Kathrin Cohen Kadosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2394251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Systematic Review of Psychobiotic Interventions in Children and Adolescents to Enhance Cognitive Functioning and Emotional Behavior. Nutrients, 2022, 14, 614.	4.1	10
2	The effect of parietal glutamate/GABA balance on test anxiety levels in early childhood in a cross-sectional and longitudinal study. Cerebral Cortex, 2022, 32, 3243-3253.	2.9	3
3	Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18–25Âyears) with corresponding changes in gut bacterial composition. Scientific Reports, 2021, 11, 8302.	3.3	32
4	Khat and neurobehavioral functions: A systematic review. PLoS ONE, 2021, 16, e0252900.	2.5	7
5	Psychobiotic interventions for anxiety in young people: a systematic review and meta-analysis, with youth consultation. Translational Psychiatry, 2021, 11, 352.	4.8	30
6	Intrinsic functional connectivity in families genetically enriched for social anxiety disorder – an endophenotype study. EBioMedicine, 2021, 69, 103445.	6.1	5
7	Predicting learning and achievement using GABA and glutamate concentrations in human development. PLoS Biology, 2021, 19, e3001325.	5.6	18
8	Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis. NeuroImage, 2021, 237, 118207.	4.2	22
9	Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children—An Update and Novel Insights. Nutrients, 2021, 13, 199.	4.1	40
10	Nutrient Intake and Gut Microbial Genera Changes after a 4-Week Placebo Controlled Galacto-Oligosaccharides Intervention in Young Females. Nutrients, 2021, 13, 4384.	4.1	2
11	Amygdala Circuitry During Neurofeedback Training and Symptoms' Change in Adolescents With Varying Depression. Frontiers in Behavioral Neuroscience, 2020, 14, 110.	2.0	14
12	Training the anxious brain: using fMRIâ€based neurofeedback to change brain activity in adolescence. Developmental Medicine and Child Neurology, 2020, 62, 1239-1244.	2.1	6
13	Training negative connectivity patterns between the dorsolateral prefrontal cortex and amygdala through fMRI-based neurofeedback to target adolescent socially-avoidant behaviour. Behaviour Research and Therapy, 2020, 135, 103760.	3.1	5
14	Can we predict realâ€ŧime <scp>fMRI</scp> neurofeedback learning success from pretraining brain activity?. Human Brain Mapping, 2020, 41, 3839-3854.	3.6	27
15	Modulatory effects of dynamic fMRI-based neurofeedback on emotion regulation networks in adolescent females. NeuroImage, 2020, 220, 117053.	4.2	17
16	Increased Intrinsic Functional Connectivity in Families Genetically Enriched for Social Anxiety. Biological Psychiatry, 2020, 87, S296-S297.	1.3	1
17	Current progress in real-time functional magnetic resonance-based neurofeedback: Methodological challenges and achievements. NeuroImage, 2019, 202, 116107.	4.2	77
18	Process-based framework for precise neuromodulation. Nature Human Behaviour, 2019, 3, 436-445.	12.0	56

KATHRIN COHEN KADOSH

#	Article	IF	CITATIONS
19	A systematic review of the psychological factors that influence neurofeedback learning outcomes. NeuroImage, 2019, 185, 545-555.	4.2	87
20	Why a developmental cognitive neuroscience approach may be key for future-proofing microbiota-gut-brain research. Behavioral and Brain Sciences, 2019, 42, .	0.7	6
21	Subclinically Anxious Adolescents Do Not Display Attention Biases When Processing Emotional Faces – An Eye-Tracking Study. Frontiers in Psychology, 2018, 9, 1584.	2.1	3
22	When change is the only constant: The promise of longitudinal neuroimaging in understanding social anxiety disorder. Developmental Cognitive Neuroscience, 2018, 33, 73-82.	4.0	7
23	Investigating the effectiveness of brief cognitive reappraisal training to reduce fear in adolescents. Cognition and Emotion, 2017, 31, 806-815.	2.0	13
24	Attention allocation and social worries predict interpretations of peer-related social cues in adolescents. Developmental Cognitive Neuroscience, 2017, 25, 105-112.	4.0	15
25	Development holds the key to understanding the interplay of nature versus nurture in shaping the individual. Developmental Cognitive Neuroscience, 2017, 25, 1-4.	4.0	3
26	384. Using Functional-Connectivity Neurofeedback to Change Emotion Regulation Networks in Pre-Clinically Anxious Adolescents. Biological Psychiatry, 2017, 81, S157.	1.3	1
27	Using real-time fMRI to influence effective connectivity in the developing emotion regulation network. NeuroImage, 2016, 125, 616-626.	4.2	98
28	Measuring online interpretations and attributions of social situations: Links with adolescent social anxiety. Journal of Behavior Therapy and Experimental Psychiatry, 2016, 50, 250-256.	1.2	40
29	Social anxiety disorder in adolescence: How developmental cognitive neuroscience findings may shape understanding and interventions for psychopathology. Developmental Cognitive Neuroscience, 2015, 13, 11-20.	4.0	93
30	Linking <scp>GABA</scp> and glutamate levels to cognitive skill acquisition during development. Human Brain Mapping, 2015, 36, 4334-4345.	3.6	57
31	Psychotic Experiences, Working Memory, and the Developing Brain: A Multimodal Neuroimaging Study. Cerebral Cortex, 2015, 25, 4828-4838.	2.9	23
32	High trait anxiety during adolescence interferes with discriminatory context learning. Neurobiology of Learning and Memory, 2015, 123, 50-57.	1.9	20
33	Age-related changes in attentional control across adolescence: how does this impact emotion regulation capacities?. Frontiers in Psychology, 2014, 5, 111.	2.1	32
34	Plasticity during childhood and adolescence: innovative approaches to investigating neurocognitive development. Developmental Science, 2013, 16, 574-583.	2.4	55
35	Differential face-network adaptation in children, adolescents and adults. NeuroImage, 2013, 69, 11-20.	4.2	46
36	Differentiating core and co-opted mechanisms in calculation: The neuroimaging of calculation in aphasia. Brain and Cognition, 2013, 82, 254-264.	1.8	9

KATHRIN COHEN KADOSH

#	Article	IF	CITATIONS
37	Effects of Age, Task Performance, and Structural Brain Development on Face Processing. Cerebral Cortex, 2013, 23, 1630-1642.	2.9	68
38	THE ROLE OF PEER REJECTION IN ADOLESCENT DEPRESSION. Depression and Anxiety, 2013, 30, 809-821.	4.1	189
39	A developmental angle to understanding the mechanisms of biased cognitions in social anxiety. Frontiers in Human Neuroscience, 2013, 7, 846.	2.0	29
40	What can emerging cortical face networks tell us about mature brain organisation?. Developmental Cognitive Neuroscience, 2011, 1, 246-255.	4.0	23
41	The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies. Neuroscience and Biobehavioral Reviews, 2011, 35, 1654-1664.	6.1	311
42	Investigating face-property specific processing in the right OFA. Social Cognitive and Affective Neuroscience, 2011, 6, 58-65.	3.0	38
43	Developmental Changes in Effective Connectivity in the Emerging Core Face Network. Cerebral Cortex, 2011, 21, 1389-1394.	2.9	118
44	Differing Processing Abilities for Specific Face Properties in Mid-Childhood and Adulthood. Frontiers in Psychology, 2011, 2, 400.	2.1	15
45	Task-dependent Activation of Face-sensitive Cortex: An fMRI Adaptation Study. Journal of Cognitive Neuroscience, 2010, 22, 903-917.	2.3	97
46	Mapping functional brain development: Building a social brain through interactive specialization Developmental Psychology, 2009, 45, 151-159.	1.6	166
47	Processing conflicting information: Facilitation, interference, and functional connectivity. Neuropsychologia, 2008, 46, 2872-2879.	1.6	52
48	The Brain Locus of Interaction between Number and Size: A Combined Functional Magnetic Resonance Imaging and Event-related Potential Study. Journal of Cognitive Neuroscience, 2007, 19, 957-970.	2.3	169
49	The Neuronal Correlate of Bidirectional Synesthesia: A Combined Event-related Potential and Functional Magnetic Resonance Imaging Study. Journal of Cognitive Neuroscience, 2007, 19, 2050-2059.	2.3	120
50	Developing a cortex specialized for face perception. Trends in Cognitive Sciences, 2007, 11, 367-369.	7.8	187
51	Notation-Dependent and -Independent Representations of Numbers in the Parietal Lobes. Neuron, 2007, 53, 307-314.	8.1	278
52	Virtual Dyscalculia Induced by Parietal-Lobe TMS Impairs Automatic Magnitude Processing. Current Biology, 2007, 17, 689-693.	3.9	248
53	Mental Chronometry of Working Memory Retrieval: A Combined Functional Magnetic Resonance Imaging and Event-Related Potentials Approach. Journal of Neuroscience, 2006, 26, 821-829.	3.6	131