Shicheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391569/publications.pdf

Version: 2024-02-01

		23567	32842
191	11,876	58	100
papers	citations	h-index	g-index
193	193	193	11381
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrothermal Liquefaction of Macroalgae Enteromorpha prolifera to Bio-oil. Energy & amp; Fuels, 2010, 24, 4054-4061.	5.1	474
2	A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 2017, 246, 254-270.	9.6	398
3	Photocatalytic Degradation of RhB by Fluorinated Bi ₂ WO ₆ and Distributions of the Intermediate Products. Environmental Science &	10.0	351
4	Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresource Technology, 2014, 154, 209-214.	9.6	341
5	Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresource Technology, 2018, 269, 465-475.	9.6	298
6	Macroalgae for biofuels production: Progress and perspectives. Renewable and Sustainable Energy Reviews, 2015, 47, 427-437.	16.4	280
7	Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 2020, 186, 109547.	7.5	280
8	A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. Journal of Cleaner Production, 2021, 305, 127143.	9.3	252
9	A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon, 2014, 77, 627-636.	10.3	249
10	Controllable and Repeatable Synthesis of Thermally Stable Anatase Nanocrystalâ^'Silica Composites with Highly Ordered Hexagonal Mesostructures. Journal of the American Chemical Society, 2007, 129, 13894-13904.	13.7	233
11	Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresource Technology, 2017, 245, 1184-1193.	9.6	209
12	iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water Research, 2017, 108, 212-221.	11.3	204
13	Hydrochar-Facilitated Anaerobic Digestion: Evidence for Direct Interspecies Electron Transfer Mediated through Surface Oxygen-Containing Functional Groups. Environmental Science & Emp; Technology, 2020, 54, 5755-5766.	10.0	190
14	Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource Technology, 2019, 291, 121878.	9.6	177
15	Electron Spin Resonance Spin-Trapping Detection of Radical Intermediates in N-Doped TiO2-Assisted Photodegradation of 4-Chlorophenol. Journal of Physical Chemistry B, 2006, 110, 3061-3065.	2.6	160
16	Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review. Green Chemistry, 2019, 21, 1553-1572.	9.0	159
17	Hydrothermal conversion of sewage sludge: Focusing on the characterization of liquid products and their methane yields. Chemical Engineering Journal, 2019, 357, 367-375.	12.7	155
18	Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties. Journal of Solid State Chemistry, 2006, 179, 62-69.	2.9	154

#	Article	IF	Citations
19	Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye. Applied Catalysis B: Environmental, 2010, 95, 197-207.	20.2	152
20	Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria) Tj ETQq0 0 0 rgBT /Over 273, 251-258.	lock 10 Tf 9.6	50 707 Td 146
21	Facile Fabrication of Magnetic Carbon Composites from Hydrochar via Simultaneous Activation and Magnetization for Triclosan Adsorption. Environmental Science & Environmental Science & 2014, 48, 5840-5848.	10.0	144
22	Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresource Technology, 2018, 252, 76-82.	9.6	132
23	Novel and High-Performance Magnetic Carbon Composite Prepared from Waste Hydrochar for Dye Removal. ACS Sustainable Chemistry and Engineering, 2014, 2, 969-977.	6.7	131
24	Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence. Carbon, 2016, 99, 338-347.	10.3	115
25	Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Bioresource Technology, 2018, 267, 242-248.	9.6	114
26	Hydrothermal conversion of dewatered sewage sludge: Focusing on the transformation mechanism and recovery of phosphorus. Chemosphere, 2019, 228, 619-628.	8.2	113
27	Role of Hydrochar Properties on the Porosity of Hydrochar-based Porous Carbon for Their Sustainable Application. ACS Sustainable Chemistry and Engineering, 2015, 3, 833-840.	6.7	109
28	Sustainable remediation with an electroactive biochar system: mechanisms and perspectives. Green Chemistry, 2020, 22, 2688-2711.	9.0	109
29	Liquefaction of Macroalgae Enteromorpha prolifera in Sub-/Supercritical Alcohols: Direct Production of Ester Compounds. Energy & Energy & 2012, 26, 2342-2351.	5.1	108
30	Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG–FTIR and Py–GC/MS techniques. Bioresource Technology, 2015, 193, 156-163.	9.6	104
31	Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology. Environmental Pollution, 2016, 211, 20-27.	7. 5	103
32	Biogas production from hydrothermal liquefaction wastewater (HTLWW): Focusing on the microbial communities as revealed by high-throughput sequencing of full-length 16S rRNA genes. Water Research, 2016, 106, 98-107.	11.3	99
33	Fabrication and photoelectrochemical properties of porous ZnWO4 film. Journal of Solid State Chemistry, 2006, 179, 2562-2570.	2.9	97
34	Tailored design of graphitic biochar for high-efficiency and chemical-free microwave-assisted removal of refractory organic contaminants. Chemical Engineering Journal, 2020, 398, 125505.	12.7	96
35	Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 110, 11-17.	3.5	93
36	Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catalysis Today, 2018, 314, 52-61.	4.4	92

#	Article	IF	CITATIONS
37	Molecular and microbial insights towards understanding the anaerobic digestion of the wastewater from hydrothermal liquefaction of sewage sludge facilitated by granular activated carbon (GAC). Environment International, 2019, 133, 105257.	10.0	92
38	Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis. Water Research, 2016, 102, 524-532.	11.3	88
39	Production Temperature Effects on the Structure of Hydrochar-Derived Dissolved Organic Matter and Associated Toxicity. Environmental Science & Eamp; Technology, 2018, 52, 7486-7495.	10.0	86
40	Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renewable and Sustainable Energy Reviews, 2021, 152, 111722.	16.4	86
41	Fluorination of ZnWO4Photocatalyst and Influence on the Degradation Mechanism for 4-Chlorophenol. Environmental Science & Envi	10.0	83
42	Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and GC–MS/olfactometry. Sensors and Actuators B: Chemical, 2010, 146, 427-432.	7.8	81
43	Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chemistry, 2019, 21, 4341-4353.	9.0	80
44	Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction. Bioresource Technology, 2016, 220, 471-478.	9.6	77
45	Genome-Centric Metatranscriptomics Analysis Reveals the Role of Hydrochar in Anaerobic Digestion of Waste Activated Sludge. Environmental Science & En	10.0	77
46	Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Industrial & Lignin Structure amp; Engineering Chemistry Research, 2020, 59, 16957-16969.	3.7	76
47	Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2–SiO2 nanocomposites to various organic contaminants. Journal of Hazardous Materials, 2012, 229-230, 307-320.	12.4	7 5
48	Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal. RSC Advances, 2014, 4, 63620-63626.	3.6	75
49	Visible-light-driven NaTaO3â^'xNx catalyst prepared by a hydrothermal process. Materials Research Bulletin, 2008, 43, 864-872.	5.2	70
50	Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process. Green Chemistry, 2019, 21, 1668-1679.	9.0	68
51	Methane potentials of wastewater generated from hydrothermal liquefaction of rice straw: focusing on the wastewater characteristics and microbial community compositions. Biotechnology for Biofuels, 2017, 10, 140.	6.2	67
52	Hydrothermal liquefaction of rice straw with NiO nanocatalyst for bio-oil production. Renewable Energy, 2017, 113, 532-545.	8.9	65
53	Reactor performances and microbial communities of biogas reactors: effects of inoculum sources. Applied Microbiology and Biotechnology, 2016, 100, 987-995.	3.6	64
54	Molecular composition of hydrothermal liquefaction wastewater from sewage sludge and its transformation during anaerobic digestion. Journal of Hazardous Materials, 2020, 383, 121163.	12.4	64

#	Article	IF	CITATIONS
55	Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives. Science of the Total Environment, 2020, 749, 141972.	8.0	63
56	Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6990-7001.	6.7	63
57	Combined microbial transcript and metabolic analysis reveals the different roles of hydrochar and biochar in promoting anaerobic digestion of waste activated sludge. Water Research, 2021, 205, 117679.	11.3	63
58	Influences of Temperature and Metal on Subcritical Hydrothermal Liquefaction of Hyperaccumulator: Implications for the Recycling of Hazardous Hyperaccumulators. Environmental Science & Emp; Technology, 2018, 52, 2225-2234.	10.0	61
59	Advances in thermostable laccase and its current application in lignin-first biorefinery: A review. Bioresource Technology, 2020, 298, 122511.	9.6	61
60	Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents. Journal of Cleaner Production, 2020, 256, 120326.	9.3	61
61	Dimethyl Sulfide Photocatalytic Degradation in a Light-Emitting-Diode Continuous Reactor: Kinetic and Mechanistic Study. Industrial & Engineering Chemistry Research, 2011, 50, 7977-7984.	3.7	60
62	Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresource Technology, 2021, 320, 124412.	9.6	60
63	Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: Molecular and metabolic insights. Water Research, 2020, 168, 115199.	11.3	58
64	Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. Nature Communications, 2021, 12, 3159.	12.8	58
65	CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor. Journal of Hazardous Materials, 2012, 215-216, 25-31.	12.4	57
66	Hydrochar promoted anaerobic digestion of hydrothermal liquefaction wastewater: Focusing on the organic degradation and microbial community. Chemical Engineering Journal, 2020, 399, 125766.	12.7	57
67	Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants. Chemical Engineering Journal, 2022, 431, 133187.	12.7	57
68	Separation of phenolic compounds with modified adsorption resin from aqueous phase products of hydrothermal liquefaction of rice straw. Bioresource Technology, 2015, 182, 160-168.	9.6	56
69	Investigation on the Physical and Chemical Properties of Hydrochar and Its Derived Pyrolysis Char for Their Potential Application: Influence of Hydrothermal Carbonization Conditions. Energy &	5.1	56
70	Enhancement of adsorption and energy storage capacity of biomass-based N-doped porous carbon via cyclic carbothermal reduction triggered by nitrogen dopants. Carbon, 2019, 155, 403-409.	10.3	56
71	A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. Chemical Engineering Journal Advances, 2022, 10, 100263.	5.2	56
72	Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous BrÃ,nsted acid. Bioresource Technology, 2018, 247, 387-394.	9.6	55

#	Article	IF	CITATIONS
73	Swine manure valorization for phosphorus and nitrogen recovery by catalytic–thermal hydrolysis and struvite crystallization. Science of the Total Environment, 2020, 729, 138999.	8.0	53
74	Microwave-assisted depolymerization of various types of waste lignins over two-dimensional CuO/BCN catalysts. Green Chemistry, 2020, 22, 725-736.	9.0	52
75	Mesoporous bismuth titanate with visible-light photocatalytic activity. Chemical Communications, 2008, , 4977.	4.1	51
76	Selective Extraction of Bio-oil from Hydrothermal Liquefaction of Salix psammophila by Organic Solvents with Different Polarities through Multistep Extraction Separation. BioResources, 2014, 9, .	1.0	51
77	Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology, 2021, 51, 1479-1532.	12.8	50
78	CO2 activation promotes available carbonate and phosphorus of antibiotic mycelial fermentation residue-derived biochar support for increased lead immobilization. Chemical Engineering Journal, 2018, 334, 1101-1107.	12.7	49
79	Impacts of hydraulic retention time on a continuous flow mode dual-chamber microbial fuel cell for recovering nutrients from municipal wastewater. Science of the Total Environment, 2020, 734, 139220.	8.0	49
80	Microbial insights towards understanding the role of hydrochar in alleviating ammonia inhibition during anaerobic digestion. Chemical Engineering Journal, 2021, 419, 129541.	12.7	48
81	Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature. Chemosphere, 2006, 65, 2282-2288.	8.2	45
82	Observations of linear dependence between sulfate and nitrate in atmospheric particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 341-361.	3.3	45
83	Synthesis and characterization of CaCO3@SiO2 core–shell nanoparticles. Powder Technology, 2004, 141, 75-79.	4.2	43
84	Bi2WO6 photocatalytic films fabricated by layer-by-layer technique from Bi2WO6 nanoplates and its spectral selectivity. Journal of Solid State Chemistry, 2007, 180, 1456-1463.	2.9	43
85	Hydrothermal Liquefaction of Desert Shrub Salix psammophila to High Value-added Chemicals and Hydrochar with Recycled Processing Water. BioResources, 2013, 8, .	1.0	43
86	Optimization of hydraulic retention time and organic loading rate for volatile fatty acid production from low strength wastewater in an anaerobic membrane bioreactor. Bioresource Technology, 2019, 271, 100-108.	9.6	43
87	Molecular and microbial insights towards understanding the effects of hydrochar on methane emission from paddy soil. Science of the Total Environment, 2020, 714, 136769.	8.0	43
88	Demethanation Trend of Hydrochar Induced by Organic Solvent Washing and Its Influence on Hydrochar Activation. Environmental Science & Eamp; Technology, 2017, 51, 10756-10764.	10.0	42
89	Metagenomic analysis reveals the fate of antibiotic resistance genes in two-stage and one-stage anaerobic digestion of waste activated sludge. Journal of Hazardous Materials, 2021, 406, 124595.	12.4	42
90	Anaerobic fermentation of hydrothermal liquefaction wastewater of dewatered sewage sludge for volatile fatty acids production with focuses on the degradation of organic components and microbial community compositions. Science of the Total Environment, 2021, 777, 146077.	8.0	42

#	Article	IF	Citations
91	Production and characterization of biodiesel derived from Hodgsonia macrocarpa seed oil. Applied Energy, 2015, 146, 135-140.	10.1	41
92	Anaerobic granular sludge for simultaneous biomethanation of synthetic wastewater and CO with focus on the identification of CO-converting microorganisms. Water Research, 2017, 126, 19-28.	11.3	41
93	lon exchange separation for recovery of monosaccharides, organic acids and phenolic compounds from hydrolysates of lignocellulosic biomass. Separation and Purification Technology, 2017, 172, 100-106.	7.9	41
94	Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology. Journal of Cleaner Production, 2018, 178, 572-579.	9.3	41
95	Characterization and biogas production potentials of aqueous phase produced from hydrothermal carbonization of biomass $\hat{a} \in \mathbb{C}$ Major components and their binary mixtures. Chemical Engineering Journal, 2020, 388, 124201.	12.7	40
96	A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge. Water Research, 2018, 139, 372-380.	11.3	39
97	A novel concept for syngas biomethanation by two-stage process: Focusing on the selective conversion of syngas to acetate. Science of the Total Environment, 2018, 645, 1194-1200.	8.0	39
98	Environmental performances of hydrochar-derived magnetic carbon composite affected by its carbonaceous precursor. RSC Advances, 2015, 5, 60713-60722.	3.6	38
99	Effects of biochar on methane emission from paddy soil: Focusing on DOM and microbial communities. Science of the Total Environment, 2020, 743, 140725.	8.0	38
100	Phenol promoted caproate production via two-stage batch anaerobic fermentation of organic substance with ethanol as electron donor for chain elongation. Water Research, 2021, 204, 117601.	11.3	38
101	Bio-oil production from eight selected green landscaping wastes through hydrothermal liquefaction. RSC Advances, 2016, 6, 15260-15270.	3.6	37
102	Carbon transmission of CO ₂ activated nano-MgO carbon composites enhances phosphate immobilization. Journal of Materials Chemistry A, 2018, 6, 3705-3713.	10.3	37
103	Two-step synthesis of a novel visible-light-driven K2Ta2O6â^'xNx catalyst for the pollutant decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 33-41.	3.9	36
104	Inherent Metals of a Phytoremediation Plant Influence Its Recyclability by Hydrothermal Liquefaction. Environmental Science &	10.0	36
105	High-efficiency catalytic hydrodeoxygenation of lignin-derived vanillin with nickel-supported metal phosphate catalysts. Chemical Engineering Journal, 2022, 448, 137723.	12.7	36
106	Catalytic hydrothermal liquefaction of rice straw in water/ethanol mixtures for high yields of monomeric phenols using reductive CuZnAl catalyst. Fuel Processing Technology, 2016, 154, 1-6.	7.2	35
107	Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor. Biochemical Engineering Journal, 2019, 149, 107249.	3.6	34
108	Two-stage nanofiltration process for high-value chemical production from hydrolysates of lignocellulosic biomass through hydrothermal liquefaction. Separation and Purification Technology, 2015, 147, 276-283.	7.9	33

#	Article	IF	Citations
109	Synthesis, characterization and adsorption capacity of magnetic carbon composites activated by CO ₂ : implication for the catalytic mechanisms of iron salts. Journal of Materials Chemistry A, 2016, 4, 18942-18951.	10.3	33
110	Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review. Renewable and Sustainable Energy Reviews, 2022, 154, 111814.	16.4	33
111	Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiO nanoplates. Catalysis Today, 2016, 274, 40-48.	4.4	32
112	Trends in heterogeneous aqueous reaction in continuous haze episodes in suburban Shanghai: An in-depth case study. Science of the Total Environment, 2018, 634, 1192-1204.	8.0	32
113	Volatile fatty acids production from waste streams by anaerobic digestion: A critical review of the roles and application of enzymes. Bioresource Technology, 2022, 359, 127420.	9.6	32
114	Co-pyrolysis of paper mill sludge and spend coffee ground using CO2 as reaction medium. Journal of CO2 Utilization, 2017, 21, 572-579.	6.8	31
115	A novel process for obtaining high quality cellulose acetate from green landscaping waste. Journal of Cleaner Production, 2018, 176, 338-347.	9.3	31
116	Hydrochar from corn stalk used as bio-asphalt modifier: High-temperature performance improvement. Environmental Research, 2021, 193, 110157.	7. 5	31
117	A review on application of enzymatic bioprocesses in animal wastewater and manure treatment. Bioresource Technology, 2020, 313, 123683.	9.6	30
118	Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells. Bioresource Technology, 2022, 346, 126588.	9.6	29
119	Chromatographic separation of glucose, xylose and arabinose from lignocellulosic hydrolysates using cation exchange resin. Separation and Purification Technology, 2018, 195, 288-294.	7.9	28
120	Migration and transformation mechanism of phosphorus in waste activated sludge during anaerobic fermentation and hydrothermal conversion. Journal of Hazardous Materials, 2021, 403, 123649.	12.4	28
121	Conversion of phosphorus and nitrogen in lincomycin residue during microwave-assisted hydrothermal liquefaction and its application for Pb2+ removal. Science of the Total Environment, 2019, 687, 1381-1388.	8.0	27
122	Hydrothermal Carbonization for Hydrochar Production and Its Application., 2019,, 275-294.		27
123	Phosphorus and nitrogen transformation in antibiotic mycelial residue derived hydrochar and activated pyrolyzed samples: Effect on Pb (II) immobilization. Journal of Hazardous Materials, 2020, 393, 122446.	12.4	27
124	An Insight into Valorization of Lignocellulosic Biomass by Optimization with the Combination of Hydrothermal (HT) and Biological Techniques: A Review. Sustainable Chemistry, 2022, 3, 35-55.	4.7	27
125	Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture. Bioresource Technology, 2016, 202, 1-7.	9.6	26
126	Highly selective conversion of phenol to cyclohexanol over Ru/Nb ₂ O ₅ - <i>n</i> C18PA catalysts with increased acidity in a biphasic system under mild conditions. Green Chemistry, 2022, 24, 1152-1164.	9.0	26

#	Article	IF	CITATIONS
127	Fate of polylactic acid microplastics during anaerobic digestion of kitchen waste: Insights on property changes, released dissolved organic matters, and biofilm formation. Science of the Total Environment, 2022, 834, 155108.	8.0	25
128	Monophenols separation from monosaccharides and acids by two-stage nanofiltration and reverse osmosis in hydrothermal liquefaction hydrolysates. Journal of Membrane Science, 2016, 504, 141-152.	8.2	24
129	Reveal a hidden highly toxic substance in biochar to support its effective elimination strategy. Journal of Hazardous Materials, 2020, 399, 123055.	12.4	24
130	CO as electron donor for efficient medium chain carboxylate production by chain elongation: Microbial and thermodynamic insights. Chemical Engineering Journal, 2020, 390, 124577.	12.7	24
131	Conversion of xylose into furfural over MC-SnOx and NaCl catalysts in a biphasic system. Journal of Cleaner Production, 2021, 311, 127780.	9.3	24
132	Nonthermal air plasma dehydration of hydrochar improves its carbon sequestration potential and dissolved organic matter molecular characteristics. Science of the Total Environment, 2019, 659, 655-663.	8.0	23
133	VOC Removal from Manure Gaseous Emissions with UV Photolysis and UV-TiO2 Photocatalysis. Catalysts, 2020, 10, 607.	3.5	23
134	Formation and performances of porous InVO4 films. Journal of Solid State Chemistry, 2006, 179, 873-882.	2.9	22
135	Influence of process parameters on hydrothermal modification of soybean residue: Insight into the nutrient, solid biofuel, and thermal properties of hydrochars. Journal of Environmental Management, 2021, 283, 111981.	7.8	21
136	Photoluminescence properties of mercaptocarboxylic acid-stabilized CdSe nanoparticles covered with polyelectrolyte. Nanotechnology, 2004, 15, 1108-1112.	2.6	20
137	Sustainable enzymatic technologies in waste animal fat and protein management. Journal of Environmental Management, 2021, 284, 112040.	7.8	20
138	Microbial insights of enhanced anaerobic conversion of syngas into volatile fatty acids by co-fermentation with carbohydrate-rich synthetic wastewater. Biotechnology for Biofuels, 2020, 13, 53.	6.2	19
139	Optimized synthesis of granular fuel and granular activated carbon from sawdust hydrochar without binder. Journal of Cleaner Production, 2020, 276, 122711.	9.3	19
140	Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected byÂcosolvents and TiO2 catalyst. Chemosphere, 2016, 144, 628-634.	8.2	18
141	Hydrothermal pretreatment of sewage sludge enhanced the anaerobic degradation of cationic polyacrylamide (cPAM). Water Research, 2021, 190, 116704.	11.3	18
142	Photoinduced Formation of Fe(III) \hat{a} Sulfato Complexes on the Surface of \hat{l} +Fe ₂ O ₃ and Their Photochemical Performance. Journal of Physical Chemistry C, 2009, 113, 11316-11322.	3.1	17
143	Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses. Applied and Environmental Microbiology, 2018, 84.	3.1	17
144	Impact of adsorbed nitrate on the heterogeneous conversion of SO2 on \hat{l}_{\pm} -Fe2O3 in the absence and presence of simulated solar irradiation. Science of the Total Environment, 2019, 649, 1393-1402.	8.0	17

#	Article	IF	CITATIONS
145	Microwave-assisted hydrothermal treatment of soybean residue and chitosan: Characterization of hydrochars and role of N and P transformation for Pb(II) removal. Journal of Analytical and Applied Pyrolysis, 2021, 160, 105330.	5. 5	17
146	Modification of hydrochar increased the capacity to promote anaerobic digestion. Bioresource Technology, 2021, 341, 125856.	9.6	17
147	The changes of microplastics' behavior in adsorption and anaerobic digestion of waste activated sludge induced by hydrothermal pretreatment. Water Research, 2022, 221, 118744.	11.3	17
148	A critical review of recent advances in the bio-remediation of chlorinated substances by microbial dechlorinators. Chemical Engineering Journal Advances, 2022, 12, 100359.	5.2	17
149	Separation of highâ€purity syringol and acetosyringone from rice strawâ€derived bioâ€oil by combining the basificationâ€ocidification process and column chromatography. Electrophoresis, 2016, 37, 2522-2530.	2.4	16
150	Preparation of uniform CdSe/polyelectrolyte multilayers on the surface of SiO2spheres. Nanotechnology, 2004, 15, 477-479.	2.6	15
151	Synthesis of small crystal zeolite beta in a biphasic H2O–CTAB–alcohol system. Materials Letters, 2009, 63, 343-345.	2.6	15
152	Characterization and Potential Applications of Hydrochars Derived from P- and N-Enriched Agricultural and Antibiotic Residues via Microwave-Assisted Hydrothermal Conversion. Energy & Sump; Fuels, 2020, 34, 11154-11164.	5.1	15
153	Organoarsenic conversion to As(III) in subcritical hydrothermal reaction of livestock manure. Journal of Hazardous Materials, 2021, 402, 123571.	12.4	15
154	Decarbonylation reaction of saturated and oxidized tar from pyrolysis of low aromaticity biomass boost reduction of hexavalent chromium. Chemical Engineering Journal, 2019, 360, 1042-1050.	12.7	14
155	Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts. Journal of Cleaner Production, 2020, 268, 122378.	9.3	14
156	Desorption trials and granular stability of chromium loaded aerobic granular sludge from synthetic domestic wastewater treatment. Bioresource Technology Reports, 2018, 1, 9-15.	2.7	13
157	Eliminating carbon dioxide emissions at the source by the integration of carbon dioxide capture and utilization over noble metals in the liquid phase. Journal of Catalysis, 2020, 389, 247-258.	6.2	13
158	The influence of TiO2·H2O gel on hydrothermal synthesis of SrTiO3 powders. Materials Letters, 2001, 51, 368-370.	2.6	11
159	Benz[a]anthracene Heterogeneous Photochemical Reaction on the Surface of TiO2 Particles. Acta Physico-chimica Sinica, 2007, 23, 1531-1536.	0.6	11
160	Catalytic valorisation of various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural: Influence of feedstock properties and ferric chloride. Bioresource Technology, 2022, 357, 127376.	9.6	11
161	Thermal stabilization effect and oxygen replacement reaction together regulate N/S co-doped microporous carbon synthesis. , 2022, 1, .		11
162	Mine Drainage Generation and Control Options. Water Environment Research, 2016, 88, 1409-1432.	2.7	10

#	Article	IF	CITATIONS
163	The Effect of Dichloromethane on Product Separation during Continuous Hydrothermal Liquefaction of $\langle i \rangle$ Chlorella vulgaris $\langle i \rangle$ and Aqueous Product Recycling for Algae Cultivation. Energy & Euels, 2022, 36, 922-931.	5.1	10
164	Impact of heterogeneous uptake of nitrogen dioxide on the conversion of acetaldehyde on gamma-alumina in the absence and presence of simulated solar irradiation. Atmospheric Environment, 2018, 187, 282-291.	4.1	9
165	Petrochemical wastewater and produced water: Treatment technology and resource recovery. Water Environment Research, 2020, 92, 1695-1700.	2.7	9
166	Speciation evolution and transformation mechanism of P during microwave hydrothermal process of sewage sludge. Science of the Total Environment, 2022, 815, 152801.	8.0	9
167	Hydrochar as an environment-friendly additive to improve the performance of biodegradable plastics. Science of the Total Environment, 2022, 832, 155124.	8.0	9
168	Heating temperature dependence of molecular characteristics and biological response for biomass pyrolysis volatile-derived water-dissolved organic matter. Science of the Total Environment, 2021, 757, 143749.	8.0	8
169	Molecular characterization and environmental impacts of water-soluble organic compounds of bio-oil from the thermochemical treatment of domestic sewage sludge. Science of the Total Environment, 2021, 756, 144050.	8.0	8
170	Waste Plastics Complement Biochar: Innovative Approach in Curbing Toxicants (KCN/NaCN) in N-Containing Biochar. ACS Sustainable Chemistry and Engineering, 2021, 9, 4617-4624.	6.7	8
171	Screening and Optimization of Microalgae Biomass and Plastic Material Coprocessing by Hydrothermal Liquefaction. ACS ES&T Engineering, 2022, 2, 65-77.	7.6	8
172	Mine drainage: Remediation technology and resource recovery. Water Environment Research, 2020, 92, 1533-1540.	2.7	7
173	N-rich hydrochar derived from organic solvent as reaction medium generates toxic N-containing mineral in its pyrochar. Science of the Total Environment, 2020, 729, 138970.	8.0	7
174	CO2 dual roles in food scraps-derived biochar activation to enhance lead adsorption capacity. Science of the Total Environment, 2021, 784, 147218.	8.0	7
175	Urgently reveal longly hidden toxicant in a familiar fabrication process of biomass-derived environment carbon material. Journal of Environmental Sciences, 2021, 100, 250-256.	6.1	6
176	Biomass Cellulose Component and Fe Mineral Catalysis Help Cr(VI) to Realize Almost 100% Pyrolysis Reduction Efficiency. ACS ES&T Engineering, 2021, 1, 1441-1448.	7.6	5
177	Biosafety of human environments can be supported by effective use of renewable biomass. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	5
178	PREPARATION OF ZnO NANOPARTICLES BY PRECIPITATION/MECHANOCHEMICAL METHOD. International Journal of Nanoscience, 2002, 01, 563-567.	0.7	4
179	Preparation of nanosized Bi2WO6 using different content of starting materials and their photoactivities. Journal of Applied Spectroscopy, 2009, 76, 227-233.	0.7	4
180	Selective Production of Ethyl Lactate from Rice Straw in the Presence of Lewis and BrÃ,nsted Acids. Waste and Biomass Valorization, 2020, 11, 6515-6528.	3.4	4

#	Article	IF	CITATIONS
181	Magnetic biochar production alters the molecular characteristics and biological response of pyrolysis volatile-derived water-soluble organic matter. Science of the Total Environment, 2021, 778, 146142.	8.0	4
182	Three birds with one stone approach to superior N/S co-doped microporous carbon for gas storage and water purification. Chemical Engineering Journal, 2022, 431, 133231.	12.7	4
183	Improving reverse osmosis concentrate treatment and nutrients conversion to Chlorella vulgaris bioenergy assisted with granular activated carbon. Science of the Total Environment, 2022, 815, 152663.	8.0	4
184	Copyrolysis of Recycled Plastics and Biomass Reduces Biochar Bioavailable Silicon Production and Cadmium Phytotoxicity. ACS ES&T Engineering, 2022, 2, 1356-1364.	7.6	3
185	Odorous chemical emissions from livestock operations in United States. , 2011, , .		2
186	Mine Drainage: Research and Development. Water Environment Research, 2017, 89, 1384-1402.	2.7	2
187	Characterization and Treatment of Mine Drainage. Water Environment Research, 2018, 90, 1899-1922.	2.7	2
188	Extraneous Fe Increased the Carbon Retention of Sludge-Based Biochar. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 198-204.	2.7	2
189	One-Step Synthesis of High-Performance N/S Co-Doped Porous Carbon Material for Environmental Remediation. Processes, 2022, 10, 1359.	2.8	1
190	PREPARATION OF ZnO NANOPARTICLES BY PRECIPITATION/MECHANOCHEMICAL METHOD. , 2003, , .		0
191	Hydrochar and activated carbon materials from P- and N-rich biomass waste for environmental remediation and bioenergy application., 2022,, 51-69.		O