
Terry M Bricker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2393208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The extrinsic proteins of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 121-142.	1.0	260
2	The structure and function of CPa-1 and CPa-2 in Photosystem II. Photosynthesis Research, 1990, 24, 1-13.	2.9	231
3	Oxygen evolution in the absence of the 33-kilodalton manganese-stabilizing protein. Biochemistry, 1992, 31, 4623-4628.	2.5	130
4	The Manganese-stabilizing Protein Is Required for Photosystem II Assembly/Stability and Photoautotrophy in Higher Plants. Journal of Biological Chemistry, 2005, 280, 16170-16174.	3.4	129
5	The PsbP Protein Is Required for Photosystem II Complex Assembly/Stability and Photoautotrophy in Arabidopsis thaliana. Journal of Biological Chemistry, 2007, 282, 24833-24841.	3.4	110
6	Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2988-2993.	7.1	109
7	Close association of the 33 kDa extrinsic protein with the apoprotein of CPa1 in photosystem II. FEBS Letters, 1988, 231, 111-117.	2.8	104
8	The structure and function of CP47 and CP43 in Photosystem II. Photosynthesis Research, 2002, 72, 131-146.	2.9	103
9	Isolation of a highly active Photosystem II preparation from Synechocystis 6803 using a histidine-tagged mutant of CP 47. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1409, 50-57.	1.0	100
10	Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. Molecular Plant Pathology, 2006, 7, 405-416.	4.2	93
11	The extrinsic proteins of photosystem II: update. Planta, 2016, 243, 889-908.	3.2	93
12	Interaction of CPa-1 with the manganese-stabilizing protein of photosystem II: identification of 5616-5620.	2.5	90
13	The PsbQ Protein Is Required in Arabidopsis for Photosystem II Assembly/Stability and Photoautotrophy under Low Light Conditions. Journal of Biological Chemistry, 2006, 281, 26260-26267.	3.4	88
14	The structure and function of the 33 kDa extrinsic protein of Photosystem II: A critical assessment. Photosynthesis Research, 1998, 56, 157-173.	2.9	86
15	Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant Photosystem II: A critical analysis. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 165-178.	3.8	74
16	High Yield Non-detergent Isolation of Photosystem I-Light-harvesting Chlorophyll II Membranes from Spinach Thylakoids. Journal of Biological Chemistry, 2015, 290, 18429-18437.	3.4	67
17	Characterization of a spinach photosystem II core preparation isolated by a simplified method. Archives of Biochemistry and Biophysics, 1985, 237, 170-176.	3.0	63
18	The PsbP protein, but not the PsbQ protein, is required for normal thylakoid architecture in <i>Arabidopsis thaliana</i> . FEBS Letters, 2009, 583, 2142-2147.	2.8	62

#	Article	IF	CITATIONS
19	MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. Molecular Plant, 2016, 9, 245-260.	8.3	62
20	Use of a monoclonal antibody in structural investigations of the 49-kDa polypeptide of photosystem II. Archives of Biochemistry and Biophysics, 1987, 256, 295-301.	3.0	55
21	Site-directed mutagenesis of the CPa-1 protein of photosystem II: Alteration of the basic residue pair 384,385R to 384,385G leads to a defect associated with the oxygen-evolving complex. Biochemistry, 1992, 31, 11482-11488.	2.5	54
22	Interaction of the 33 kDa Extrinsic Protein with Photosystem II:Â Rebinding of the 33 kDa Extrinsic Protein to Photosystem II Membranes Which Contain Four, Two, or Zero Manganese per Photosystem II Reaction Centerâ€. Biochemistry, 1996, 35, 4551-4557.	2.5	51
23	Interaction of CPa-1 with the manganese-stabilizing protein of photosystem II: identification of domains on CPa-1 which are shielded from N-hydroxysuccinimide biotinylation by the manganese-stabilizing protein. Biochemistry, 1992, 31, 11059-11064.	2.5	49
24	Site-Directed Mutagenesis of the CP 47 Protein of Photosystem II: Alteration of Conserved Charged Residues in the Domain364Eâ^'444Râ€. Biochemistry, 1996, 35, 4046-4053.	2.5	49
25	Identification of Oxidized Amino Acid Residues in the Vicinity of the Mn ₄ CaO ₅ Cluster of Photosystem II: Implications for the Identification of Oxygen Channels within the Photosystem. Biochemistry, 2012, 51, 6371-6377.	2.5	49
26	Multiple LHCII antennae can transfer energy efficiently to a single Photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 371-378.	1.0	49
27	Secondary structure of the 33 kDa, extrinsic protein of photosystem II: a far-UV circular dichroism study. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1188, 427-431.	1.0	48
28	Site-Directed Mutagenesis of Basic Arginine Residues 305 and 342 in the CP 43 Protein of Photosystem II Affects Oxygen-Evolving Activity in Synechocystis 6803. Biochemistry, 1999, 38, 1582-1588.	2.5	45
29	The azido[14 C]atrazine photoaffinity technique labels a 34-kDa protein in Scenedesmus which functions on the oxidizing side of photosystem II. FEBS Letters, 1985, 185, 191-196.	2.8	44
30	Site-Directed Mutagenesis of Glutamate Residues in the Large Extrinsic Loop of the Photosystem II Protein CP 43 Affects Oxygen-Evolving Activity and PS II Assemblyâ€. Biochemistry, 1999, 38, 15994-16000.	2.5	42
31	Site-Directed Mutagenesis of the CP47 Protein of Photosystem II: Alteration of the Basic Residue 448R to 448G Prevents the Assembly of Functional Photosystem II Centers under Chloride-Limiting Conditions. Biochemistry, 1994, 33, 10770-10776.	2.5	41
32	Interaction of the 33-kDa extrinsic protein with photosystem II: Identification of domains on the 33-kDa protein that are shielded from NHS-biotinylation by photosystem II Biochemistry, 1995, 34, 7492-7497.	2.5	40
33	The PsbP family of proteins. Photosynthesis Research, 2013, 116, 235-250.	2.9	40
34	Documentation of Significant Electron Transport Defects on the Reducing Side of Photosystem II upon Removal of the PsbP and PsbQ Extrinsic Proteins. Biochemistry, 2010, 49, 36-41.	2.5	39
35	Hydrodynamic Studies on the Manganese-Stabilizing Protein of Photosystem II. Biochemistry, 1998, 37, 13553-13558.	2.5	36
36	The Extrinsic Proteins of Photosystem II. , 2005, , 95-120.		35

#	Article	IF	CITATIONS
37	Triton X-114 phase-fractionation of maize thylakoid membranes in the investigation of thylakoid protein topology. FEBS Letters, 1982, 149, 197-202.	2.8	34
38	Developmental Defects in Mutants of the PsbP Domain Protein 5 in Arabidopsis thaliana. PLoS ONE, 2011, 6, e28624.	2.5	33
39	The Malic Enzyme Is Required for Optimal Photoautotrophic Growth of <i>Synechocystis</i> sp. Strain PCC 6803 under Continuous Light but Not under a Diurnal Light Regimen. Journal of Bacteriology, 2004, 186, 8144-8148.	2.2	32
40	Characterization and complementation of a psbR mutant in Arabidopsis thaliana. Archives of Biochemistry and Biophysics, 2009, 489, 34-40.	3.0	32
41	Carboxylate Groups on the Manganese-Stabilizing Protein Are Required for Its Efficient Binding to Photosystem Ilâ€. Biochemistry, 1999, 38, 14271-14278.	2.5	31
42	Effects of chloride on paramagnetic coupling of manganese in calcium chloride-washed photosystem Il preparations. FEBS Letters, 1986, 202, 235-239.	2.8	30
43	Use of protein cross-linking and radiolytic footprinting to elucidate PsbP and PsbQ interactions within higher plant Photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16178-16183.	7.1	30
44	Triton X-114 phase fractionation of membrane proteins of the cyanobacterium Anacystis nidulans R2. Archives of Biochemistry and Biophysics, 1984, 235, 204-211.	3.0	29
45	Epitope mapping of the monoclonal antibody FAC2 on the apoprotein of CPa-1 in photosystem II. FEBS Letters, 1989, 257, 279-282.	2.8	29
46	Functional Analysis of Photosystem II in a PsbO-1-Deficient Mutant in Arabidopsis thaliana. Biochemistry, 2007, 46, 7607-7613.	2.5	28
47	Radiolytic Mapping of Solvent-Contact Surfaces in Photosystem II of Higher Plants. Journal of Biological Chemistry, 2013, 288, 23565-23572.	3.4	26
48	Oxidized Amino Acid Residues in the Vicinity of QA and PheoD1 of the Photosystem II Reaction Center: Putative Generation Sites of Reducing-Side Reactive Oxygen Species. PLoS ONE, 2013, 8, e58042.	2.5	26
49	Regulation of photosynthetic cyclic electron flow pathways by adenylate status in higher plant chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 148081.	1.0	26
50	Tocopherol controls D1 amino acid oxidation by oxygen radicals in Photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
51	The effects of simultaneous RNAi suppression of PsbO and PsbP protein expression in photosystem II of Arabidopsis. Photosynthesis Research, 2008, 98, 439-448.	2.9	24
52	The psbo1 Mutant of Arabidopsis Cannot Efficiently Use Calcium in Support of Oxygen Evolution by Photosystem II. Journal of Biological Chemistry, 2008, 283, 29022-29027.	3.4	24
53	Four Novel Genes Required for Optimal Photoautotrophic Growth of the Cyanobacterium Synechocystis sp. Strain PCC 6803 Identified by In Vitro Transposon Mutagenesis. Journal of Bacteriology, 2004, 186, 875-879.	2.2	23
54	Site-directed mutagenesis of the basic residues 321K to 321G in the CP 47 protein of photosystem II alters the chloride requirement for growth and oxygen-evolving activity in Synechocystis 6803. , 1997, 34, 455-463.		22

#	Article	IF	CITATIONS
55	Carboxylate Groups on the Manganese-Stabilizing Protein Are Required for Efficient Binding of the 24 kDa Extrinsic Protein to Photosystem Ilâ€. Biochemistry, 2003, 42, 2056-2061.	2.5	22
56	Association of the 17-kDa Extrinsic Protein with Photosystem II in Higher Plantsâ€. Biochemistry, 2005, 44, 15216-15221.	2.5	20
57	The PsbP Domain Protein 1 Functions in the Assembly of Lumenal Domains in Photosystem I. Journal of Biological Chemistry, 2014, 289, 23776-23785.	3.4	20
58	Introduction to Oxygen Evolution and the Oxygen-Evolving Complex. , 1996, , 113-136.		20
59	Recent advances in the use of mass spectrometry to examine structure/function relationships in photosystem II. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 227-246.	3.8	19
60	Introduction of the 305Arg→305Ser mutation in the large extrinsic loop E of the CP43 protein of Synechocystis sp. PCC 6803 leads to the loss of cytochrome c550 binding to Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 92-96.	1.0	15
61	Alterations of the Oxygen-Evolving Apparatus Induced by a305Arg →305Ser Mutation in the CP43 Protein of Photosystem II fromSynechocystissp. PCC 6803 under Chloride-Limiting Conditionsâ€. Biochemistry, 2002, 41, 15747-15753.	2.5	14
62	Alterations of the Oxygen-Evolving Apparatus in a448Arg →448S Mutant in the CP47 Protein of Photosystem II under Normal and Low Chloride Conditionsâ€. Biochemistry, 2001, 40, 11483-11489.	2.5	13
63	Site-directed mutagenesis of the CP 47 protein of photosystem II: alteration of conserved charged residues which lie within lethal deletions of the large extrinsic loop E. Plant Molecular Biology, 1996, 32, 1191-1195.	3.9	12
64	Isolation of lumenal proteins from spinach thylakoid membranes by Triton X-114 phase partitioning. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1503, 350-356.	1.0	12
65	Site-directed mutagenesis of the CP 47 protein of photosystem II: 167W in the lumenally exposed loop C is required for photosystem II assembly and stability. Plant Molecular Biology, 1996, 32, 537-542.	3.9	11
66	Natively oxidized amino acid residues in the spinach cytochrome b 6 f complex. Photosynthesis Research, 2018, 137, 141-151.	2.9	11
67	Natively oxidized amino acid residues in the spinach PS I-LHC I supercomplex. Photosynthesis Research, 2020, 143, 263-273.	2.9	11
68	Kinetic characterization of His-tagged CP47 Photosystem II in Synechocystis sp. PCC6803. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1460, 384-389.	1.0	10
69	Functional complementation of the Arabidopsis thaliana psbo1 mutant phenotype with an N-terminally His6-tagged PsbO-1 protein in photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1029-1038.	1.0	9
70	Integration of Apo-α-Phycocyanin into Phycobilisomes and Its Association with FNRL in the Absence of the Phycocyanin α-Subunit Lyase (CpcF) in Synechocystis sp. PCC 6803. PLoS ONE, 2014, 9, e105952.	2.5	9
71	Random mutagenesis in the large extrinsic loop E and transmembrane alpha-helix VI of the CP 47 protein of Photosystem II. Plant Molecular Biology, 1999, 39, 381-386.	3.9	8
72	elFiso4G Augments the Synthesis of Specific Plant Proteins Involved in Normal Chloroplast Function. Plant Physiology, 2019, 181, 85-96.	4.8	8

#	Article	IF	CITATIONS
73	The Sll0606 Protein Is Required for Photosystem II Assembly/Stability in the Cyanobacterium Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2010, 285, 32047-32054.	3.4	7
74	A time-resolved vibrational spectroscopy glimpse into the oxygen-evolving complex of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7205-7206.	7.1	5
75	N-Terminal Lipid Modification Is Required for the Stable Accumulation of CyanoQ in Synechocystis sp. PCC 6803. PLoS ONE, 2016, 11, e0163646.	2.5	5
76	Identification of Two Genes, sll0804 and slr1306, as Putative Components of the CO ₂ -Concentrating Mechanism in the Cyanobacterium <i>Synechocystis</i> sp. Strain PCC 6803. Journal of Bacteriology, 2008, 190, 8234-8237.	2.2	4
77	Photoheterotrophic growth of Physcomitrella patens. Planta, 2014, 239, 605-613.	3.2	4
78	Oxidative modification of LHC II associated with photosystem II and PS I-LHC I-LHC II membranes. Photosynthesis Research, 2022, 152, 261-274.	2.9	4
79	Use of Protein Cross-Linking and Radiolytic Labeling To Elucidate the Structure of PsbO within Higher-Plant Photosystem II. Biochemistry, 2016, 55, 3204-3213.	2.5	3
80	[22] Directed mutagenesis in photosystem II: Analysis of the CP 47 protein. Methods in Enzymology, 1998, 297, 320-337.	1.0	1