Chen-Ho Tung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2394364/publications.pdf

Version: 2024-02-01

532 37,107 95 168
papers citations h-index g-index

549 549 549 549 29725

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Alkaliâ€Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Advanced Materials, 2017, 29, 1605148.	11.1	1,616
2	Tuning Oxygen Vacancies in Ultrathin TiO ₂ Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. Advanced Materials, 2019, 31, e1806482.	11.1	732
3	Design strategies of fluorescent probes for selective detection among biothiols. Chemical Society Reviews, 2015, 44, 6143-6160.	18.7	721
4	Nitrogenâ€Doped Porous Carbon Nanosheets Templated from gâ€C ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 5080-5086.	11.1	718
5	Ni ₃ FeN Nanoparticles Derived from Ultrathin NiFeâ€Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. Advanced Energy Materials, 2016, 6, 1502585.	10.2	668
6	Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€Silicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Advanced Materials, 2016, 28, 1668-1674.	11.1	663
7	Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Advanced Materials, 2016, 28, 9454-9477.	11.1	622
8	Defectâ∈Rich Ultrathin ZnAlâ€Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO ₂ to CO with Water. Advanced Materials, 2015, 27, 7824-7831.	11.1	608
9	Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 3344.	5.2	601
10	Ultrafine NiO Nanosheets Stabilized by TiO ₂ from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society, 2016, 138, 6517-6524.	6.6	597
11	Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation. Advanced Materials, 2017, 29, 1703828.	11.1	524
12	NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2017, 7, 1700467.	10.2	422
13	Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C ₃ N ₄ for Photocatalytic O ₂ Evolution. ACS Catalysis, 2015, 5, 6973-6979.	5.5	414
14	Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer. Chemical Reviews, 2015, 115, 7502-7542.	23.0	413
15	Photoelectrochemically Active and Environmentally Stable CsPbBr ₃ /TiO ₂ Core/Shell Nanocrystals. Advanced Functional Materials, 2018, 28, 1704288.	7.8	413
16	Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production. Advanced Energy Materials, 2016, 6, 1501974.	10.2	389
17	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	18.7	350
18	Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 3954-3957.	6.6	335

#	Article	IF	Citations
19	Semiconducting quantum dots forÂartificial photosynthesis. Nature Reviews Chemistry, 2018, 2, 160-173.	13.8	334
20	Semiconductor Quantum Dots: An Emerging Candidate for CO ₂ Photoreduction. Advanced Materials, 2019, 31, e1900709.	11.1	316
21	Selfâ€Assembled Au/CdSe Nanocrystal Clusters for Plasmonâ€Mediated Photocatalytic Hydrogen Evolution. Advanced Materials, 2017, 29, 1700803.	11.1	311
22	Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons. Advanced Materials, 2018, 30, 1704663.	11.1	309
23	A superior fluorescent sensor for Al ³⁺ and UO ₂ ²⁺ based on a Co(<scp>ii</scp>) metal–organic framework with exposed pyrimidyl Lewis base sites. Journal of Materials Chemistry A, 2017, 5, 13079-13085.	5.2	287
24	From Solar Energy to Fuels: Recent Advances in Lightâ€Driven C ₁ Chemistry. Angewandte Chemie - International Edition, 2019, 58, 17528-17551.	7.2	285
25	Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. Journal of the American Chemical Society, 2019, 141, 5045-5050.	6.6	285
26	Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C–H Amination and Hydroxylation. Journal of the American Chemical Society, 2016, 138, 10080-10083.	6.6	280
27	Subâ€3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation. Advanced Energy Materials, 2018, 8, 1703585.	10.2	274
28	Reactivity and Mechanistic Insight into Visibleâ€Lightâ€Induced Aerobic Crossâ€Dehydrogenative Coupling Reaction by Organophotocatalysts. Chemistry - A European Journal, 2012, 18, 620-627.	1.7	254
29	CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241.	10.2	253
30	A Cascade Cross-Coupling Hydrogen Evolution Reaction by Visible Light Catalysis. Journal of the American Chemical Society, 2013, 135, 19052-19055.	6.6	250
31	Enhancement of the Efficiency of Photocatalytic Reduction of Protons to Hydrogen via Molecular Assembly. Accounts of Chemical Research, 2014, 47, 2177-2185.	7.6	237
32	Photocatalytic Hydrogen Production from Hantzsch 1,4-Dihydropyridines by Platinum(II) Terpyridyl Complexes in Homogeneous Solution. Journal of the American Chemical Society, 2004, 126, 3440-3441.	6.6	231
33	Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings. Accounts of Chemical Research, 2018, 51, 2512-2523.	7.6	216
34	Visibleâ€Lightâ€Promoted Asymmetric Crossâ€Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3694-3698.	7.2	208
35	Mechanistic Insights into the Interfaceâ€Directed Transformation of Thiols into Disulfides and Molecular Hydrogen by Visibleâ€Light Irradiation of Quantum Dots. Angewandte Chemie - International Edition, 2014, 53, 2085-2089.	7.2	205
36	Photoresponsive Hydrogenâ€Bonded Supramolecular Polymers Based on a Stiff Stilbene Unit. Angewandte Chemie - International Edition, 2013, 52, 9738-9742.	7.2	204

#	Article	IF	CITATIONS
37	Copper(I)â€Catalyzed Interrupted Click Reaction: Synthesis of Diverse 5â€Heteroâ€Functionalized Triazoles. Angewandte Chemie - International Edition, 2016, 55, 649-653.	7.2	200
38	Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Research, 2018, 11, 3462-3468.	5.8	199
39	Supramolecular Systems as Microreactors:  Control of Product Selectivity in Organic Phototransformation. Accounts of Chemical Research, 2003, 36, 39-47.	7.6	195
40	Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Research, 2019, 12, 2385-2389.	5.8	192
41	Long-Lived Emission from Platinum(II) Terpyridyl Acetylide Complexes. Inorganic Chemistry, 2002, 41, 5653-5655.	1.9	191
42	Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. CheM, 2019, 5, 2605-2616.	5.8	179
43	Assembly of silver Trigons into a buckyball-like Ag ₁₈₀ nanocage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12132-12137.	3.3	177
44	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie - International Edition, 2016, 55, 4215-4219.	7.2	176
45	Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution. ACS Catalysis, 2012, 2, 407-416.	5.5	175
46	Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. Green Chemistry, 2014, 16, 1082-1086.	4.6	175
47	Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C, 2015, 3, 1922-1928.	2.7	173
48	Efficient Photocatalytic Nitrogen Fixation over Cu <i>^{Î′}</i> ⁺ â€Modified Defective ZnAlâ€Layered Double Hydroxide Nanosheets. Advanced Energy Materials, 2020, 10, 1901973.	10.2	173
49	Anisotropic Assembly of Ag ₅₂ and Ag ₇₆ Nanoclusters. Journal of the American Chemical Society, 2018, 140, 1600-1603.	6.6	169
50	Facile synthesis of hierarchical Znln2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. Journal of Materials Chemistry A, 2013, 1, 4552.	5.2	166
51	Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nature Communications, 2013, 4, 2695.	5.8	159
52	Dual gold and photoredox catalysis: visible light-mediated intermolecular atom transfer thiosulfonylation of alkenes. Chemical Science, 2017, 8, 2610-2615.	3.7	154
53	Lightâ€Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes. Angewandte Chemie - International Edition, 2016, 55, 2759-2763.	7.2	151
54	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. Angewandte Chemie - International Edition, 2017, 56, 3020-3024.	7.2	151

#	Article	IF	Citations
55	BODIPY-Based Fluorometric Sensor for the Simultaneous Determination of Cys, Hcy, and GSH in Human Serum. ACS Applied Materials & Serum. ACS Applied Materia	4.0	150
56	Graphdiyne: A Promising Catalyst–Support To Stabilize Cobalt Nanoparticles for Oxygen Evolution. ACS Catalysis, 2017, 7, 5209-5213.	5.5	150
57	Visible Light Catalysis Assisted Site-Specific Functionalization of Amino Acid Derivatives by C–H Bond Activation without Oxidant: Cross-Coupling Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 2391-2396.	5.5	148
58	Cross-Coupling Hydrogen Evolution Reaction in Homogeneous Solution without Noble Metals. Organic Letters, 2014, 16, 1988-1991.	2.4	147
59	Artificial Lightâ€Harvesting System Based on Multifunctional Surface rossâ€Linked Micelles. Angewandte Chemie - International Edition, 2012, 51, 2088-2092.	7.2	146
60	Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 4789-4796.	6.6	146
61	Water-Soluble Pentagonal-Prismatic Titanium-Oxo Clusters. Journal of the American Chemical Society, 2016, 138, 11097-11100.	6.6	145
62	A Highly Efficient and Selective Aerobic Crossâ€Dehydrogenativeâ€Coupling Reaction Photocatalyzed by a Platinum(II) Terpyridyl Complex. Chemistry - A European Journal, 2013, 19, 6443-6450.	1.7	144
63	An Exceptional Artificial Photocatalyst, Ni _h dSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution. Advanced Materials, 2013, 25, 6613-6618.	11.1	140
64	Coâ€Based Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for the Photothermal Production of Light Olefins. Advanced Materials, 2018, 30, e1800527.	11.1	139
65	[Ag ₄₈ (C≡C <i>^{<i>t</i>}</i> Bu) ₂₀ (CrO ₄) ₇]: An Atomically Precise Silver Nanocluster Co-protected by Inorganic and Organic Ligands. Journal of the American Chemical Society, 2019, 141, 4460-4467.	6.6	139
66	Cobalt-Catalyzed Cross-Dehydrogenative Coupling Reaction in Water by Visible Light. Organic Letters, 2015, 17, 884-887.	2.4	129
67	Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel. Nature Communications, 2018, 9, 2094.	5.8	129
68	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visibleâ€Light Catalysis. Angewandte Chemie - International Edition, 2017, 56, 15407-15410.	7.2	128
69	Photoinduced transformations of stiff-stilbene-based discrete metallacycles to metallosupramolecular polymers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8717-8722.	3.3	127
70	Semiconductor nanocrystals for small molecule activation <i>via </i> artificial photosynthesis. Chemical Society Reviews, 2020, 49, 9028-9056.	18.7	127
71	A Luminescent Chemosensor with Specific Response for Mg2+. Inorganic Chemistry, 2004, 43, 5195-5197.	1.9	126
72	Regioselective synthesis of multisubstituted 1,2,3-triazoles: moving beyond the copper-catalyzed azide–alkyne cycloaddition. Chemical Communications, 2016, 52, 14188-14199.	2.2	123

#	Article	IF	CITATIONS
73	A robust "artificial catalyst―in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy and Environmental Science, 2013, 6, 465-469.	15.6	120
74	BowtieArene: A Dual Macrocycle Exhibiting Stimuliâ€Responsive Fluorescence. Angewandte Chemie - International Edition, 2020, 59, 10059-10065.	7.2	120
75	Visible-light induced oxidant-free oxidative cross-coupling for constructing allylic sulfones from olefins and sulfinic acids. Chemical Communications, 2016, 52, 10407-10410.	2.2	119
76	Water-dispersible nanospheres of hydrogen-bonded supramolecular polymers and their application for mimicking light-harvesting systems. Chemical Communications, 2014, 50, 1334-1337.	2.2	118
77	Different Silver Nanoparticles in One Crystal: Ag ₂₁₀ (^{<i>i>i</i>} PrPhS) ₇₁ (Ph ₃ P) ₅ Cl and Ag ₂₁₁ (^{<i>i>i</i>Cl. Angewandte Chemie - International Edition, 2019, 58, 195-199.}	7.2	118
78	Hydrido-coinage-metal clusters: Rational design, synthetic protocols and structural characteristics. Coordination Chemistry Reviews, 2021, 427, 213576.	9.5	117
79	Interface-directed assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy and Environmental Science, 2013, 6, 2597.	15.6	115
80	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy and Environmental Science, 2020, 13, 1326-1346.	15.6	115
81	Deciphering synergetic core-shell transformation from [Mo6O22@Ag44] to [Mo8O28@Ag50]. Nature Communications, 2018, 9, 4407.	5.8	113
82	Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light. Advanced Materials, 2014, 26, 5613-5618.	11.1	112
83	Solventâ€Controlled Phase Transition of a Co ^{II} â€Organic Framework: From Achiral to Chiral and Two to Three Dimensions. Chemistry - A European Journal, 2017, 23, 7990-7996.	1.7	111
84	Beyond Clusters: Supramolecular Networks Selfâ€Assembled from Nanosized Silver Clusters and Inorganic Anions. Chemistry - A European Journal, 2016, 22, 6830-6836.	1.7	110
85	Ambient Chemical Fixation of CO ₂ Using a Robust Ag ₂₇ Clusterâ€Based Twoâ€Dimensional Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 20031-20036.	7.2	109
86	Threeâ€Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 192-197.	7.2	106
87	Atom Transfer Radical Addition to Alkynes and Enynes: A Versatile Gold/Photoredox Approach to Thio-Functionalized Vinylsulfones. ACS Catalysis, 2018, 8, 8237-8243.	5.5	106
88	Gold carbene chemistry from diazo compounds. Science Bulletin, 2015, 60, 1479-1492.	4.3	105
89	Supramolecular Polymeric Fluorescent Nanoparticles Based on Quadruple Hydrogen Bonds. Advanced Functional Materials, 2016, 26, 5483-5489.	7.8	105
90	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie - International Edition, 2016, 55, 2167-2170.	7.2	105

#	Article	IF	Citations
91	Polymorphism in Atomically Precise Cu ₂₃ Nanocluster Incorporating Tetrahedral [Cu ₄] ⁰ Kernel. Journal of the American Chemical Society, 2020, 142, 5834-5841.	6.6	103
92	An Oxidant-Free Strategy for Indole Synthesis via Intramolecular C–C Bond Construction under Visible Light Irradiation: Cross-Coupling Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 4635-4639.	5.5	102
93	Switching between Ligand-to-Ligand Charge-Transfer, Intraligand Charge-Transfer, and Metal-to-Ligand Charge-Transfer Excited States in Platinum(II) Terpyridyl Acetylide Complexes Induced by pH Change and Metal Ions. Chemistry - A European Journal, 2007, 13, 1231-1239.	1.7	100
94	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	11.1	100
95	Core–Shell {Mn7âŠ,(Mn,Cd)12} Assembled from Core {Mn7} Disc. Journal of the American Chemical Society, 2017, 139, 14033-14036.	6.6	98
96	Synthesis of Oligoparaphenylene-Derived Nanohoops Employing an Anthracene Photodimerization–Cycloreversion Strategy. Journal of the American Chemical Society, 2016, 138, 11144-11147.	6.6	97
97	A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging. RSC Advances, 2014, 4, 8360.	1.7	96
98	Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity. Advanced Functional Materials, 2019, 29, 1808079.	7.8	95
99	Iron-Catalyzed 1,2-Selective Hydroboration of <i>N</i> -Heteroarenes. Journal of the American Chemical Society, 2017, 139, 17775-17778.	6.6	93
100	Cobaloxime Catalysis: Selective Synthesis of Alkenylphosphine Oxides under Visible Light. Journal of the American Chemical Society, 2019, 141, 13941-13947.	6.6	93
101	Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO ₄ Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 18577-18583.	4.0	92
102	Metallic Co ₂ C: A Promising Co-catalyst To Boost Photocatalytic Hydrogen Evolution of Colloidal Quantum Dots. ACS Catalysis, 2018, 8, 5890-5895.	5.5	92
103	A Bioâ€inspired Cu ₄ O ₄ Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. Angewandte Chemie - International Edition, 2018, 57, 7850-7854.	7.2	91
104	Quantum Dot Assembly for Lightâ€Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 10804-10811.	7.2	91
105	A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy and Environmental Science, 2015, 8, 1443-1449.	15.6	90
106	Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 10365-10373.	5.2	89
107	Diphosphine-protected ultrasmall gold nanoclusters: opened icosahedral Au ₁₃ and heart-shaped Au ₈ clusters. Chemical Science, 2018, 9, 1251-1258.	3.7	86
108	A hierarchically assembled 88-nuclei silver-thiacalix[4]arene nanocluster. Nature Communications, 2020, 11, 308.	5.8	86

#	Article	IF	Citations
109	Activation of CH Bonds through Oxidantâ€Free Photoredox Catalysis: Crossâ€Coupling Hydrogenâ€Evolution Transformation of Isochromans and βâ€Keto Esters. Chemistry - A European Journal, 2015, 21, 18080-18084.	1.7	85
110	"Naked―Magnetically Recyclable Mesoporous Au–γâ€Fe ₂ O ₃ Nanocrystal Clusters: A Highly Integrated Catalyst System. Advanced Functional Materials, 2017, 27, 1606215.	7.8	85
111	Exploring the Reducing Ability of Organic Dye (Acr ⁺ -Mes) for Fluorination and Oxidation of Benzylic C(sp ³)–H Bonds under Visible Light Irradiation. Organic Letters, 2017, 19, 3009-3012.	2.4	85
112	Metal-Free, Redox-Neutral, Site-Selective Access to Heteroarylamine via Direct Radical–Radical Cross-Coupling Powered by Visible Light Photocatalysis. Journal of the American Chemical Society, 2020, 142, 16805-16813.	6.6	84
113	Combining Visible Light Catalysis and Transition Metal Catalysis for the Alkylation of Secondary Amines. Advanced Synthesis and Catalysis, 2013, 355, 2158-2164.	2.1	82
114	An isolable catenane consisting of two MÃ \P bius conjugated nanohoops. Nature Communications, 2018, 9, 3037.	5.8	82
115	Cu/Pd-Catalyzed, Three-Component Click Reaction of Azide, Alkyne, and Aryl Halide: One-Pot Strategy toward Trisubstituted Triazoles. Organic Letters, 2015, 17, 2860-2863.	2.4	79
116	Copper(I)-Catalyzed Three-Component Click/Alkynylation: One-Pot Synthesis of 5-Alkynyl-1,2,3-triazoles. Organic Letters, 2016, 18, 4158-4161.	2.4	78
117	Synthesis of Spiroketals by Synergistic Gold and Scandium Catalysis. Organic Letters, 2017, 19, 2526-2529.	2.4	77
118	Titanium-Oxide Host Clusters with Exchangeable Guests. Journal of the American Chemical Society, 2018, 140, 66-69.	6.6	77
119	Versatile Photosensitization System for 102-Mediated Oxidation of Alkenes Based on Nafion-Supported Platinum(II) Terpyridyl Acetylide Complex. Organic Letters, 2003, 5, 3221-3224.	2.4	76
120	Two Unprecedented POM-Based Inorganic–Organic Hybrids with Concomitant Heteropolytungstate and Molybdate. Inorganic Chemistry, 2017, 56, 2481-2489.	1.9	76
121	Chalcogens-Induced Ag ₆ Z ₄ @Ag ₃₆ (Z = S or Se) Core–Shell Nanoclusters: Enlarged Tetrahedral Core and Homochiral Crystallization. Journal of the American Chemical Society, 2019, 141, 17884-17890.	6.6	76
122	FeO–CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Materials, 2020, 12, .	3.8	76
123	Pure Organic Room Temperature Phosphorescence from Unique Micelleâ€Assisted Assembly of Nanocrystals in Water. Advanced Functional Materials, 2020, 30, 1907282.	7.8	75
124	Visible Light Catalysis-Assisted Assembly of Ni _h -QD Hollow Nanospheres in Situ via Hydrogen Bubbles. Journal of the American Chemical Society, 2014, 136, 8261-8268.	6.6	74
125	Synthesis and Characterization of a Pentiptyceneâ€Derived Dual Oligoparaphenylene Nanohoop. Angewandte Chemie - International Edition, 2019, 58, 3943-3947.	7.2	74
126	Gold-doped silver nanocluster [Au ₃ Ag ₃₈ (SCH ₂ Ph) ₂₄ X ₅] _{2á°'(X}) Tj £ \$Qq0	0 03 gBT /Оve

#	Article	IF	Citations
127	Aggregation behavior of a chiral long-chain ionic liquid in aqueous solution. Journal of Colloid and Interface Science, 2010, 343, 94-101.	5.0	72
128	Anion-templated nanosized silver clusters protected by mixed thiolate and diphosphine. Nanoscale, 2017, 9, 3601-3608.	2.8	71
129	Photocatalysis with Quantum Dots and Visible Light for Effective Organic Synthesis. Chemistry - A European Journal, 2018, 24, 11530-11534.	1.7	71
130	Oxidative Cyclization Synthesis of Tetrahydroquinolines and Reductive Hydrogenation of Maleimides under Redox-Neutral Conditions. Organic Letters, 2018, 20, 2916-2920.	2.4	71
131	Photocatalytic C–C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. Organic Letters, 2019, 21, 4153-4158.	2.4	71
132	Copper(I)â€Catalyzed Asymmetric Interrupted Kinugasa Reaction: Synthesis of αâ€Thiofunctional Chiral βâ€Lactams. Angewandte Chemie - International Edition, 2021, 60, 4561-4565.	7.2	71
133	Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. CrystEngComm, 2012, 14, 4431.	1.3	70
134	Visible Light Initiated Hantzsch Synthesis of 2,5-Diaryl-Substituted Pyrroles at Ambient Conditions. Organic Letters, 2016, 18, 2479-2482.	2.4	68
135	A Hydrogenâ€Bondedâ€Supramolecularâ€Polymerâ€Based Nanoprobe for Ratiometric Oxygen Sensing in Living Cells. Advanced Functional Materials, 2016, 26, 5419-5425.	7.8	67
136	Reverse saturable absorption of platinum ter/bipyridyl polyphenylacetylide complexes. Applied Physics Letters, 2003, 82, 850-852.	1.5	66
137	Visible-Light Photocatalysis Employing Dye-Sensitized Semiconductor: Selective Aerobic Oxidation of Benzyl Ethers. ACS Catalysis, 2017, 7, 8134-8138.	5.5	66
138	Silicaâ€Protected Ultrathin Ni ₃ FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH ₃ BH ₃ . Advanced Energy Materials, 2018, 8, 1702780.	10.2	66
139	BODIPY-based fluorescent probe for the simultaneous detection of glutathione and cysteine/homocysteine at different excitation wavelengths. RSC Advances, 2015, 5, 3959-3964.	1.7	65
140	Comparison of H ₂ photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy) ₃ Cl ₂ in aqueous solution. Energy and Environmental Science, 2016, 9, 2083-2089.	15.6	65
141	Highâ€Nuclear Organometallic Copper(I)–Alkynide Clusters: Thermochromic Nearâ€Infrared Luminescence and Solution Stability. Chemistry - A European Journal, 2016, 22, 17619-17626.	1.7	65
142	Multifunctional Triple-Decker Inverse 12-Metallacrown-4 Sandwiching Halides. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19980-19987.	4.0	65
143	Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots. Advanced Science, 2018, 5, 1700684.	5.6	65
144	Cu-Catalyzed Electrophilic Disulfur Transfer: Synthesis of Unsymmetrical Disulfides. Organic Letters, 2018, 20, 3829-3832.	2.4	64

#	Article	IF	CITATIONS
145	Copper(I)-Catalyzed Three-Component Click/Persulfuration Cascade: Regioselective Synthesis of Triazole Disulfides. Organic Letters, 2018, 20, 2956-2959.	2.4	63
146	Carboxylic acid stimulated silver shell isomerism in a triple core–shell Ag ₈₄ nanocluster. Chemical Science, 2019, 10, 4862-4867.	3.7	63
147	ZnCl2 Enabled Synthesis of Highly Crystalline and Emissive Carbon Dots with Exceptional Capability to Generate O2â∢–. Matter, 2020, 2, 495-506.	5.0	63
148	Switch of the Lowest Excited-States of Terpyridylplatinum(II) Acetylide Complexes Bearing Amino or Azacrown Moieties by Proton and Cations. European Journal of Inorganic Chemistry, 2004, 2004, 1948-1954.	1.0	62
149	Bench-Stable 5-Stannyl Triazoles by a Copper(I)-Catalyzed Interrupted Click Reaction: Bridge to Trifluoromethyltriazoles and Trifluoromethylthiotriazoles. Organic Letters, 2017, 19, 2098-2101.	2.4	62
150	Iron-Catalyzed Reductive Coupling of Nitroarenes with Olefins: Intermediate of Iron–Nitroso Complex. ACS Catalysis, 2020, 10, 276-281.	5. 5	62
151	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie - International Edition, 2020, 59, 23456-23460.	7.2	62
152	Johnson Solids: Anionâ€Templated Silver Thiolate Clusters Capped by Sulfonate. Chemistry - A European Journal, 2018, 24, 1640-1650.	1.7	61
153	Holeâ€Acceptingâ€Ligandâ€Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy. Advanced Science, 2016, 3, 1500282.	5. 6	60
154	A Water-Stable Cl@Ag ₁₄ Cluster Based Metalâ€"Organic Open Framework for Dichromate Trapping and Bacterial Inhibition. Inorganic Chemistry, 2017, 56, 11891-11899.	1.9	60
155	Unusual fcc-structured Ag ₁₀ kernels trapped in Ag ₇₀ nanoclusters. Chemical Science, 2019, 10, 564-568.	3.7	60
156	A Keplerian Ag90 nest of Platonic and Archimedean polyhedra in different symmetry groups. Nature Communications, 2020, 11, 3316.	5.8	60
157	Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. Nature Communications, 2018, 9, 2379.	5.8	60
158	Core Modulation of 70â€Nuclei Coreâ€Shell Silver Nanoclusters. Angewandte Chemie - International Edition, 2019, 58, 6276-6279.	7.2	59
159	Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. CheM, 2021, 7, 1244-1257.	5.8	59
160	Gold/Lewis Acid Catalyzed Cycloisomerization/Diastereoselective [3 + 2] Cycloaddition Cascade: Synthesis of Diverse Nitrogen-Containing Spiro Heterocycles. Organic Letters, 2016, 18, 4614-4617.	2.4	57
161	Surface stoichiometry manipulation enhances solar hydrogen evolution of CdSe quantum dots. Journal of Materials Chemistry A, 2018, 6, 6015-6021.	5.2	57
162	Space Craft-like Octanuclear Co(II)-Silsesquioxane Nanocages: Synthesis, Structure, Magnetic Properties, Solution Behavior, and Catalytic Activity for Hydroboration of Ketones. Inorganic Chemistry, 2019, 58, 4574-4582.	1.9	57

#	Article	IF	CITATIONS
163	Revealing the chirality origin and homochirality crystallization of Ag14 nanocluster at the molecular level. Nature Communications, 2021, 12, 4966.	5.8	57
164	Highly Efficient Cucurbit[8]uril-Templated Intramolecular Photocycloaddition of 2-Naphthalene-Labeled Poly(ethylene glycol) in Aqueous Solution. Journal of Organic Chemistry, 2008, 73, 491-494.	1.7	55
165	Electron transfer and hydrogen generation from a molecular dyad: platinum(ii) alkynyl complex anchored to [FeFe] hydrogenase subsite mimic. Dalton Transactions, 2012, 41, 2420.	1.6	55
166	Benzene C–H Etherification via Photocatalytic Hydrogen-Evolution Cross-Coupling Reaction. Organic Letters, 2017, 19, 2206-2209.	2.4	55
167	Ni–O Cooperation versus Nickel(II) Hydride in Catalytic Hydroboration of <i>N</i> Heteroarenes. ACS Catalysis, 2019, 9, 3849-3857.	5 . 5	55
168	Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration. Advanced Materials, 2019, 31, e1804872.	11.1	55
169	Photosensitized Oxidation of Alkenes Adsorbed on Pentasil Zeolites. Journal of the American Chemical Society, 1998, 120, 5179-5186.	6.6	54
170	Reversible multistimuli-responsive vesicles formed by an amphiphilic cationic platinum(ii) terpyridyl complex with a ferrocene unit in water. Chemical Communications, 2012, 48, 10886.	2.2	54
171	Exceptional Catalytic Nature of Quantum Dots for Photocatalytic Hydrogen Evolution without External Cocatalysts. Advanced Functional Materials, 2018, 28, 1801769.	7.8	54
172	Direct Allylic C(sp ³)â^'H and Vinylic C(sp ²)â^'H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angewandte Chemie - International Edition, 2021, 60, 11779-11783.	7.2	54
173	Cu-Catalyzed Three-Component Coupling of Aryne, Alkyne, and Benzenesulfonothioate: Modular Synthesis of <i>o</i> -Alkynyl Arylsulfides. Organic Letters, 2016, 18, 4154-4157.	2.4	53
174	Radical Addition of Hydrazones by α-Bromo Ketones To Prepare 1,3,5-Trisubstituted Pyrazoles via Visible Light Catalysis. Journal of Organic Chemistry, 2016, 81, 7127-7133.	1.7	53
175	Visible Light Promoted Synthesis of Indoles by Single Photosensitizer under Aerobic Conditions. Organic Letters, 2017, 19, 3251-3254.	2.4	53
176	Activation of Epoxides by a Cooperative Iron–Thiolate Catalyst: Intermediacy of Ferrous Alkoxides in Catalytic Hydroboration. ACS Catalysis, 2017, 7, 7709-7717.	5 . 5	53
177	TiO ₂ Photocatalytic Cyclization Reactions for the Syntheses of Aryltetralones. ACS Catalysis, 2016, 6, 8389-8394.	5.5	51
178	Copper-Catalyzed Oxidative Trifunctionalization of Olefins: An Access to Functionalized \hat{l}^2 -Keto Thiosulfones. Journal of Organic Chemistry, 2018, 83, 9449-9455.	1.7	51
179	Unveiling Catalytic Sites in a Typical Hydrogen Photogeneration System Consisting of Semiconductor Quantum Dots and 3d-Metal Ions. Journal of the American Chemical Society, 2020, 142, 4680-4689.	6.6	51
180	Zeolites as Templates for Preparation of Large-Ring Compounds:Â Intramolecular Photocycloaddition of Diaryl Compounds. Journal of the American Chemical Society, 1998, 120, 11594-11602.	6.6	50

#	Article	IF	CITATIONS
181	A triad [FeFe] hydrogenase system for light-driven hydrogen evolution. Chemical Communications, 2011, 47, 8406.	2.2	50
182	A Cascade Crossâ€Coupling and ⟨i⟩in Situ⟨/i⟩ Hydrogenation Reaction by Visible Light Catalysis. Advanced Synthesis and Catalysis, 2014, 356, 2846-2852.	2.1	50
183	A 34â€Electron Superatom Ag ₇₈ Cluster with Regioselective Ternary Ligands Shells and Its 2D Rhombic Superlattice Assembly. Angewandte Chemie - International Edition, 2021, 60, 4231-4237.	7.2	50
184	Iodine/Visible Light Photocatalysis for Activation of Alkynes for Electrophilic Cyclization Reactions. ACS Catalysis, 2017, 7, 4093-4099.	5.5	49
185	A giant 90-nucleus silver cluster templated by hetero-anions. Chemical Communications, 2018, 54, 4461-4464.	2.2	49
186	Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis. Nature Communications, 2020, 11, 1249.	5.8	49
187	Direct, Siteâ€Selective and Redoxâ€Neutral αâ€Câ^'H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 27201-27205.	7.2	49
188	Multipleâ€State Emissions from Neat, Singleâ€Component Molecular Solids: Suppression of Kasha's Rule. Angewandte Chemie - International Edition, 2020, 59, 10173-10178.	7.2	49
189	Intramolecular Long-Distance Electron Transfer and Triplet Energy Transfer. Photophysical and Photochemical Studies on a Norbornadieneâ^'Steroidâ^'Benzidine System. Journal of the American Chemical Society, 1997, 119, 5348-5354.	6.6	48
190	A Redox Shuttle Accelerates O ₂ Evolution of Photocatalysts Formed In Situ under Visible Light. Advanced Materials, 2017, 29, 1606009.	11.1	48
191	Eliminationâ€Fusion Selfâ€Assembly of a Nanometerâ€Scale 72â€Nucleus Silver Cluster Caging a Pair of [EuW ₁₀ O ₃₆] ^{9â~³} Polyoxometalates. Chemistry - A European Journal, 2018, 24, 1998-2003.	1.7	48
192	Synthesis of spiroaminals by bimetallic Au/Sc relay catalysis: TMS as a traceless controlling group. Chemical Communications, 2014, 50, 12084-12087.	2.2	47
193	Divergent synthesis of chiral cyclic azides via asymmetric cycloaddition reactions of vinyl azides. Nature Communications, 2019, 10, 3158.	5.8	47
194	Photoelectrochemical cell for P–H/C–H cross-coupling with hydrogen evolution. Chemical Communications, 2019, 55, 10376-10379.	2.2	47
195	Scandium-catalyzed electrophilic alkene difunctionalization: regioselective synthesis of thiosulfone derivatives. Organic Chemistry Frontiers, 2019, 6, 1663-1666.	2.3	47
196	Title is missing!. Chemical Communications, 2001, , 2280-2281.	2.2	45
197	Cucurbit[8]uril-mediated photodimerization of alkyl 2-naphthoate in aqueous solution. Tetrahedron Letters, 2008, 49, 1502-1505.	0.7	45
198	pH-Responsive reversible self-assembly of gold nanoparticles into nanovesicles. Nanoscale, 2016, 8, 3923-3925.	2.8	45

#	Article	IF	Citations
199	Nonstoichiometric Cu _{<i>x</i>} In _{<i>y</i>} S Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4833-4838.	3.6	45
200	Involving Single-Atom Silver(0) in Selective Dehalogenation by AgF under Visible-Light Irradiation. ACS Catalysis, 2019, 9, 6335-6341.	5.5	45
201	Tracking Co(I) Intermediate in Operando in Photocatalytic Hydrogen Evolution by X-ray Transient Absorption Spectroscopy and DFT Calculation. Journal of Physical Chemistry Letters, 2016, 7, 5253-5258.	2.1	44
202	Effects of Substitutional Dopants on the Photoresponse of a Polyoxotitanate Cluster. Inorganic Chemistry, 2016, 55, 8493-8501.	1.9	44
203	Carbon Nanosheets: Nitrogenâ€Doped Porous Carbon Nanosheets Templated from gâ€C ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5140-5140.	11.1	44
204	Protonated Graphitic Carbon Nitride with Surface Attached Molecule as Hole Relay for Efficient Photocatalytic O ₂ Evolution. ACS Catalysis, 2016, 6, 8336-8341.	5.5	44
205	Reversible Light-Triggered Transition of Amphiphilic Random Copolymers. Macromolecules, 2012, 45, 5596-5603.	2.2	43
206	Visible light-catalytic dehydrogenation of benzylic alcohols to carbonyl compounds by using an eosin Y and nickel–thiolate complex dual catalyst system. Green Chemistry, 2019, 21, 1401-1405.	4.6	43
207	Nitrogenase inspired artificial photosynthetic nitrogen fixation. CheM, 2021, 7, 1431-1450.	5.8	43
208	Modular Synthesis of αâ€Quaternary Chiral βâ€Lactams by a Synergistic Copper/Palladiumâ€Catalyzed Multicomponent Reaction. Angewandte Chemie - International Edition, 2021, 60, 13814-13818.	7.2	43
209	Combining visible light catalysis and transfer hydrogenation for in situ efficient and selective semihydrogenation of alkynes under ambient conditions. Chemical Communications, 2016, 52, 1800-1803.	2.2	42
210	Copper-catalyzed carbene insertion into the sulfur–sulfur bond of benzenesulfonothioate. Organic Chemistry Frontiers, 2018, 5, 1371-1374.	2.3	42
211	Facile formation of CoN ₄ active sites onto a SiO ₂ support to achieve robust CO ₂ and proton reduction in a noble-metal-free photocatalytic system. Journal of Materials Chemistry A, 2019, 7, 10475-10482.	5.2	42
212	Rational Design of Dotâ€onâ€Rod Nanoâ€Heterostructure for Photocatalytic CO ₂ Reduction: Pivotal Role of Hole Transfer and Utilization. Advanced Materials, 2022, 34, e2106662.	11.1	42
213	Threeâ€Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 198-203.	1.6	41
214	Addition of a Bâ€"H Bond across an Amidoâ€"Cobalt Bond: Co ^{II} â€"H-Catalyzed Hydroboration of Olefins. Organometallics, 2018, 37, 1462-1467.	1.1	41
215	Terminal Thiolate-Dominated H/D Exchanges and H ₂ Release: Diiron Thiol–Hydride. Journal of the American Chemical Society, 2018, 140, 11454-11463.	6.6	41
216	Visible Light Irradiation of Acyl Oxime Esters and Styrenes Efficiently Constructs \hat{l}^2 -Carbonyl Imides by a Scission and Four-Component Reassembly Process. Organic Letters, 2019, 21, 8789-8794.	2.4	41

#	Article	IF	CITATIONS
217	Direct 1,2â€Dicarbonylation of Alkenes towards 1,4â€Diketones via Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 26822-26828.	7.2	41
218	Small Titanium Oxo Clusters: Primary Structures of Titanium(IV) in Water. Inorganic Chemistry, 2016, 55, 3212-3214.	1.9	40
219	Identifying key intermediates generated in situ from Cu(II) salt–catalyzed C–H functionalization of aromatic amines under illumination. Science Advances, 2017, 3, e1700666.	4.7	40
220	Asymmetric Synthesis of a Fused Tricyclic Hydronaphthofuran Scaffold by Desymmetric [2+2+2] Cycloaddition. Angewandte Chemie - International Edition, 2020, 59, 2220-2224.	7.2	40
221	Cooperative Molybdenum-Thiolate Reactivity for Transfer Hydrogenation of Nitriles. ACS Catalysis, 2020, 10, 380-390.	5.5	40
222	Visible Light-Catalyzed Benzylic C–H Bond Chlorination by a Combination of Organic Dye (Acr ⁺ -Mes) and <i>N</i> -Chlorosuccinimide. Journal of Organic Chemistry, 2020, 85, 9080-9087.	1.7	40
223	Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. ACS Nano, 2021, 15, 16019-16029.	7.3	40
224	Vectorial Electron Transfer for Improved Hydrogen Evolution by Mercaptopropionicâ€Acidâ€Regulated CdSe Quantumâ€Đots–TiO ₂ –Ni(OH) ₂ Assembly. ChemSusChem, 2015, 8, 642-649). ^{3.6}	39
225	Reactivity and mechanistic insight into the cross coupling reaction between isochromans and \hat{l}^2 -keto esters through Câ \in "H bond activation under visible light irradiation. Organic Chemistry Frontiers, 2016, 3, 486-490.	2.3	39
226	Heptanuclear Co ^{II} ₅ Co ^{III} ₂ Cluster as Efficient Water Oxidation Catalyst. Inorganic Chemistry, 2017, 56, 1591-1598.	1.9	39
227	Assembling metallic 1T-MoS ₂ nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chemical Communications, 2017, 53, 5606-5609.	2.2	39
228	Luminescent supramolecular polymer nanoparticles for ratiometric hypoxia sensing, imaging and therapy. Materials Chemistry Frontiers, 2018, 2, 1893-1899.	3.2	39
229	Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis. Journal of Organic Chemistry, 2019, 84, 12904-12912.	1.7	39
230	Structural Diversity of Copper(I) Cluster-Based Coordination Polymers with Pyrazine-2-thiol Ligand. Inorganic Chemistry, 2020, 59, 2680-2688.	1.9	39
231	A Post-Functionalizable <i>lso</i> -Polyoxotitanate Cage Cluster. Inorganic Chemistry, 2016, 55, 7075-7078.	1.9	38
232	Counteranion-Stabilized Titanium(IV) Isopolyoxocationic Clusters Isolated from Water. Inorganic Chemistry, 2016, 55, 4704-4709.	1.9	38
233	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 14952-14957.	7.2	38
234	Structure, solution assembly, and electroconductivity of nanosized argento-organic-cluster/framework templated by chromate. Nanoscale, 2017, 9, 5305-5314.	2.8	38

#	Article	IF	Citations
235	Diastereoselective Synthesis of Polysubstituted Spirocyclopenta[<i>c</i>) furans by Gold-Catalyzed Cascade Reaction. Organic Letters, 2019, 21, 692-695.	2.4	38
236	Temperature-induced Sn(II) supramolecular isomeric frameworks as promising heterogeneous catalysts for cyanosilylation of aldehydes. Science China Chemistry, 2020, 63, 182-186.	4.2	38
237	Cobaloxime Catalysis for Enamine Phosphorylation with Hydrogen Evolution. Organic Letters, 2020, 22, 5385-5389.	2.4	38
238	Asymmetric Azide–Alkyne Cycloaddition with Ir(I)/Squaramide Cooperative Catalysis: Atroposelective Synthesis of Axially Chiral Aryltriazoles. Journal of the American Chemical Society, 2022, 144, 6200-6207.	6.6	38
239	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. Angewandte Chemie - International Edition, 2019, 58, 8443-8447.	7.2	37
240	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie - International Edition, 2020, 59, 5365-5370.	7.2	37
241	Modification of Photochemical Reactivity by Nafion. Photocyclization and PhotochemicalCisâ^'Translsomerization of Azobenzene. Journal of Organic Chemistry, 1996, 61, 9417-9421.	1.7	36
242	Anionâ€Templated Nanosized Silver Alkynyl Clusters: Cluster Engineering and Solution Behavior. Chemistry - A European Journal, 2017, 23, 3432-3437.	1.7	36
243	Regioselective <i>Ortho</i> Amination of an Aromatic C–H Bond by Trifluoroacetic Acid via Electrochemistry. Organic Letters, 2019, 21, 5581-5585.	2.4	36
244	Site- and Spatial-Selective Integration of Non-noble Metal Ions into Quantum Dots for Robust Hydrogen Photogeneration. Matter, 2020, 3, 571-585.	5.0	36
245	An Octanuclear Cobalt Cluster Protected by Macrocyclic Ligand: In Situ Ligand-Transformation-Assisted Assembly and Single-Molecule Magnet Behavior. Inorganic Chemistry, 2020, 59, 5683-5693.	1.9	36
246	Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO ₂ Reduction in Water Using ZnSe Quantum Dots. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
247	Characterization of lyotropic liquid crystals formed in the mixtures of 1-alkyl-3-methylimidazolium bromide/p-xylene/water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 335, 80-87.	2.3	35
248	î ³ -Cyclodextrin-Directed Enantioselective Photocyclodimerization of Methyl 3-Methoxyl-2-naphthoate. Journal of Organic Chemistry, 2009, 74, 3506-3515.	1.7	35
249	Synthesis of Oxazoles by Tandem Cycloisomerization/Allylic Alkylation of Propargyl Amides with Allylic Alcohols: Zn(OTf) ₂ as π Acid and σ Acid Catalyst. Journal of Organic Chemistry, 2015, 80, 12718-12724.	1.7	35
250	Near-Infrared Emitters: Stepwise Assembly of Two Heteropolynuclear Clusters with Tunable Ag ^I :Zn ^{II} Ratio. Inorganic Chemistry, 2016, 55, 4757-4763.	1.9	35
251	Enhanced Charge Separation Efficiency Accelerates Hydrogen Evolution from Water of Carbon Nitride and 3,4,9,10-Perylene-tetracarboxylic Dianhydride Composite Photocatalyst. ACS Applied Materials & Diterfaces, 2018, 10, 3515-3521.	4.0	35
252	A hexadecanuclear silver alkynyl cluster based NbO framework with triple emissions from the visible to near-infrared II region. Chemical Communications, 2018, 54, 11905-11908.	2.2	35

#	Article	IF	Citations
253	Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy. ACS Applied Nano Materials, 2020, 3, 5070-5078.	2.4	35
254	Copper(I)â€Catalyzed Interrupted Click/Sulfenylation Cascade: Oneâ€Pot Synthesis of Sulfur Cycle Fused 1,2,3â€Triazoles. Chinese Journal of Chemistry, 2020, 38, 445-448.	2.6	35
255	Long-Lived Photoinduced Charge Separation in Ru(Bpy)32+/Viologen System at Nafion Membraneâ°'Solution Interface. Journal of Physical Chemistry B, 2000, 104, 9468-9474.	1.2	34
256	Different Silver Nanoparticles in One Crystal: Ag ₂₁₀ (^{<i>i</i>} PrPhS) ₇₁ (Ph ₃ P) ₅ Cl and Ag ₂₁₁ (^{<i>i</i>} PrPhS) ₇₁ (Ph ₃ P) ₆ Cl. Angewandte Chemie, 2019, 131, 201-205.	1.6	34
257	Photoinduced Electron Transfer and Charge-Recombination in 2-Ureido-4[1H]-Pyrimidinone Quadruple Hydrogen-Bonded Porphyrin–Fullerene Assemblies. Journal of Physical Chemistry C, 2011, 115, 23634-23641.	1.5	33
258	Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. Scientific Reports, 2016, 6, 29851.	1.6	33
259	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie, 2016, 128, 4287-4291.	1.6	33
260	Benzoateâ€Induced Highâ€Nuclearity Silver Thiolate Clusters. Chemistry - A European Journal, 2018, 24, 4967-4972.	1.7	33
261	Hydroalkynylative cyclization of 1,6-enynes with terminal alkynes. Chemical Science, 2019, 10, 6863-6867.	3.7	33
262	Precise Implantation of an Archimedean Ag@Cu ₁₂ Cuboctahedron into a Platonic Cu ₄ Bis(diphenylphosphino)hexane ₆ Tetrahedron. ACS Nano, 2021, 15, 8733-8741.	7.3	33
263	A Conjugated Figureâ€ofâ€Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
264	Bio-inspired controlled release through compression–relaxation cycles of microcapsules. NPG Asia Materials, 2015, 7, e148-e148.	3.8	32
265	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. Angewandte Chemie, 2017, 129, 3066-3070.	1.6	32
266	Stepwise Assembly of Ag ₄₂ Nanocalices Based on a Mo ^{VI} -Anchored Thiacalix[4]arene Metalloligand. ACS Nano, 2022, 16, 4500-4507.	7.3	32
267	Janus Cluster: Asymmetric Coverage of a Ag ₄₃ Cluster on the Symmetric Preyssler P ₅ W ₃₀ Polyoxometalate. Chemistry of Materials, 2021, 33, 9708-9714.	3.2	32
268	IRA-200 resin-supported platinum(II) complex for photooxidation of olefins. Tetrahedron, 2007, 63, 4907-4911.	1.0	31
269	Patterning and pixelation of colloidal photonic crystals for addressable integrated photonics. Journal of Materials Chemistry, 2011, 21, 11330.	6.7	31
270	A fluorescent turn-on probe for visualizing lysosomes in hypoxic tumor cells. Analyst, The, 2016, 141, 2879-2882.	1.7	31

#	Article	IF	Citations
271	Synthesis of a disulfide-bridged bispillar[5]arene and its application in supramolecular polymers. Polymer Chemistry, 2016, 7, 2057-2061.	1.9	31
272	Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C ₁ â€Solarchemie. Angewandte Chemie, 2019, 131, 17690-17715.	1.6	31
273	Microreactor-controlled selectivity in organic photochemical reactions. Pure and Applied Chemistry, 2000, 72, 2289-2298.	0.9	30
274	A Sustainable Strategy for the Synthesis of Pyrochlore H ₄ Nb ₂ O ₇ Hollow Microspheres as Photocatalysts for Overall Water Splitting. ChemPlusChem, 2017, 82, 181-185.	1.3	30
275	Enclosing classical polyoxometallates in silver nanoclusters. Nanoscale, 2019, 11, 10927-10931.	2.8	30
276	Flower-like cobalt carbide for efficient carbon dioxide conversion. Chemical Communications, 2020, 56, 7849-7852.	2.2	30
277	Selfâ€Assembled Amphiphilic Water Oxidation Catalysts: Control of Oâ [^] O Bond Formation Pathways by Different Aggregation Patterns. Angewandte Chemie - International Edition, 2016, 55, 6229-6234.	7.2	29
278	Gold-Catalyzed Cycloisomerization/1,5-H Migration/Diels–Alder Reaction Cascade: Synthesis of Complex Nitrogen-Containing Heterocycles. Organic Letters, 2017, 19, 1072-1075.	2.4	29
279	Enhanced visible-light-driven hydrogen generation by in situ formed photocatalyst RGO–CdS–Ni _x S from metal salts and RGO–CdS composites. Journal of Materials Chemistry A, 2017, 5, 9537-9543.	5.2	29
280	Photoresponsive AA/BB supramolecular polymers comprising stiff-stilbene based guests and bispillar[5]arenes. Polymer Chemistry, 2017, 8, 3596-3602.	1.9	29
281	Direct synthesis of sulfide capped CdS and CdS/ZnS colloidal nanocrystals for efficient hydrogen evolution under visible light irradiation. Journal of Materials Chemistry A, 2018, 6, 16328-16332.	5.2	29
282	Visible Light Induced Cross-Coupling Hydrogen Evolution Reactions. Acta Chimica Sinica, 2017, 75, 34.	0.5	29
283	An Ultrastable 155â€Nuclei Silver Nanocluster Protected by Thiacalix[4]arene and Cyclohexanethiol for Photothermal Conversion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
284	Microemulsions of N-Alkylimidazolium Ionic Liquid and Their Performance as Microreactors for the Photocycloaddition of 9-Substituted Anthracenes. Langmuir, 2009, 25, 5484-5490.	1.6	28
285	Successive Cu/Pd transmetalation relay catalysis in stereoselective synthesis of tetraarylethenes. Organic Chemistry Frontiers, 2015, 2, 1366-1373.	2.3	28
286	Hydride Transfer from Iron(II) Hydride Compounds to NAD(P) ⁺ Analogues. Organometallics, 2016, 35, 1151-1159.	1.1	28
287	[Au18(dppm)6Cl4]4+: a phosphine-protected gold nanocluster with rich charge states. Dalton Transactions, 2019, 48, 3635-3640.	1.6	28
288	Gold/photoredox-cocatalyzed atom transfer thiosulfonylation of alkynes: Stereoselective synthesis of vinylsulfones. Tetrahedron Letters, 2019, 60, 916-919.	0.7	28

#	Article	IF	CITATIONS
289	Adsorptive separation of cyclohexanol and cyclohexanone by nonporous adaptive crystals of RhombicArene. Chemical Science, 2021, 12, 15528-15532.	3.7	28
290	Solvent-Induced Isomeric Cu ₁₃ Nanoclusters: Chlorine to Copper Charge Transfer Boosting Molecular Oxygen Activation in Sulfide Selective Oxidation. ACS Nano, 2022, 16, 9598-9607.	7.3	28
291	S-Scheme Bi-oxide/Ti-oxide Molecular Hybrid for Photocatalytic Cycloaddition of Carbon Dioxide to Epoxides. ACS Catalysis, 2022, 12, 8202-8213.	5.5	28
292	Benzophenone-Initiated Photoisomerization of the Norbornadiene Group in a Benzophenoneâ "Steroidâ" Norbornadiene System via Long-Distance Intramolecular Triplet Energy Transfer. The Journal of Physical Chemistry, 1996, 100, 4480-4484.	2.9	27
293	Sequential Transformation of Terminal Alkynes to 1,3-Dienes by a Cooperative Cobalt Pyridonate Catalyst. Organometallics, 2019, 38, 3752-3759.	1.1	27
294	Photoredox Oxo-C(sp ³)–H Bond Functionalization via in Situ Cu(I)-Acetylide Catalysis. Organic Letters, 2020, 22, 832-836.	2.4	27
295	A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Science China Chemistry, 2020, 63, 16-20.	4.2	27
296	Keplerate Ag ₁₉₂ Cluster with 6 Silver and 14 Chalcogenide Octahedral and Tetrahedral Shells. Journal of the American Chemical Society, 2021, 143, 13235-13244.	6.6	27
297	Solventâ€Controlled Condensation of [Mo ₂] ^{6â^'} Metalloligand in Stepwise Assembly of Hexagonal and Rectangular Ag ₁₈ Nanoclusters. Angewandte Chemie - International Edition, 2022, 61.	7.2	27
298	Molecular logic circuit based on a multi-state mononuclear platinum(ii) terpyridyl complex. Physical Chemistry Chemical Physics, 2010, 12, 13026.	1.3	26
299	Photoinduced Triplet–Triplet Energy Transfer in a 2â€Ureidoâ€4(1 <i>H</i>)â€Pyrimidinoneâ€Bridged, Quadrupl Hydrogenâ€Bonded Ferrocene–Fullerene Assembly. ChemPhysChem, 2013, 14, 198-203.	у _{1.0}	26
300	Divergent Synthesis of 3,3â€Disubstituted Oxindoles Initiated by Palladiumâ€Catalyzed Intramolecular Arylation of Unsaturated Amides. Asian Journal of Organic Chemistry, 2016, 5, 971-975.	1.3	26
301	Breaking aziridines to construct morpholines with a gold(<scp>i</scp>)-catalyzed tandem ring-opening and cycloisomerization reaction. Organic and Biomolecular Chemistry, 2016, 14, 10973-10980.	1.5	26
302	Interplay between Terminal and Bridging Diiron Hydrides in Neutral and Oxidized States. Organometallics, 2017, 36, 2245-2253.	1.1	26
303	Scandium (III)â€Catalyzed Cycloaddition of <i>in situ</i> Generated <i>ortho</i> â€Quinone Methides with Vinyl Azides: An Efficient Access to Substituted 4 <i>H</i> â€Chromenes. Advanced Synthesis and Catalysis, 2018, 360, 3585-3589.	2.1	26
304	Photoredox/Cobalt-Catalyzed C(sp ³)–H Bond Functionalization toward Phenanthrene Skeletons with Hydrogen Evolution. Organic Letters, 2020, 22, 9627-9632.	2.4	26
305	Thiol Activation toward Selective Thiolation of Aromatic C–H Bond. Organic Letters, 2020, 22, 3804-3809.	2.4	26
306	In Situ Capture of a Ternary Supramolecular Cluster in a 58-Nuclei Silver Supertetrahedron. CCS Chemistry, 2022, 4, 1788-1795.	4.6	26

#	Article	IF	Citations
307	A Parent Iron Amido Complex in Catalysis of Ammonia Oxidation. Journal of the American Chemical Society, 2022, 144, 4365-4375.	6.6	26
308	Keggin-Type Tridecanuclear Europium-Oxo Nanocluster Protected by Silsesquioxanes. Chemistry of Materials, 2022, 34, 4186-4194.	3.2	26
309	Regioselectivity in the Photocycloaddition of 9-Substituted Anthracenes Incorporated within Nafion Membranes. Journal of Organic Chemistry, 1998, 63, 5857-5862.	1.7	25
310	Photoinduced Intramolecular Electron Transfer and Triplet Energy Transfer in a Steroid-Linked Norbornadiene–Carbazole Dyad. Chemistry - A European Journal, 2003, 9, 2763-2769.	1.7	25
311	Synthesis and Photophysical Studies of Calix[4]arene-based Binuclear Platinum(II) Complexes: Probing Metalâ~'Metal and Ligandâ~'Ligand Interactions. Inorganic Chemistry, 2008, 47, 5099-5106.	1.9	25
312	Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. Analyst, The, 2012, 137, 1220.	1.7	25
313	Photoreduction: Defectâ€Rich Ultrathin ZnAlâ€Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO ₂ to CO with Water (Adv. Mater. 47/2015). Advanced Materials, 2015, 27, 7823-7823.	11.1	25
314	Decarboxylative sulfenylation of amino acids <i>via</i> metallaphotoredox catalysis. Organic Chemistry Frontiers, 2019, 6, 3224-3227.	2.3	25
315	Borylation of Diazonium Salts by Highly Emissive and Crystalline Carbon Dots in Water. ChemSusChem, 2020, 13, 1715-1719.	3.6	25
316	Mechanistic Insights Into Iron(II) Bis(pyridyl)amineâ€Bipyridine Skeleton for Selective CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2021, 60, 26072-26079.	7.2	25
317	Efficient and selective photodimerization of 2-naphthalenecarbonitrile mediated by cucurbit[8]uril in an aqueous solution. Photochemical and Photobiological Sciences, 2011, 10, 1441-1444.	1.6	24
318	Oneâ∈Pot Hydrothermal Synthesis and Photocatalytic Hydrogen Evolution of Pyrochlore Type K ₂ Nb ₂ O ₆ . Chinese Journal of Chemistry, 2014, 32, 485-490.	2.6	24
319	Cu(<scp>ii</scp>) coordination polymers with nitrogen catenation ligands for efficient photocatalytic water oxidation. Chemical Communications, 2018, 54, 4794-4797.	2.2	24
320	Binding Modes of Salicylic Acids to Titanium Oxide Molecular Surfaces. Chemistry - A European Journal, 2020, 26, 2666-2674.	1.7	24
321	Surface-Enhanced Raman Scattering of Phenols and Catechols by a Molecular Analogue of Titanium Dioxide. Analytical Chemistry, 2020, 92, 5929-5936.	3.2	24
322	Tandem photoelectrochemical and photoredox catalysis for efficient and selective aryl halides functionalization by solar energy. Matter, 2021, 4, 2354-2366.	5.0	24
323	pH-Controlled assembly of two novel Dawson-sandwiched clusters involving the in situ reorganization of trivacant α-[P ₂ W ₁₅ O ₅₆] ^{12â^'} into divacant α-[P ₂ W ₁₆ O ₅₇] ^{8â^'} . Dalton Transactions, 2016, 45.8404-8411.	1.6	23
324	A Phosphorescent Platinum(II) Bipyridyl Supramolecular Polymer Based on Quadruple Hydrogen Bonds. Chemistry - A European Journal, 2016, 22, 18132-18139.	1.7	23

#	Article	IF	CITATIONS
325	Nanocrystals@Hollow Mesoporous Silica Reverseâ€Bumpyâ€Ball Structure Nanoreactors by a Versatile Microemulsionâ€Templated Approach. Small Methods, 2018, 2, 1800105.	4.6	23
326	Site-selective D ₂ O-mediated deuteration of diaryl alcohols <i>via</i> quantum dots photocatalysis. Chemical Communications, 2021, 57, 6768-6771.	2.2	23
327	Anionic passivation layer-assisted trapping of an icosahedral Ag13 kernel in a truncated tetrahedral Ag89 nanocluster. Science China Chemistry, 2021, 64, 1482-1486.	4.2	23
328	Intramolecular photodimerization of 2-naphthoates: successful application of hydrophobic forces in the preparation of large-ring compounds. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 947.	1.7	22
329	Long-Lived Charge Separation in a Dyad System Containing Cyclometalated Platinum(II) Complex and Ferrocene Donor. Journal of Physical Chemistry C, 2011, 115, 833-839.	1.5	22
330	Colorimetric sensors with different reactivity for the quantitative determination of cysteine, homocysteine and glutathione in a mixture. RSC Advances, 2015, 5, 13042-13045.	1.7	22
331	An efficient synthesis of gem-diiodoolefins and (E)-iodoalkenes from propargylic amides with a Cu(i)/Cu(iii) cycle. Organic Chemistry Frontiers, 2015, 2, 578-585.	2.3	22
332	Octanuclear Ni(<scp>ii</scp>) cubes based on halogen-substituted pyrazolates: synthesis, structure, electrochemistry and magnetism. CrystEngComm, 2016, 18, 3462-3471.	1.3	22
333	Fabrication and directed assembly of magnetic Janus rods. New Journal of Chemistry, 2016, 40, 6541-6545.	1.4	22
334	Bimetallic nickel–cobalt hydrides in H ₂ activation and catalytic proton reduction. Chemical Science, 2019, 10, 761-767.	3.7	22
335	Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chemical Communications, 2020, 56, 15496-15512.	2.2	22
336	Multipleâ€State Emissions from Neat, Singleâ€Component Molecular Solids: Suppression of Kasha's Rule. Angewandte Chemie, 2020, 132, 10259-10264.	1.6	22
337	Ultralong Room-Temperature Phosphorescence of Silicon-Based Pure Organic Crystal for Oxygen Sensing. CCS Chemistry, 2022, 4, 1007-1015.	4.6	22
338	Synthesis of $\hat{l}\pm,\hat{l}^2$ -unsaturated \hat{l}^3 -lactones via photooxygenation of 2,3-dihydrofurans followed by ferrous ion-catalyzed gem-dehydration. Tetrahedron, 2006, 62, 10688-10693.	1.0	21
339	Photoinduced Tripletâ^'Triplet Energy Transfer via the 2-Ureido-4[1 <i>H</i>]-pyrimidinone Self-Complementary Quadruple Hydrogen-Bonded Module. Journal of Physical Chemistry A, 2008, 112, 3865-3869.	1.1	21
340	A pillar-layered porous Co ^{II} -MOF with dual active sites for selective gas adsorption. CrystEngComm, 2018, 20, 4905-4909.	1.3	21
341	Aqueous Isolation of 17â€Nuclear Zr/Hf Oxide Clusters during the Hydrothermal Synthesis of ZrO ₂ /HfO ₂ . Chemistry - A European Journal, 2018, 24, 14701-14706.	1.7	21
342	Self-Organization into Preferred Sites by Mg ^{II} , Mn ^{II} , and Mn ^{III} in Brucite-Structured M ₁₉ Cluster. Inorganic Chemistry, 2019, 58, 3800-3806.	1.9	21

#	Article	IF	CITATIONS
343	Aerobic oxidation of toluene and benzyl alcohol to benzaldehyde using a visible light-responsive titanium-oxide cluster. Chemical Engineering Journal, 2021, 404, 126433.	6.6	21
344	Direct Câ€"H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. Organic Letters, 2021, 23, 8082-8087.	2.4	21
345	Stepwise Photochemical-Chiral Delivery in \hat{I}^3 -Cyclodextrin-Directed Enantioselective Photocyclodimerization of Methyl 3-Methoxyl-2-Naphthoate in Aqueous Solution. Langmuir, 2010, 26, 782-785.	1.6	20
346	Water-soluble sulfonated–graphene–platinum nanocomposites: facile photochemical preparation with enhanced catalytic activity for hydrogen photogeneration. Catalysis Science and Technology, 2013, 3, 1815.	2.1	20
347	A multi-stimuli-responsive fluorescence switch based on E–Z isomerization of hydrazone. RSC Advances, 2016, 6, 41002-41006.	1.7	20
348	Synthesis, structure and magnetism of a novel Cull4TilV5 heterometallic cluster. Chinese Chemical Letters, 2020, 31, 809-812.	4.8	20
349	Enhancement of Diastereoselectivity in Photodimerization of Alkyl 2-Naphthoates with Chiral Auxiliaries via Inclusion within \hat{I}^3 -Cyclodextrin Cavities. Journal of Organic Chemistry, 2012, 77, 1685-1692.	1.7	19
350	Interfacial charge transfer in a functionalized polyoxotitanate cluster. Inorganica Chimica Acta, 2016, 443, 279-283.	1.2	19
351	A Bioâ€inspired Cu ₄ O ₄ Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. Angewandte Chemie, 2018, 130, 7976-7980.	1.6	19
352	Core Modulation of 70â€Nuclei Coreâ€Shell Silver Nanoclusters. Angewandte Chemie, 2019, 131, 6342-6345.	1.6	19
353	Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines. Nature Communications, 2022, 13, 1802.	5.8	19
354	Cobalt-Catalyzed Selective Dearomatization of Pyridines to $\langle i \rangle N \langle i \rangle \hat{a} \in H 1,4$ -Dihydropyridines. ACS Catalysis, 2022, 12, 5013-5021.	5.5	19
355	Facile Preparation of 3,4-Diarylpyrroles and Hydrogen by a Platinum(II) Terpyridyl Complex. Inorganic Chemistry, 2009, 48, 9995-9997.	1.9	18
356	Visual detection of carbonate ions by inverse opal photonic crystal polymers in aqueous solution. Journal of Materials Chemistry C, 2015, 3, 9524-9527.	2.7	18
357	Functionalization of Titanium Oxide Cluster Ti ₁₇ O ₂₄ (O ^{<i>i</i>} C ₃ H ₇) ₂₀ with Catechols: Structures and Ligandâ€Exchange Reactivities. Chemistry - A European Journal, 2019, 25, 14843-14849.	1.7	18
358	Water-soluble copolymeric materials: switchable NIR two-photon fluorescence imaging agents for living cancer cells. Journal of Materials Chemistry B, 2014, 2, 502-510.	2.9	17
359	Three Silver Nests Capped by Thiolate/Phenylphosphonate. Chemistry - A European Journal, 2018, 24, 15096-15103.	1.7	17
360	BNN-1,3-dipoles: isolation and intramolecular cycloaddition with unactivated arenes. Chemical Science, 2020, 11, 7053-7059.	3.7	17

#	Article	IF	Citations
361	Core engineering of paired core-shell silver nanoclusters. Science China Chemistry, 2021, 64, 2118-2124.	4.2	17
362	Iron-Catalyzed Regiodivergent Hydrostannation of Alkynes: Intermediacy of Fe(IV)–H versus Fe(II)–Vinylidene. Journal of the American Chemical Society, 2021, 143, 409-419.	6.6	17
363	Enhancement of Intramolecular Photocycloaddition of Bichromophoric Compounds via Inclusion in Low-Density Polyethylene Films. Journal of Organic Chemistry, 1999, 64, 5156-5161.	1.7	16
364	Two-photon-pumped frequency-upconverted lasing and optical power limiting properties of vinylbenzothiazole-containing compounds in solutionElectronic supplementary information (ESI) available: Single-crystal crystallographic data in cif format (CCDC reference number 189061). See http://www.rsc.org/suppdata/cp/b2/b206259c/. Physical Chemistry Chemical Physics, 2002, 4, 5744-5747.	1.3	16
365	C–H···Nill Interaction-Driven HomochiralM andP Helices of Neutral (R,R)- and (S,S)-Bis(pyrrol-2-ylmethyleneamino)cyclohexane Nill Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 3315-3319.	1.0	16
366	Modifying the symmetry of colloidal photonic crystals: a way towards complete photonic bandgap. Journal of Materials Chemistry C, 2014, 2, 4100.	2.7	16
367	Visible light catalyzed aromatization of 1,3,5-triaryl-2-pyrazolines by platinum(II) polypyridyl complex under oxidant-free condition. Science China Chemistry, 2016, 59, 175-179.	4.2	16
368	Visible light-induced photochemical oxygen evolution from water by 3,4,9,10-perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor. Catalysis Science and Technology, 2016, 6, 672-676.	2.1	16
369	BaAu ₂ S ₂ : A Au-Based Intrinsic Photocatalyst for High-Performance Visible-Light Photocatalysis. Inorganic Chemistry, 2017, 56, 5173-5181.	1.9	16
370	Iron(II) hydrides bearing a tetradentate PSNP ligand. Chinese Chemical Letters, 2018, 29, 949-953.	4.8	16
371	Kinetically Controlled Radical Addition/Elimination Cascade: From Alkynyl Aziridine to Fluorinated Allenes. Organic Letters, 2020, 22, 2419-2424.	2.4	16
372	Boraiminolithium: An Iminoborane-Transfer Reagent. Journal of the American Chemical Society, 2021, 143, 13483-13488.	6.6	16
373	Aggregation of Novel Betaine SurfactantsN-(3-Alkoxy-2-hydroxypropyl)-N,N-dimethylglycines in Aqueous Solution:Â Micellization and Microenvironment Characteristics. Langmuir, 1999, 15, 1011-1016.	1.6	15
374	Kagóme Cobalt(II)â€Organic Layers as Robust Scaffolds for Highly Efficient Photocatalytic Oxygen Evolution. ChemSusChem, 2016, 9, 1146-1152.	3.6	15
375	Synthesis of benzannulated spiroketals with gold-catalyzed cycloisomerization/spiroketalization cascade. Organic Chemistry Frontiers, 2018, 5, 990-993.	2.3	15
376	Selective endoperoxide formation by heterogeneous TiO 2 photocatalysis with dioxygen. Tetrahedron, 2018, 74, 2421-2427.	1.0	15
377	A Monophosphine Ligand Derived from Anthracene Photodimer: Synthetic Applications for Palladium-Catalyzed Coupling Reactions. Organic Letters, 2019, 21, 8158-8163.	2.4	15
378	Stiff-stilbene derivatives as new bright fluorophores with aggregation-induced emission. Science China Chemistry, 2019, 62, 1194-1197.	4.2	15

#	Article	IF	Citations
379	Amphiphilic Oxo-Bridged Ruthenium "Green Dimer―for Water Oxidation. IScience, 2020, 23, 100969.	1.9	15
380	Iron–cobalt-catalyzed heterotrimerization of alkynes and nitriles to polyfunctionalized pyridines. Organic Chemistry Frontiers, 2020, 7, 2196-2201.	2.3	15
381	A Polyoxochromate Templated 56-Nuclei Silver Nanocluster. Inorganic Chemistry, 2020, 59, 3004-3011.	1.9	15
382	Inner-assembly singlet energy transfer in naphthalene–anthracene system linked by 2-ureido-4{1H}-pyrimidinone binding module. Tetrahedron Letters, 2004, 45, 6807-6811.	0.7	14
383	C–Hâ√Pt(II) interaction-controlled self-assembly and photophysics of chiral bis(pyrrol-2-ylmethyleneamino)cyclohexane platinum(II) complexes. Tetrahedron, 2008, 64, 5577-5582.	1.0	14
384	Multifaceted Bicubane Co4Clusters: Magnetism, Photocatalytic Oxygen Evolution, and Electrical Conductivity. European Journal of Inorganic Chemistry, 2016, 2016, 3253-3261.	1.0	14
385	Bidirectional Singlet and Triplet Energy Transfer via the 2-Ureido-4 $[1H]$ -pyrimidinone Quadruple Hydrogen-Bonded Module. Journal of Physical Chemistry C, 2016, 120, 16507-16515.	1.5	14
386	Self-assembled inorganic clusters of semiconducting quantum dots for effective solar hydrogen evolution. Chemical Communications, 2018, 54, 4858-4861.	2.2	14
387	Cobalt-catalyzed radical cyclization of isocyanides forming phenanthridine derivatives. Organic Chemistry Frontiers, 2018, 5, 2997-3002.	2.3	14
388	Hexadecanuclear Mn ^{II} ₂ Mn ^{III} ₁₄ Molecular Torus Built from <i>in Situ</i> i> Tandem Ligand Transformations. Inorganic Chemistry, 2019, 58, 14331-14337.	1.9	14
389	<i>N</i> -lodosuccinimide and dioxygen in an air-enabled synthesis of 10-phenanthrenols under sunlight. Green Chemistry, 2021, 23, 7193-7198.	4.6	14
390	Observation of a bcc-like framework in polyhydrido copper nanoclusters. Nanoscale, 2021, 13, 19642-19649.	2.8	14
391	General and Efficient C–P Bond Formation by Quantum Dots and Visible Light. CCS Chemistry, 2022, 4, 2946-2952.	4.6	14
392	Intramolecular Triplet Energy Transfer in Donor–Acceptor Molecules Linked by a Crown Ether Bridge. Chemistry - A European Journal, 2006, 12, 5238-5245.	1.7	13
393	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie, 2016, 128, 2207-2210.	1.6	13
394	Modular Design of Poly(norbornenes) for Organelle-Specific Imaging in Tumor Cells. Biomacromolecules, 2016, 17, 538-545.	2.6	13
395	Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution through Visibleâ€Light Catalysis. Chemistry - A European Journal, 2019, 25, 879-884.	1.7	13
396	An advanced plasmonic photocatalyst containing silver(0) single atoms for selective borylation of aryl iodides. Applied Catalysis B: Environmental, 2021, 299, 120674.	10.8	13

#	Article	IF	CITATIONS
397	Synthesis, structure, and chirality of hydroxyl- and carboxyl-functionalized cubane-like photodimers of 2-naphthalene. Tetrahedron, 2007, 63, 3133-3137.	1.0	12
398	Tetrathiafulvalene derivatives bearing a crown ether with intramolecular charge transfer properties: synthesis and cation binding studies. New Journal of Chemistry, 2009, 33, 813.	1.4	12
399	Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts. Beilstein Journal of Nanotechnology, 2014, 5, 1167-1174.	1.5	12
400	Modification of colloidal particles by unidirectional silica deposition for urchin-like morphologies. RSC Advances, 2016, 6, 32956-32959.	1.7	12
401	Solvent Effects on Hydride Transfer from Cp*(P-P)FeH to BNA ⁺ Cation. Organometallics, 2017, 36, 1238-1244.	1.1	12
402	Efficient electronic communication-driven photoinduced charge-separation in 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded N,N-dimethylaniline-anthracene assemblies. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 457-466.	2.0	12
403	Visible-Light-Triggered Selective Intermolecular [2+2] Cycloaddition of Extended Enones: 2-Oxo-3-enoates and 2,4-Dien-1-ones with Olefins. Journal of Organic Chemistry, 2019, 84, 9257-9269.	1.7	12
404	Visible-Light-Induced Nanoparticle Assembly for Effective Hydrogen Photogeneration. ACS Sustainable Chemistry and Engineering, 2019, 7, 7286-7293.	3.2	12
405	Tandem [2 + 2] Cycloaddition/Rearrangement toward Carbazoles by Visible-Light Photocatalysis. Organic Letters, 2021, 23, 2135-2139.	2.4	12
406	Direct, Siteâ€Selective and Redoxâ€Neutral αâ€Câ^'H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angewandte Chemie, 2021, 133, 27407-27411.	1.6	12
407	Methane Monooxygenase Mimic Asymmetric Oxidation: Self-Assembling ξ-Hydroxo, Carboxylate-Bridged Diiron(III)-Catalyzed Enantioselective Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 5976-5984.	6.6	12
408	Stereochemistry of a cubane-like photodimer of methyl 2-naphthoate. Tetrahedron Letters, 2006, 47, 4725-4727.	0.7	11
409	Off-resonant optical nonlinearities of phthalocyanine analogues: dihydroxy phosphorus(V) tetrabenzotriazacorroles. Optics Communications, 2008, 281, 1275-1279.	1.0	11
410	Formation of Cubane-like Photodimers from 2-Naphthalenecarbonitrile. Journal of Organic Chemistry, 2008, 73, 7345-7348.	1.7	11
411	Identifying a Real Catalyst of [NiFe]â€Hydrogenase Mimic for Exceptional H 2 Photogeneration. Angewandte Chemie - International Edition, 2020, 59, 18400-18404.	7.2	11
412	<scp>Sâ€Trifluoroethyl</scp> Benzenesulfonothioate: A <scp>Benchâ€Stable</scp> Reagent for Electrophilic Trifluoroethylthiolation ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1625-1628.	2.6	11
413	A Carbonate-Templated Decanuclear Mn Nanocage with Two Different Silsesquioxane Ligands. Inorganic Chemistry, 2021, 60, 14866-14871.	1.9	11
414	Singlet Oxygen- and Hole-Mediated Selective Oxidation of Arylethylenes to Aryltetralones by Ag/Ag ₃ PO ₄ under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2021, 9, 16670-16677.	3.2	11

#	Article	IF	CITATIONS
415	Photocatalytic Synthesis of Quinolines via Povarov Reaction under Oxidant-Free Conditions. Organic Letters, 2022, 24, 1180-1185.	2.4	11
416	Siteâ€Selective <i>N</i> â€1 and Câ€3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
417	Remote Activation of the Quadricyclane Group in a Quadricyclaneâ°'Steroidâ°'{Dibenzoylmethanatoboron Difluoride} System by Intramolecular Electron Transferâ€. Journal of Physical Chemistry A, 2003, 107, 3438-3442.	1.1	10
418	Carbon Nanoframes: Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€Silicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts (Adv. Mater.) Tj ETQ	q01 01.0 0 rgB	BT / © verlock 1
419	New Class of Hydrido Iron(II) Compounds with <i>cis</i> èêReactive Sites: Combination of Iron and Diphosphinodithio Ligand. Chemistry - an Asian Journal, 2016, 11, 2271-2277.	1.7	10
420	Photocatalysis: Alkaliâ€Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible‣ightâ€Driven Hydrogen Evolution (Adv. Mater. 16/2017). Advanced Materials, 2017, 29, .	11.1	10
421	Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. Biomacromolecules, 2018, 19, 2750-2758.	2.6	10
422	Hand-in-hand quantum dot assembly sensitized photocathodes for enhanced photoelectrochemical hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 26098-26104.	5.2	10
423	A 34â€Electron Superatom Ag 78 Cluster with Regioselective Ternary Ligands Shells and Its 2D Rhombic Superlattice Assembly. Angewandte Chemie, 2021, 133, 4277-4283.	1.6	10
424	Direct C(<i>>sp</i>)â€"H/Siâ€"H Cross-Coupling via Copper Salts Photocatalysis. Organic Letters, 2022, 24, 5192-5196.	2.4	10
425	Practical and Selective Bio-Inspired Iron-Catalyzed Oxidation of Si–H Bonds to Diversely Functionalized Organosilanols. ACS Catalysis, 2022, 12, 9143-9152.	5.5	10
426	Photochemical DNA cleavage by novel water-soluble sulfonated dihydroxy phosphorus(V) tetrabenzotriazacorrole. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2152-2155.	1.0	9
427	Nafionâ€induced metalâ€metal interactions in a platinum(II) terpyridyl acetylide complex: A luminescent sensor for detection of volatile organic compounds. Chinese Journal of Chemistry, 2004, 22, 1204-1207.	2.6	9
428	Preparation of Porous TiO ₂ from an Iso-Polyoxotitanate Cluster for Rechargeable Sodium-Ion Batteries with High Performance. Journal of Physical Chemistry C, 2019, 123, 7025-7032.	1.5	9
429	Perâ€6â€Thiolâ€Cyclodextrin Engineered [FeFe]â€Hydrogenase Mimic/CdSe Quantum Dot Assembly for Photocatalytic Hydrogen Production. Solar Rrl, 2021, 5, 2000474.	3.1	9
430	Facile Access to Alkylideneborane and Diborabutadiene N-Heterocyclic Carbene Complexes. Inorganic Chemistry, 2021, 60, 8432-8436.	1.9	9
431	Synthesis of Finite Molecular Nanotubes by Connecting Axially Functionalized Macrocycles. CCS Chemistry, 2022, 4, 3772-3780.	4.6	9
432	A Mesoporous Lead-Doped Titanium Oxide Compound with High Performance and Recyclability in I ₂ Uptake and Photocatalysis. Inorganic Chemistry, 2022, 61, 586-596.	1.9	9

#	Article	IF	Citations
433	Au-catalyzed neighboring hydroxymethyl group directed cycloaddition of alkyne with diazadienes: Synthesis of polysubstituted pyrroles. Chinese Chemical Letters, 2023, 34, 107488.	4.8	9
434	Modification of Alkylbetaine by Incorporation of Hydroxypropyl Group: Preparation, Surface Activity, and Biodegradability of N-Alkoxy-Hydroxypropyl-N, N-Dimethyl-Glycine Betaine Surfactants. Journal of Dispersion Science and Technology, 1998, 19, 63-76.	1.3	8
435	Diastereodifferentiating photodimerization of alkyl 2-naphthoates with chiral auxiliaries. Tetrahedron Letters, 2009, 50, 4965-4968.	0.7	8
436	Supramolecular complexation and photocyclodimerization of methyl 3-methoxy-2-naphthoate with modified \hat{l}^3 -cyclodextrins. Pure and Applied Chemistry, 2011, 83, 769-778.	0.9	8
437	Chemo- and Regioselective Synthesis of Alkynyl Cyclobutanes by Visible Light Photocatalysis. Organic Letters, 2018, 20, 6808-6811.	2.4	8
438	Selfâ€Assembly of A Novel Ag 48 Cluster Encapsulating an Unprecedented [Mo 8 O 28] 8â^' Anion Template. Israel Journal of Chemistry, 2019, 59, 280-285.	1.0	8
439	Assembly of Interlocked Superstructures with a Titanium Oxide Molecular Ring in Water. Inorganic Chemistry, 2021, 60, 14520-14524.	1.9	8
440	A simple, modular synthesis of bifunctional peptide-polynorbornenes for apoptosis induction and fluorescence imaging of cancer cells. Polymer Chemistry, 2018, 9, 77-86.	1.9	8
441	Unraveling the reactivity of a cationic iminoborane: avenues to unusual boron cations. Chemical Science, 2022, 13, 2303-2309.	3.7	8
442	Light-driven hydrogen evolution system with glutamic-acid-modified zinc porphyrin as photosensitizer and [FeFe]-hydrogenase model as catalyst. Pure and Applied Chemistry, 2013, 85, 1405-1413.	0.9	7
443	A modular designed copolymer with anti-thrombotic activity and imaging capability. Chemical Communications, 2014, 50, 9539-9542.	2.2	7
444	Alkali Halide Cubic Cluster Anions ([Cs ₈ X ₂₇] ^{19–} , X = Cl, Br) Isolated from Water. Inorganic Chemistry, 2016, 55, 11125-11130.	1.9	7
445	Synthetic [NiFe] models with a fluxional CO ligand. Dalton Transactions, 2017, 46, 13681-13685.	1.6	7
446	Solution behavior and magnetic properties of a novel nonanuclear copper(<scp>ii</scp>) cluster. New Journal of Chemistry, 2018, 42, 17884-17888.	1.4	7
447	Photocatalytic hydrogen evolution of 1-tetralones to α-naphthols by continuous-flow technology. Catalysis Science and Technology, 2019, 9, 3337-3341.	2.1	7
448	Benzyl C-O and C-N Bond Construction via C-C Bond Dissociation of Oxime Ester under Visible Light Irradiation. European Journal of Organic Chemistry, 2020, 2020, 1551-1558.	1.2	7
449	Ultrafast Vibrational Energy Transfer through the Covalent Bond and Intra- and Intermolecular Hydrogen Bonds in a Supramolecular Dimer by Two-Dimensional Infrared Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 544-555.	1.2	7
450	Ambient Chemical Fixation of CO 2 Using a Robust Ag 27 Clusterâ€Based Twoâ€Dimensional Metal–Organic Framework. Angewandte Chemie, 2020, 132, 20206-20211.	1.6	7

#	Article	IF	CITATIONS
451	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie, 2020, 132, 23662-23666.	1.6	7
452	Dehydrogenation of iron amido-borane and resaturation of the imino-borane complex. Chemical Science, 2021, 12, 2885-2889.	3.7	7
453	Palladium-Catalyzed Desymmetric Intermolecular C–N Coupling Enabled by a Chiral Monophosphine Ligand Derived from Anthracene Photodimer. Organic Letters, 2021, 23, 5485-5490.	2.4	7
454	Probe Binding Mode and Structure of the Photocatalytic Center: Hydrogen Generation by Quantum Dots and Nickel Ions. Energy & Samp; Fuels, 2021, 35, 19185-19190.	2.5	7
455	Engaging Ag(0) single atoms in silver(I) salts-mediated C-B and C-S coupling under visible light irradiation. Journal of Catalysis, 2021, 402, 255-263.	3.1	7
456	Synthesis of Diazacrown Ethers with Chromophores and Their Photoinduced Chargeâ€Separation with Methyl Viologen. Chinese Journal of Chemistry, 2001, 19, 960-965.	2.6	6
457	Switchable two-photon imaging of RGD-functionalized polynorbornenes with enhanced cellular uptake in living cells. New Journal of Chemistry, 2016, 40, 3252-3260.	1.4	6
458	A beryllium-selective microcantilever sensor modified with benzo-9-crown-3 functionalized polymer brushes. Analytical Methods, 2017, 9, 3356-3360.	1.3	6
459	Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol. Organometallics, 2017, 36, 3135-3141.	1.1	6
460	Photothermal Catalysis: Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins (Adv. Mater. 31/2018). Advanced Materials, 2018, 30, 1870230.	11.1	6
461	Thermally Hypsochromic or Bathochromic Emissions? The Silver Nuclei Does Matter. Small, 2022, 18, e2104524.	5. 2	6
462	Fluorescence Enhancement and Photostability of Novel Pentamethine Cyanines in Nafion-Na+Membranes. Journal of Fluorescence, 2000, 10, 21-26.	1.3	5
463	Photocontrollable ion transport across a liquid membrane by anthracene end-labeled oligo-oxyethylenesElectronic supplementary information (ESI) available: IR, 1H NMR and mass spectral data of A-P4-A, A-P5-A, and A-P6-A. See http://www.rsc.org/suppdata/cp/b2/b203647a/. Physical Chemistry Chemical Physics. 2002. 4, 4030-4035.	1.3	5
464	Selective Transport of Alkaliâ€Metal Cations through Liquid Membranes by Nonâ€Cyclic Carriers. Chinese Journal of Chemistry, 2002, 20, 90-95.	2.6	5
465	The first intramolecular charge transfer transition based on 2â€ureidoâ€4[1 <i>H</i>]â€pyrimidinone binding module. Chinese Journal of Chemistry, 2004, 22, 1391-1394.	2.6	5
466	Stereoselective photodimerization of alkyl 3-alkoxyl-2-naphthoates. Tetrahedron Letters, 2011, 52, 2946-2949.	0.7	5
467	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie, 2016, 128, 15176-15181.	1.6	5
468	Heteronuclear assembly of Ni–Cu dithiolato complexes: synthesis, structures, and reactivity studies. Inorganic Chemistry Frontiers, 2017, 4, 706-711.	3.0	5

#	Article	IF	CITATIONS
469	Synthesis, Characterization, and Selective Sr ²⁺ Sensing Study of Copper(I)â€Bridged Calix[4]areneâ€Based Binuclear Alkynylplatinum(II) Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 5108-5113.	1.0	5
470	Zincâ€Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, .	10.2	5
471	Filamentous Virus Oriented Pyrene Excimer Emission and Its Efficient Energy Transfer. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 32-37.	2.0	5
472	Synthetic [FeFe]-H2ase models bearing phosphino thioether chelating ligands. Chinese Chemical Letters, 2018, 29, 1651-1655.	4.8	5
473	Reactivity of the diphosphinodithio ligated nickel(0) complex toward alkyl halides and resultant nickel(<scp>i</scp>) and nickel(<scp>ii</scp>)–alkyl complexes. Dalton Transactions, 2018, 47, 15757-15764.	1.6	5
474	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. Angewandte Chemie, 2019, 131, 8531-8535.	1.6	5
475	Tunable amplified spontaneous emission based on liquid magnetically responsive photonic crystals. Journal of Materials Chemistry C, 2019, 7, 3740-3743.	2.7	5
476	Catalytic Hydrogen Production Using A Cobalt Catalyst Bearing a Phosphinoamine Ligand. ChemPhotoChem, 2019, 3, 220-224.	1.5	5
477	Self-assembly of a nonanuclear Ni ^{II} cluster <i>via</i> atmospheric CO ₂ fixation: synthesis, structure, collision-induced dissociation mass spectrometry and magnetic property. Dalton Transactions, 2020, 49, 10977-10982.	1.6	5
478	Effects of organic ammonium cations on the isolation of {Ti4} cyclic clusters from water: an 170 NMR study. Dalton Transactions, 2020, 49, 5957-5964.	1.6	5
479	Silica-supported dual-dye nanoprobes for ratiometric hypoxia sensing. Materials Chemistry Frontiers, 2021, 5, 458-464.	3.2	5
480	Asymmetric synthesis of tricyclic 6,5,5-fused polycycles by the desymmetric Pauson–Khand reaction. Organic Chemistry Frontiers, 2022, 9, 1680-1685.	2.3	5
481	Crystalline Neutral Diboron Analogues of Cyclopropanes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
482	Structural rearrangement of Ag60 nanocluster endowing different luminescence performances. Journal of Chemical Physics, 2021, 155, 234303.	1.2	5
483	Unveiling Heteroâ€Enyne Reactivity of Aryliminoboranes: Dearomative Heteroâ€Diels–Alderâ€Like Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
484	Ultrahydrophobicity of Polydimethylsiloxanes-Based Multilayered Thin Films. Journal of Nanotechnology, 2009, 2009, 1-8.	1.5	4
485	Metal Ion Enhanced Phosphorescence of 2,3â€Naphthoâ€10â€azaâ€15â€crownâ€5: A Possible Molecular Photor Operator. Chinese Journal of Chemistry, 2002, 20, 135-141.	าic 2.6	4

Water Splitting: Ni₃FeN Nanoparticles Derived from Ultrathin NiFeâ€Layered Double
Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst (Adv. Energy Mater.) Tj ETQq0 0 0 rgBT / 100√2 rlock 40 Tf 50 57

#	Article	IF	Citations
487	Reductive Coupling of Bridging Diaryl Ligands in Half-Sandwich Cobalt(II) Dimers: Revisiting Triple-Decker Cobalt(I) Complexes. Organometallics, 2019, 38, 3610-3616.	1.1	4
488	Chiral Inductions in Excited State Reactions: Photodimerization of Alkyl 2â€Naphthoates as a Model. Photochemistry and Photobiology, 2019, 95, 24-32.	1.3	4
489	Facile Transformations of a Binuclear Cp*Co(II) Diamidonaphthalene Complex to Mixed-Valent Co(II)Co(III), Co(III)(Î ¹ / ₄ -H)Co(III), and Co(III)(Î ¹ / ₄ -OH)Co(III) Derivatives. Inorganic Chemistry, 2022, 61, 2204-2210.	1.9	4
490	An Ultrastable 155â€Nuclei Silver Nanocluster Protected by Thiacalix[4]arene and Cyclohexanethiol for Photothermal Conversion. Angewandte Chemie, 2022, 134, .	1.6	4
491	Reductive Carbonâ€Carbon Coupling on Metal Sites Regulates Photocatalytic CO2 Reduction in Water Using ZnSe Quantum Dots. Angewandte Chemie, 0, , .	1.6	4
492	Energy transfer of ionic dyes in mixed surfactant vesicle. Research on Chemical Intermediates, 2000, 26, 575-585.	1.3	3
493	Synthesis of diastereometrically pure cubane-like photodimers from 2,4-pentanediyl-bis-2-naphthoates. Photochemical and Photobiological Sciences, 2014, 13, 261-265.	1.6	3
494	Preparation and enhanced catalytic activity of amphiphilic rambutan-like micro-reactors. RSC Advances, 2015, 5, 74362-74365.	1.7	3
495	Conformationâ€Controlled Diplatinum(II)–Ferrocene Dyads to Achieve Longâ€Lived Chargeâ€Separated States. Chemistry - A European Journal, 2016, 22, 11962-11966.	1.7	3
496	Hydrogen Evolution: CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 3/2016). Advanced Energy Materials, 2016, 6, .	10.2	3
497	Solution-processable graphenes by covalent functionalization of graphene oxide with polymeric monoamines. Science China Chemistry, 2016, 59, 1018-1024.	4.2	3
498	Photocatalysts: Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, .	11.1	3
499	Photothermal CO ₂ Hydrogenation: Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870015.	11.1	3
500	Sensitized Photocathodes: Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots (Adv. Sci. 4/2018). Advanced Science, 2018, 5, 1870023.	5.6	3
501	Holeâ€Transferâ€Layer Modification of Quantum Dotâ€Sensitized Photocathodes for Dramatically Enhanced Hydrogen Evolution. Particle and Particle Systems Characterization, 2018, 35, 1700278.	1.2	3
502	Insertion of BH ₃ into a Cobalt–Aryl Bond: Synthetic Routes to Arylborohydride and Borane-Amino Hydride Complexes. Organometallics, 2021, 40, 1692-1698.	1.1	3
503	Semi-artificial photoelectrochemical synthesis. Joule, 2021, 5, 2771-2773.	11.7	3
504	Syntheses, structures and ligand binding modes of titanium-oxide complexes of 2-picolinate. Dalton Transactions, 2022, 51, 3706-3712.	1.6	3

#	Article	IF	CITATIONS
505	Synthesis of α-trifluoromethyl sulfides through fluorosulfuration of <i>gem </i> li>-difluoroalkenes. Organic Chemistry Frontiers, 2022, 9, 2926-2931.	2.3	3
506	Construction of Crystalline Oneâ€Dimensional Infinite Argentophilic Silver Alkynyl Assemblies and their Luminescence Properties. European Journal of Inorganic Chemistry, 2018, 2018, 5068-5074.	1.0	2
507	A Simple Strategy to Construct Amorphous Metalâ€Free Room Temperature Phosphorescent and Multiâ€Color Materials. ChemPhysChem, 2018, 19, 2131-2133.	1.0	2
508	Mechanistic Insights Into Iron(II) Bis(pyridyl)amineâ€Bipyridine Skeleton for Selective CO2 Photoreduction. Angewandte Chemie, 0, , .	1.6	2
509	Cobalt-catalyzed regioselective hydrohydrazination of epoxides. Organic and Biomolecular Chemistry, 2020, 18, 1572-1576.	1.5	2
510	Magnetic field effects on photochemical reaction III. Mechanistic study of the photodecarboxylation of arylmethyl esters in micellar solutions. Chinese Journal of Chemistry, 1991, 9, 552-558.	2.6	1
511	Enhancement of intramolecular excimer formation and photodimerization of anthrylmethyl $\hat{1}\pm, \hat{1}\%\hat{a}\in \mathbb{R}$ lkanedioates via hydrophobic interactions. Chinese Journal of Chemistry, 1995, 13, 532-538.	2.6	1
512	Novel photoâ€induced coupling reactions of 9â€fluorenylideneâ€malononitrile or 1,1â€diphenylâ€2,2â€dicyanoethylene with 10â€methylâ€9,10â€dihydroacridine. A study on the photophysics of reaction. Chinese Journal of Chemistry, 2003, 21, 1400-1402.	the	1
513	Photocatalysis: An Exceptional Artificial Photocatalyst, Ni _h â€CdSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution (Adv. Mater.) Tj ETQq1 1	0.7.84314	l IgBT /Over
514	Epitaxial growth of bulky calcite inverse opal induced by a single crystalline calcite substrate. CrystEngComm, 2014, 16, 7617.	1.3	1
515	Self-assembled vesicles from amphiphilic platinum(II) terpyridyl complex in water. Supramolecular Chemistry, 2015, 27, 298-302.	1.5	1
516	Solar Energy Conversion: Holeâ€Acceptingâ€Ligandâ€Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy (Adv. Sci. 4/2016). Advanced Science, 2016, 3, .	5.6	1
517	Catalysts: "Naked―Magnetically Recyclable Mesoporous Au–γâ€Fe ₂ O ₃ Nanocrystal Clusters: A Highly Integrated Catalyst System (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
518	Superhydrophilic Graphdiyne: Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity (Adv.) Tj ETQq0 0 0 rg	g B. Is/Overlo	o c k 10 Tf 50
519	Photocatalytic Hydrogen Evolution: Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration (Adv. Mater. 7/2019). Advanced Materials, 2019, 31, 1970048.	11.1	1
520	Incorporation of H2O and CO2 into a BN-embedded 3aH-3a1H-acephenanthrylene derivative. Chemical Communications, 2021, 57, 1226-1229.	2.2	1
521	Unveiling Heteroâ€Enyne Reactivity of Aryliminoboranes: Dearomative Heteroâ€Dielsâ€Alderâ€Like Reactions. Angewandte Chemie, 0, , .	1.6	1
522	Semiconductor photoinduced cycloreversion of the dimer of methyl 2â€naphthoate. Chinese Journal of Chemistry, 1997, 15, 260-264.	2.6	0

#	Article	IF	CITATIONS
523	Nanoparticles: Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light (Adv. Mater. 32/2014). Advanced Materials, 2014, 26, 5731-5731.	11.1	0
524	Hydrogen Bonding-Controlled Photoinduced Electron and Energy Transfer. Lecture Notes in Quantum Chemistry II, 2015 , , $1-42$.	0.3	0
525	RÃ⅓cktitelbild: Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction (Angew.) Tj ETQq1 1 ().7 8.4 314 (rgBT Overloo
526	Biosensing: A Hydrogen-Bonded-Supramolecular-Polymer-Based Nanoprobe for Ratiometric Oxygen Sensing in Living Cells (Adv. Funct. Mater. 30/2016). Advanced Functional Materials, 2016, 26, 5580-5580.	7.8	0
527	Frontispiz: Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2 S Quantum Dots from Silver Nanoparticles. Angewandte Chemie, 2016, 128, .	1.6	0
528	Frontispiece: Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2 S Quantum Dots from Silver Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, .	7.2	0
529	Special Issue Dedicated to the Memory of Professor Enze Min. Chinese Journal of Chemistry, 2017, 35, 519-519.	2.6	0
530	Innentitelbild: Core Modulation of 70â€Nuclei Coreâ€Shell Silver Nanoclusters (Angew. Chem. 19/2019). Angewandte Chemie, 2019, 131, 6168-6168.	1.6	0
531	Innentitelbild: Multipleâ€State Emissions from Neat, Singleâ€Component Molecular Solids: Suppression of Kasha's Rule (Angew. Chem. 25/2020). Angewandte Chemie, 2020, 132, 9870-9870.	1.6	0
532	Crystalline Neutral Diboron Analogues of Cyclopropanes. Angewandte Chemie, 0, , .	1.6	0