
Ryoichi Kuwano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic Asymmetric Hydrogenation of Arenes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 1125-1135.	0.1	0
2	Economical and Readily Accessible Preparation of <i>o</i> , <i>o</i> -Disubstituted Arylboronates through Palladium-Catalyzed Borylation of Haloarenes. Organic Letters, 2021, 23, 9649-9653.	4.6	4
3	Room-Temperature Benzylic Alkylation of Benzylic Carbonates: Improvement of Palladium Catalyst and Mechanistic Study. Organic Process Research and Development, 2019, 23, 1568-1579.	2.7	9
4	Asymmetric Hydrogenation of Aromatic Carbocycles. , 2019, , 97-108.		3
5	Ruthenium-Catalyzed Chemo- and Enantioselective Hydrogenation of Isoquinoline Carbocycles. Journal of Organic Chemistry, 2018, 83, 3829-3839.	3.2	33
6	Palladium-Catalyzed Decarboxylation of Benzyl Fluorobenzoates. Synlett, 2017, 28, 2573-2576.	1.8	7
7	Palladium-catalyzed Benzylic Substitution of Benzyl Carbonates with Phosphorus Nucleophiles. Chemistry Letters, 2017, 46, 1814-1817.	1.3	15
8	Asymmetric Hydrogenation of Azaindoles: Chemo- and Enantioselective Reduction of Fused Aromatic Ring Systems Consisting of Two Heteroarenes. Angewandte Chemie, 2016, 128, 12038-12041.	2.0	8
9	Asymmetric Hydrogenation of Azaindoles: Chemo―and Enantioselective Reduction of Fused Aromatic Ring Systems Consisting of Two Heteroarenes. Angewandte Chemie - International Edition, 2016, 55, 11859-11862.	13.8	23
10	Asymmetric Hydrogenation of Isoxazolium Triflates with a Chiral Iridium Catalyst. Chemistry - A European Journal, 2016, 22, 8610-8618.	3.3	18
11	Catalytic Asymmetric Hydrogenation of Pyrimidines. Angewandte Chemie, 2015, 127, 2423-2426.	2.0	18
12	Catalytic Asymmetric Hydrogenation of Pyrimidines. Angewandte Chemie - International Edition, 2015, 54, 2393-2396.	13.8	55
13	Catalytic asymmetric hydrogenation of quinoline carbocycles: unusual chemoselectivity in the hydrogenation of quinolines. Chemical Communications, 2015, 51, 7558-7561.	4.1	64
14	Catalytic Asymmetric Hydrogenation of Heteroarenes and Arenes. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 715-719.	1.6	3
15	An Improvement of the Palladium-Catalyzed [4+2] Cycloaddition of o-(Silylmethyl)benzyl Carbonates with Alkenes. Synlett, 2014, 25, 2488-2492.	1.8	1
16	Unsymmetric indolylmaleimides: Synthesis, photophysical properties and amyloid detection. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 289, 39-46.	3.9	4
17	β-Amination of Saturated Nitriles through Palladium-catalyzed Dehydrogenation, 1,4-Addition, and Re-dehydrogenation. Chemistry Letters, 2013, 42, 40-42.	1.3	11
18	Synthesis of 4-Quinolones through Nickel-Catalyzed Intramolecular Amination on the β-Carbon of o-(N-Alkylamino)propiophenones. Synlett, 2012, 23, 1639-1642.	1.8	15

#	Article	IF	CITATIONS
19	Intramolecular S _N ′-Type Aromatic Substitution of Benzylic Carbonates at their Para-Position. Organic Letters, 2012, 14, 338-341.	4.6	43
20	Catalytic Asymmetric Hydrogenation of 3-Substituted Benzisoxazoles. Molecules, 2012, 17, 6901-6915.	3.8	12
21	Catalytic Asymmetric Hydrogenation of Naphthalenes. Angewandte Chemie - International Edition, 2012, 51, 4136-4139.	13.8	96
22	Usage of the Carboxylate Leaving Group in Transition-metal-catalyzed Cross-coupling and Related Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 1263-1270.	0.1	12
23	An Improvement of Nickel Catalyst for Cross-coupling Reaction of Arylboronic Acids with Aryl Carbonates by Using a Ferrocenyl Bisphosphine Ligand. Chemistry Letters, 2011, 40, 913-915.	1.3	41
24	Catalytic Asymmetric Hydrogenation of N-Boc-Imidazoles and Oxazoles. Journal of the American Chemical Society, 2011, 133, 7312-7315.	13.7	118
25	Transformation of α-Substituted Propanols into γ-Amino Alcohols through Nickel-Catalyzed Amination on the Terminal γ-Carbon of Propanols. Synlett, 2011, 2011, 1303-1307.	1.8	14
26	Selective <i>cine</i> â€Substitution of 1â€Arylethenyl Acetates with Arylboron Reagents and a Diene/Rhodium Catalyst. Angewandte Chemie - International Edition, 2010, 49, 6396-6399.	13.8	43
27	Palladium-Catalyzed N-Arylation of Bis(ortho-substituted aryl)amines: an Efficient Method for Preparing Sterically Congested Triarylamines. Synlett, 2010, 2010, 1819-1824.	1.8	13
28	Palladium-Catalyzed [4 + 2] Cycloaddition of <i>o</i> -(Silylmethyl)benzyl Esters with Ketones: An Equivalent to Oxo-Dielsâ^'Alder Reaction of <i>o</i> -Xylylenes. Organic Letters, 2010, 12, 4332-4334.	4.6	28
29	Fluorescence and chemiluminescence properties of indolyImaleimides: experimental and theoretical studies. Physical Chemistry Chemical Physics, 2010, 12, 9783.	2.8	11
30	Nickelâ€Catalyzed Formation of a Carbon–Nitrogen Bond at the βâ€Position of Saturated Ketones. Angewandte Chemie - International Edition, 2009, 48, 4543-4545.	13.8	94
31	Rhodiumâ€Catalyzed Crossâ€Coupling of Organoboron Compounds with Vinyl Acetate. Angewandte Chemie - International Edition, 2009, 48, 7217-7220.	13.8	85
32	[4+2] Cycloaddition of <i>o</i> -Xylylenes with Imines Using Palladium Catalyst. Journal of the American Chemical Society, 2009, 131, 12904-12905.	13.7	40
33	Catalytic Transformations of Benzylic Carboxylates and Carbonates. Synthesis, 2009, 2009, 1049-1061.	2.3	91
34	Palladium-catalyzed Nucleophilic Substitution of Benzylic Esters. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 219-228.	0.1	2
35	Catalytic Asymmetric Hydrogenation of 2,3,5-Trisubstituted Pyrroles. Journal of the American Chemical Society, 2008, 130, 808-809.	13.7	157
36	Benzyl Protection of Phenols under Neutral Conditions: Palladium-Catalyzed Benzylations of Phenols. Organic Letters, 2008, 10, 1979-1982.	4.6	71

#	Article	IF	CITATIONS
37	Suzuki-Miyaura Coupling of Diarylmethyl Carbonates with Arylboronic Acids:  A New Access to Triarylmethanes. Organic Letters, 2008, 10, 973-976.	4.6	109
38	Palladium-catalyzed Cross-coupling of Benzylic Carbonates with Organostannanes. Chemistry Letters, 2008, 37, 796-797.	1.3	26
39	Catalytic Asymmetric Hydrogenation of 5-Membered Heteroaromatics. Heterocycles, 2008, 76, 909.	0.7	192
40	Suzuki-Miyaura Coupling of Benzylic Carbonates with Heteroarylboronic Acids. Heterocycles, 2007, 74, 233.	0.7	18
41	Palladium-catalyzed Nucleophilic Substitution of Diarylmethyl Carbonates with Malonate Carbanions. Chemistry Letters, 2007, 36, 528-529.	1.3	29
42	Bisindolylmaleimides with Large Stokes Shift and Long-Lasting Chemiluminescence Properties. Organic Letters, 2007, 9, 3583-3586.	4.6	45
43	Palladium-Catalyzed Formal [4+2] Cycloaddtion ofo-Xylylenes with Olefins. Journal of the American Chemical Society, 2007, 129, 3802-3803.	13.7	42
44	Catalytic Asymmetric Hydrogenation of Heteroaromatic Compounds, Indoles. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 109-118.	0.1	7
45	Use of acetate as a leaving group in palladium-catalyzed nucleophilic substitution of benzylic esters. Tetrahedron Letters, 2007, 48, 6109-6112.	1.4	32
46	Ruthenium-Catalyzed Asymmetric Hydrogenation of N-Boc-Indoles. Organic Letters, 2006, 8, 2653-2655.	4.6	191
47	Catalytic asymmetric hydrogenation of indoles using a rhodium complex with a chiral bisphosphine ligand PhTRAP. Tetrahedron: Asymmetry, 2006, 17, 521-535.	1.8	116
48	Potassium Fluoride-induced 1,4-Elimination ofo-[(Trimethylsilyl)methyl]benzyl Acetates: A Versatile Generation ofo-Quinodimethanes. Chemistry Letters, 2005, 34, 728-729.	1.3	15
49	Palladium-Catalyzed Benzylation of Active Methine Compounds Without Additional Base: Remarkable Effect of 1,5-Cyclooctadiene ChemInform, 2005, 36, no.	0.0	Ο
50	Suzuki—Miyaura Cross-Coupling of Benzylic Carbonates with Arylboronic Acids ChemInform, 2005, 36, no.	0.0	0
51	Potassium Fluoride-Induced 1,4-Elimination of o-[(Trimethylsilyl)methyl]benzyl Acetates: A Versatile Generation of o-Quinodimethanes ChemInform, 2005, 36, no.	0.0	Ο
52	Transformation of Carbonates into Sulfones at the Benzylic Position via Palladium-Catalyzed Benzylic Substitution ChemInform, 2005, 36, no.	0.0	0
53	Asymmetric Carroll Rearrangement of Allyl α-Acetamido-β-ketocarboxylates Catalyzed by a Chiral Palladium Complex ChemInform, 2005, 36, no.	0.0	0
54	Cross-coupling of benzylic acetates with arylboronic acids: one-pot transformation of benzylic alcohols to diarylmethanes. Chemical Communications, 2005, , 5899.	4.1	82

#	Article	IF	CITATIONS
55	Asymmetric Carroll rearrangement of allyl α-acetamido-β-ketocarboxylates catalysed by a chiral palladium complex. Chemical Communications, 2005, , 3951.	4.1	54
56	Transformation of Carbonates into Sulfones at the Benzylic Position via Palladium-Catalyzed Benzylic Substitution. Organic Letters, 2005, 7, 2973-2975.	4.6	56
57	Suzukiâ^'Miyaura Cross-Coupling of Benzylic Carbonates with Arylboronic Acids. Organic Letters, 2005, 7, 945-947.	4.6	117
58	Palladium-Catalyzed Nucleophilic Benzylic Substitutions of Benzylic Esters ChemInform, 2004, 35, no.	0.0	0
59	A trans-Chelating Bisphosphine Possessing only Planar Chirality and Its Application to Catalytic Asymmetric Reactions ChemInform, 2004, 35, no.	0.0	0
60	A trans-chelating bisphosphine possessing only planar chirality and its application to catalytic asymmetric reactions. Tetrahedron: Asymmetry, 2004, 15, 2263-2271.	1.8	44
61	Palladium-Catalyzed Benzylation of Active Methine Compounds without Additional Base:  Remarkable Effect of 1,5-Cyclooctadiene. Organic Letters, 2004, 6, 3545-3547.	4.6	64
62	Highly Enantioselective Synthesis of Chiral 3-Substituted Indolines by Catalytic Asymmetric Hydrogenation of Indoles. Organic Letters, 2004, 6, 2213-2215.	4.6	152
63	Aqueous Hydroxide as a Base for Palladium-Catalyzed Amination of Aryl Chlorides and Bromides ChemInform, 2003, 34, no.	0.0	0
64	Unparalleled Rates for the Activation of Aryl Chlorides and Bromides: Coupling with Amines and Boronic Acids in Minutes at Room Temperature ChemInform, 2003, 34, no.	0.0	0
65	Rhodium-Catalyzed anti-Markovnikov Hydroamination of Vinylarenes ChemInform, 2003, 34, no.	0.0	0
66	Asymmetric Allylation of Unsymmetrical 1,3-Diketones Using a BINAP—Palladium Catalyst ChemInform, 2003, 34, no.	0.0	0
67	Palladium-Catalyzed Nucleophilic Benzylic Substitutions of Benzylic Esters. Journal of the American Chemical Society, 2003, 125, 12104-12105.	13.7	146
68	Asymmetric Allylation of Unsymmetrical 1,3-Diketones Using a BINAPâ^'Palladium Catalyst. Organic Letters, 2003, 5, 2177-2179.	4.6	67
69	Rhodium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes. Journal of the American Chemical Society, 2003, 125, 5608-5609.	13.7	241
70	Aqueous Hydroxide as a Base for Palladium-Catalyzed Amination of Aryl Chlorides and Bromides. Journal of Organic Chemistry, 2002, 67, 6479-6486.	3.2	147
71	Unparalleled Rates for the Activation of Aryl Chlorides and Bromides: Coupling with Amines and Boronic Acids in Minutes at Room Temperature. Angewandte Chemie - International Edition, 2002, 41, 4746-4748.	13.8	373
72	Asymmetric Hydrosilylation of Ketones UsingTrans-Chelating Chiral Peralkylbisphosphine Ligands Bearing Primary Alkyl Substituents on Phosphorus Atoms. Bulletin of the Chemical Society of Japan, 2000, 73, 485-496.	3.2	60

#	Article	IF	CITATIONS
73	Catalytic Asymmetric Hydrogenation ofα-(Acetamido)acrylates Using TRAP Trans-Chelating Chiral Bisphosphine Ligands: Remarkable Effects of LigandP-Substituent and Hydrogen Pressure on Enantioselectivity. Bulletin of the Chemical Society of Japan, 2000, 73, 2571-2578.	3.2	49
74	Hydrogenation of Five-Membered Heteroaromatic Compounds Catalyzed by a Rhodium-Phosphine Complex. Chemistry Letters, 2000, 29, 428-429.	1.3	14
75	Asymmetric aldol reaction of 2-cyanopropionates catalyzed by a trans-chelating chiral diphosphine–rhodium(I) complex: highly enantioselective construction of quaternary chiral carbon centers at α-positions of nitriles. Journal of Organometallic Chemistry, 2000, 603, 18-29.	1.8	38
76	Catalytic Asymmetric Hydrogenation of Heteroaromatic Compounds, Indoles. Journal of the American Chemical Society, 2000, 122, 7614-7615.	13.7	282
77	Synthesis of a trans-chelating chiral diphosphine ligand with only planar chirality and its application to asymmetric hydrosilylation of ketones. Tetrahedron Letters, 1999, 40, 1327-1330.	1.4	76
78	Catalytic asymmetric hydrogenation of 1-aza-2-cycloalkene-2-carboxylates catalyzed by a trans-chelating chiral diphosphine PhTRAP-rhodium complex. Tetrahedron Letters, 1999, 40, 9045-9049.	1.4	22
79	Enantioselective Construction of Quaternary α-Carbon Centers on α-Amino Phosphonates via Catalytic Asymmetric Allylation. Organic Letters, 1999, 1, 837-839.	4.6	73
80	Asymmetric Hydrogenation of 1,4,5,6-Tetrahydropyrazine-2-(N-tert-butyl)carboxamide Catalyzed by Trans-Chelating Chiral Diphosphineâ^'Rhodium Complexes. Journal of Organic Chemistry, 1999, 64, 1232-1237.	3.2	43
81	Design and Synthesis of Optically Active Trans-Chelating Diphosphine Ligands. Application for Catalytic Asymmetric Synthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 469-472.	1.6	10
82	Catalytic Asymmetric Allylation of Prochiral Nucleophiles, α-Acetamido-β-ketoesters. Journal of the American Chemical Society, 1999, 121, 3236-3237.	13.7	123
83	Addition of Isocyanocarboxylates to Aldehydes. , 1999, , 1067-1074.		1
84	Reduction of amides to amines via catalytic hydrosilylation by a rhodium complex. Tetrahedron Letters, 1998, 39, 1017-1020.	1.4	187
85	Asymmetric hydrogenation of (E)-α,β-bis(N-acylamino)acrylates catalyzed by a rhodium complex with trans-chelating chiral diphosphine ligand. Tetrahedron: Asymmetry, 1998, 9, 2773-2775.	1.8	33
86	Asymmetric aldol reaction of 2-cyanopropionates catalysed by trans-chelating chiral diphosphine ligand TRAP–rhodium(I) complex. Chemical Communications, 1998, , 71-72.	4.1	76
87	Catalytic Asymmetric Synthesis of β-Hydroxy-α-amino Acids: Highly Enantioselective Hydrogenation of β-Oxy-α-acetamidoacrylates. Journal of Organic Chemistry, 1998, 63, 3499-3503.	3.2	48
88	Trans-Chelating Chiral Peralkyldiphosphine Ligands (R,R)-(S,S)-2,2″-Bis[1-(dialkylphosphino)ethyl]-1,1″-biferrocenes (AlkylTRAPs) and Their Transition Metal Complexes. Bulletin of the Chemical Society of Japan, 1997, 70, 2807-2822.	3.2	38
89	Eine durch chirale Diphosphanpalladiumâ€Komplexe katalysierte enantioselektive Cycloisomerisierung von 1,6â€Eninen. Angewandte Chemie, 1996, 108, 686-687.	2.0	41
90	Enantioselective Cycloisomerization of 1,6-Enynes Catalyzed by Chiral Diphosphane–Palladium Complexes. Angewandte Chemie International Edition in English, 1996, 35, 662-663.	4.4	92

#	Article	IF	CITATIONS
91	Catalytic asymmetric hydrogenation of dimethyl itaconate with trans-chelating chiral diphosphine ligands TRAP-rhodium complexes. Tetrahedron: Asymmetry, 1995, 6, 2521-2526.	1.8	32
92	Asymmetric Hydrosilylation of Keto Esters Catalyzed by a Rhodium Complex with Trans-Chelating Chiral Diphosphine EtTRAP. Synlett, 1995, 1995, 347-348.	1.8	21
93	Enantioselective hydrogenation of .betadisubstituted .alphaacetamidoacrylates catalyzed by rhodium complexes with TRAP trans-chelating chiral phosphine ligands Journal of the American Chemical Society, 1995, 117, 9602-9603.	13.7	109
94	Synthesis and Structures of Trans-Chelating Chiral Diphosphine Ligands Bearing Aromatic P-Substituents, (S,S)-(R,R)- and (R,R)-(S,S)-2,2''-Bis[1-(diarylphosphino)ethyl]-1,1''-biferrocene (ArylTRAPs) and Their Transition Metal Complexes. Organometallics, 1995, 14, 4549-4558.	2.3	132
95	trans-Chelating Chiral Diphosphane Ligands Bearing FlexibleP-Alkyl Substituents (AlkylTRAPs) and their Application to the Rhodium-Catalyzed Asymmetric Hydrosilylation of Simple Ketones. Angewandte Chemie International Edition in English, 1994, 33, 111-113.	4.4	127
96	<i>trans</i> â€chelatisierende chirale Diphosphanliganden mit flexiblen <i>P</i> â€Alkylsubstituenten (AlkylTRAPs) und ihre Anwendung bei der Rhodiumâ€katalysierten asymmetrischen Hydrosilylierung einfacher Ketone. Angewandte Chemie, 1994, 106, 92-93.	2.0	41
97	Asymmetric Hydrogenation of Alkenes, Enones, Ene-Esters and Ene-Acids. , 0, , 35-86.		Ο