel High Resolution Pericardiac Cage. , 2019, 46, .		6
43	Effects of Interpolation on the Inverse Problem of Electrocardiography. , 2019, 46, .		4
44	Effect of Segmentation Variation on ECG Imaging. , 2018, 45, .		8
45	Novel Metric Using Laplacian Eigenmaps to Evaluate Ischemic Stress on the Torso Surface. , 2018, 45, .		4
46	Temporal Performance of Laplacian Eigenmaps and 3D Conduction Velocity in Detecting Ischemic Stress. Journal of Electrocardiology, 2018, 51, S116-S120.	0.9	11
47	Measuring defibrillator surface potentials: The validation of a predictive defibrillation computer model. Computers in Biology and Medicine, 2018, 102, 402-410.	7.0	5
48	Validation and Opportunities of Electrocardiographic Imaging: From Technical Achievements to Clinical Applications. Frontiers in Physiology, 2018, 9, 1305.	2.8	89
49	Reducing Error in ECG Forward Simulations With Improved Source Sampling. Frontiers in Physiology, 2018, 9, 1304.	2.8	11
50	Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nature Biomedical Engineering, 2018, 2, 732-740.	22.5	184
51	Higher contact force during radiofrequency ablation leads to a much larger increase in edema as compared to chronic lesion size. Journal of Cardiovascular Electrophysiology, 2018, 29, 1143-1149.	1.7	11
52	Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study. Frontiers in Physiology, 2018, 9, 404.	2.8	20
53	Atrial fibrillation observed on surface ECG can be atrial flutter or atrial tachycardia. Journal of Electrocardiology, 2018, 51, S67-S71.	0.9	4
54	Acute noncontrast T1â€weighted magnetic resonance imaging predicts chronic radiofrequency ablation lesions. Journal of Cardiovascular Electrophysiology, 2018, 29, 1556-1562.	1.7	15

#	Article	IF	CITATIONS
55	A Framework for Image-Based Modeling of Acute Myocardial Ischemia Using Intramurally Recorded Extracellular Potentials. Annals of Biomedical Engineering, 2018, 46, 1325-1336.	2.5	15
56	Image-based modeling of acute myocardial ischemia using experimentally derived ischemic zone source representations. Journal of Electrocardiology, 2018, 51, 725-733.	0.9	12
57	PFEIFER: Preprocessing Framework for Electrograms Intermittently Fiducialized from Experimental Recordings. Journal of Open Source Software, 2018, 3, 472.	4.6	34
58	Effects of ECG Signal Processing on the Inverse Problem of Electrocardiography. , 2018, 45, .		15
59	Electrocardiographic Comparison of Dobutamine and Bruce Cardiac Stress Testing With High Resolution Mapping in Experimental Models. , 2018, 45, .		6
60	Characterization of Gadolinium Contrast Enhancement of Radiofrequency Ablation Lesions in Predicting Edema and Chronic Lesion Size. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	44
61	Overcoming Barriers to Quantification and Comparison of Electrocardiographic Imaging Methods: a Community-Based Approach. , 2017, 44, .		5
62	Detecting Ischemic Stress to the Myocardium Using Laplacian Eigenmaps and Changes to Conduction Velocity., 2017, 44, .		1
63	Realâ€Time MRIâ€Guided Cardiac Cryoâ€Ablation: A Feasibility Study. Journal of Cardiovascular Electrophysiology, 2016, 27, 602-608.	1.7	23
64	Increased Susceptibility to Atrial Fibrillation Secondary to Atrial Fibrosis in Transgenic Goats Expressing Transforming Growth Factor $\hat{\mathbf{e}}\hat{\mathbf{l}}^21$. Journal of Cardiovascular Electrophysiology, 2016, 27, 1220-1229.	1.7	40
65	Extensions to a manifold learning framework for time-series analysis on dynamic manifolds in bioelectric signals. Physical Review E, 2016, 93, 042218.	2.1	23
66	Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS). Journal of Neural Engineering, 2016, 13, 036020.	3.5	68
67	Spatial organization of acute myocardial ischemia. Journal of Electrocardiology, 2016, 49, 323-336.	0.9	28
68	Novel Biomarker for Evaluating Ischemic Stress Using an Electrogram Derived Phase Space. Computing in Cardiology, 2016, 43, 1057-1060.	0.4	4
69	The Role of Reduced Left Ventricular, Systolic Blood Volumes in ST Segment Potentials Overlying Diseased Tissue of the Ischemic Heart. Computing in Cardiology, 2016, 43, 209-212.	0.4	2
70	Temporal Dilation of Animal Cardiac Recordings Registered to Human Torso Geometries. Computing in Cardiology, 2016, 43, 329-332.	0.4	0
71	Experimental Data and Geometric Analysis Repositoryâ€"EDGAR. Journal of Electrocardiology, 2015, 48, 975-981.	0.9	58
72	Substrate Modification is a Better Predictor of Catheter Ablation Success in Atrial Fibrillation than Pulmonary Vein Isolation: An LGE-MRI Study. Clinical Medicine Insights: Cardiology, 2015, 9, CMC.S22100.	1.8	25

#	Article	IF	CITATIONS
73	Diverse Fibrosis Architecture and Premature Stimulation Facilitate Initiation of Reentrant Activity Following Chronic Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2015, 26, 1352-1360.	1.7	25
74	Poor scar formation after ablation is associated with atrial fibrillation recurrence. Journal of Interventional Cardiac Electrophysiology, 2015, 44, 247-256.	1.3	35
75	A Kalman Filtering Perspective for Multiatlas Segmentation. SIAM Journal on Imaging Sciences, 2015, 8, 1007-1029.	2.2	4
76	Virtual Electrophysiological Study of Atrial Fibrillation in Fibrotic Remodeling. PLoS ONE, 2015, 10, e0117110.	2.5	122
77	Computational Shape Models Characterize Shape Change of the Left Atrium in Atrial Fibrillation. Clinical Medicine Insights: Cardiology, 2014, 8s1, CMC.S15710.	1.8	23
78	Sensitivity and Specificity of Substrate Mapping: An <i>In Silico</i> Framework for the Evaluation of Electroanatomical Substrate Mapping Strategies. Journal of Cardiovascular Electrophysiology, 2014, 25, 774-780.	1.7	14
79	Comparison of Left Atrial Area Marked Ablated in Electroanatomical Maps with Scar in MRI. Journal of Cardiovascular Electrophysiology, 2014, 25, 457-463.	1.7	46
80	Atrial Fibrillation Ablation Outcome Is Predicted by Left Atrial Remodeling on MRI. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 23-30.	4.8	316
81	Sensitivity of epicardial electrical markers to acute ischemia detection. Journal of Electrocardiology, 2014, 47, 836-841.	0.9	16
82	Diagnostic imaging and pacemaker implantation in a domestic goat with persistent left cranial vena cava. Journal of Veterinary Cardiology, 2014, 16, 45-50.	0.9	7
83	Verification of a Defibrillation Simulation Using Internal Electric Fields in a Human Shaped Phantom. Computing in Cardiology, 2014, 2014, 689-692.	0.4	1
84	A Practical Algorithm for Improving Localization and Quantification of Left Ventricular Scar. Computing in Cardiology, 2014, 2014, 105-108.	0.4	1
85	Controlled Activation for Interrogation of the Electrophysiological Substrate. Computing in Cardiology, 2014, 2014, 189-192.	0.4	1
86	Evaluation of current algorithms for segmentation of scar tissue from late Gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 105.	3.3	136
87	Mechanistic Inquiry into the Role of Tissue Remodeling in Fibrotic Lesions in Human Atrial Fibrillation. Biophysical Journal, 2013, 104, 2764-2773.	0.5	113
88	Inverse electrocardiographic source localization of ischemia: An optimization framework and finite element solution. Journal of Computational Physics, 2013, 250, 403-424.	3.8	72
89	Chronic atrial fibrillation causes left ventricular dysfunction in dogs but not goats: experience with dogs, goats, and pigs. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H725-H731.	3.2	39
90	The Effect of Fat Pad Modification during Ablation of Atrial Fibrillation: Late Gadolinium Enhancement MRI Analysis. PACE - Pacing and Clinical Electrophysiology, 2013, 36, 467-476.	1.2	13

#	Article	lF	Citations
91	A pipeline for the simulation of transcranial direct current stimulation for realistic human head models using SCIRun/BioMesh3D., 2012, 2012, 5486-9.		42
92	Identification and Acute Targeting of Gaps in Atrial Ablation Lesion Sets Using a Real-Time Magnetic Resonance Imaging System. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 1130-1135.	4.8	96
93	Automatic segmentation of the left atrium from MRI images using salient feature and contour evolution., 2012, 2012, 3211-4.		4
94	Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. Journal of Electrocardiology, 2012, 45, 640-645.	0.9	112
95	Atrial Fibrosis Quantified Using Late Gadolinium Enhancement MRI is Associated With Sinus Node Dysfunction Requiring Pacemaker Implant. Journal of Cardiovascular Electrophysiology, 2012, 23, 44-50.	1.7	119
96	Establishing Multiscale Models for Simulating Whole Limb Estimates of Electric Fields for Osseointegrated Implants. IEEE Transactions on Biomedical Engineering, 2011, 58, 2991-2994.	4.2	5
97	Measuring defibrillator surface potentials for simulation verification. , 2011, 2011, 239-42.		2
98	Real-time magnetic resonance imaging–guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla. Heart Rhythm, 2011, 8, 295-303.	0.7	120
99	Association of Left Atrial Fibrosis Detected by Delayed-Enhancement Magnetic Resonance Imaging and the Risk of Stroke in Patients With Atrial Fibrillation. Journal of the American College of Cardiology, 2011, 57, 831-838.	2.8	349
100	Dark Regions of No-Reflow on Late Gadolinium Enhancement Magnetic Resonance Imaging Result in Scar Formation After Atrial Fibrillation Ablation. Journal of the American College of Cardiology, 2011, 58, 177-185.	2.8	102
101	Atrial Fibrosis Helps Select the Appropriate Patient and Strategy in Catheter Ablation of Atrial Fibrillation: A DE-MRI Guided Approach. Journal of Cardiovascular Electrophysiology, 2011, 22, 16-22.	1.7	321
102	Cardiac Position Sensitivity Study in the Electrocardiographic Forward Problem Using Stochastic Collocation and Boundary Element Methods. Annals of Biomedical Engineering, 2011, 39, 2900-2910.	2.5	39
103	An optimization framework for inversely estimating myocardial transmembrane potentials and localizing ischemia., 2011, 2011, 1680-3.		3
104	MRI of the left atrium: predicting clinical outcomes in patients with atrial fibrillation. Expert Review of Cardiovascular Therapy, 2011, 9, 105-111.	1.5	43
105	A toolkit for forward/inverse problems in electrocardiography within the SCIRun problem solving environment., 2011, 2011, 267-70.		41
106	Spatiotemporal estimation of activation times of fractionated ECGs on complex heart surfaces. , 2011, 2011, 5884-7.		15
107	Incorporating Histology into a 3D Microscopic Computer Model of Myocardium to Study Propagation at a Cellular Level. Annals of Biomedical Engineering, 2010, 38, 1399-1414.	2.5	34
108	Developing a Quantitative Measurement System for Assessing Heterotopic Ossification and Monitoring the Bioelectric Metrics from Electrically Induced Osseointegration in the Residual Limb of Service Members. Annals of Biomedical Engineering, 2010, 38, 2968-2978.	2.5	19

#	Article	IF	Citations
109	Magnetic Resonance Imaging onfirmed Ablative Debulking of the Left Atrial Posterior Wall and Septum for Treatment of Persistent Atrial Fibrillation: Rationale and Initial Experience. Journal of Cardiovascular Electrophysiology, 2010, 21, 126-132.	1.7	95
110	Left Atrial Strain and Strain Rate in Patients With Paroxysmal and Persistent Atrial Fibrillation. Circulation: Cardiovascular Imaging, 2010, 3, 231-239.	2.6	550
111	Evaluation of Left Atrial Lesions After Initial and Repeat Atrial Fibrillation Ablation. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 249-259.	4.8	197
112	Finite element modeling of subcutaneous implantable defibrillator electrodes in an adult torso. Heart Rhythm, 2010, 7, 692-698.	0.7	41
113	Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: Implications for disease progression and response to catheter ablation. Heart Rhythm, 2010, 7, 1475-1481.	0.7	298
114	Echocardiographic left atrial reverse remodeling after catheter ablation of atrial fibrillation is predicted by preablation delayed enhancement of left atrium by magnetic resonance imaging. American Heart Journal, 2010, 160, 877-884.	2.7	117
115	The Inverse Problem of Electrocardiography. , 2010, , 299-344.		40
116	Detection and Quantification of Left Atrial Structural Remodeling With Delayed-Enhancement Magnetic Resonance Imaging in Patients With Atrial Fibrillation. Circulation, 2009, 119, 1758-1767.	1.6	960
117	Initial Experience of Assessing Esophageal Tissue Injury and Recovery Using Delayed-Enhancement MRI After Atrial Fibrillation Ablation. Circulation: Arrhythmia and Electrophysiology, 2009, 2, 620-625.	4.8	41
118	Improved EEG source analysis using lowâ€resolution conductivity estimation in a fourâ€compartment finite element head model. Human Brain Mapping, 2009, 30, 2862-2878.	3.6	41
119	Temporal left atrial lesion formation after ablation of atrial fibrillation. Heart Rhythm, 2009, 6, 161-168.	0.7	94
120	Bioelectric Analyses of an Osseointegrated Intelligent Implant Design System for Amputees. Journal of Visualized Experiments, 2009, , 1-6.	0.3	4
121	Experimental Measures of Ventricular Activation and Synchrony. PACE - Pacing and Clinical Electrophysiology, 2008, 31, 1560-1570.	1.2	14
122	Predictive modeling of defibrillation using hexahedral and tetrahedral finite element models: recent advances. Journal of Electrocardiology, 2008, 41, 483-486.	0.9	8
123	New Magnetic Resonance Imaging-Based Method for Defining the Extent of Left Atrial Wall Injury After the Ablation of Atrial Fibrillation. Journal of the American College of Cardiology, 2008, 52, 1263-1271.	2.8	313
124	A computer modeling tool for comparing novel ICD electrode orientations in children and adults. Heart Rhythm, 2008, 5, 565-572.	0.7	67
125	Evaluation of different meshing algorithms in the computation of defibrillation thresholds in children. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1422-5.	0.5	8
126	Simultaneous High-Resolution Electrical Imaging of Endocardial, Epicardial and Torso-Tank Surfaces Under Varying Cardiac Metabolic Load and Coronary Flow., 2007,, 320-329.		7

#	Article	IF	CITATIONS
127	A wavefront-based constraint for potential surface solutions in inverse electrocardiography., 2006, 2006, 2550-3.		1
128	Image Based Modeling of Defibrillation in Children. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
129	The Effect of Conductivity on ST-Segment Epicardial Potentials Arising from Subendocardial Ischemia. Annals of Biomedical Engineering, 2005, 33, 751-763.	2.5	40
130	On the Passive Cardiac Conductivity. Annals of Biomedical Engineering, 2005, 33, 1743-1751.	2.5	79
131	Biomedical computing and visualization software environments. Communications of the ACM, 2004, 47, 64-71.	4.5	25
132	Mechanism for ST Depression Associated with Contiguous Subendocardial Ischemia. Journal of Cardiovascular Electrophysiology, 2004, 15, 1200-1206.	1.7	85
133	Using models of the passive cardiac conductivity and full heart anisotropic bidomain to study the epicardial potentials in ischemia., 2004, 2004, 3555-8.		7
134	A Study of the Dynamics of Cardiac Ischemia using Experimental and Modeling Approaches. , 2004, 2004, 3585-8.		5
135	Inverse electrocardiography in the framework of dynamic imaging problems. , 2004, 2004, 3565-8.		0
136	Estimates of Repolarization and Its Dispersion From Electrocardiographic Measurements: Direct Epicardial Assessment in the Canine Heart. Journal of Electrocardiology, 2000, 33, 171-180.	0.9	37
137	Estimates of Repolarization Dispersion From Electrocardiographic Measurements. Circulation, 2000, 102, 685-691.	1.6	90
138	Novel Biomarker for Evaluating Ischemic Stress Using an Electrogram Derived Phase Space. , 0, , .		5
139	Using UncertainSCI to Quantify Uncertainty in Cardiac Simulations. , 0, , .		3
140	Shape Analysis of Segmentation Variability. , 0, , .		1
141	The Role of Reduced Left Ventricular, Systolic Blood Volumes in ST Segment Potentials Overlying Diseased Tissue of the Ischemic Heart. , 0, , .		2
142	The Consortium on Electrocardiographic Imaging. , 0, , .		6
143	Temporal Dilation of Animal Cardiac Recordings Registered to Human Torso Geometries. , 0, , .		0