
Giorgio Volpe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391276/publications.pdf Version: 2024-02-01

CIORCIO VOLDE

#	Article	IF	CITATIONS
1	Self-organized lasers from reconfigurable colloidal assemblies. Nature Physics, 2022, 18, 939-944.	16.7	29
2	Visualization of Directional Beaming of Weakly Localized Raman from a Random Network of Silicon Nanowires. Advanced Science, 2021, 8, 2100139.	11.2	9
3	Characterization of anomalous diffusion classical statistics powered by deep learning (CONDOR). Journal of Physics A: Mathematical and Theoretical, 2021, 54, 314003.	2.1	21
4	Objective comparison of methods to decode anomalous diffusion. Nature Communications, 2021, 12, 6253.	12.8	109
5	FORMA and BEFORE: expanding applications of optical tweezers. , 2021, , .		0
6	Nonmonotonic contactless manipulation of binary droplets via sensing of localized vapor sources on pristine substrates. Science Advances, 2020, 6, .	10.3	19
7	Microscale Marangoni Surfers. Physical Review Letters, 2020, 125, 098001.	7.8	48
8	Advances towards programmable droplet transport on solid surfaces and its applications. Chemical Society Reviews, 2020, 49, 7879-7892.	38.1	86
9	Far-Field Wavefront Control of Nonlinear Luminescence in Disordered Gold Metasurfaces. Nano Letters, 2020, 20, 3291-3298.	9.1	12
10	Ordering of binary colloidal crystals by random potentials. Soft Matter, 2020, 16, 4267-4273.	2.7	8
11	Enhanced propagation of motile bacteria on surfaces due to forward scattering. Nature Communications, 2019, 10, 4110.	12.8	36
12	Active matter alters the growth dynamics of coffee rings. Soft Matter, 2019, 15, 1488-1496.	2.7	33
13	Perspective on light-induced transport of particles: from optical forces to phoretic motion. Advances in Optics and Photonics, 2019, 11, 577.	25.5	91
14	FORMA: Force Reconstruction via Maximum-likelihood-estimator Analysis. , 2019, , .		0
15	Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor. Journal of Physical Chemistry Letters, 2018, 9, 659-664.	4.6	58
16	High-performance reconstruction of microscopic force fields from Brownian trajectories. Nature Communications, 2018, 9, 5166.	12.8	41
17	Active Matter Alters the Growth Dynamics of Coffee Rings. , 2018, , .		0
18	The topography of the environment alters the optimal search strategy for active particles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11350-11355.	7.1	66

GIORGIO VOLPE

#	Article	IF	CITATIONS
19	Chemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing. Science Advances, 2017, 3, e1700362.	10.3	215
20	Coherent spatio-temporal control of pulsed light through multiple scattering media. , 2017, , .		0
21	Controlling Active Brownian Particles in Complex Settings. , 2017, , .		0
22	Disorder-mediated crowd control in an active matter system. Nature Communications, 2016, 7, 10907.	12.8	64
23	Active Particles in Complex and Crowded Environments. Reviews of Modern Physics, 2016, 88, .	45.6	1,875
24	Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix. Physical Review Letters, 2016, 116, 253901.	7.8	114
25	Coherent spatiotemporal control of light through a multiply scattering medium. , 2016, , .		0
26	Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix. Scientific Reports, 2015, 5, 10347.	3.3	79
27	Study of microparticles' anomalous diffusion in active bath using speckle light fields (Presentation) Tj ETQq1 1	0.784314	rgBT /Overlo
28	Optical Manipulation with Random Light Fields: From Fundamental Physics to Applications. , 2015, , .		0
29	Step-by-step guide to the realization of advanced optical tweezers. Journal of the Optical Society of America B: Optical Physics, 2015, 32, B84.	2.1	64
30	Probing Extended Modes on Disordered Plasmonic Networks by Wavefront Shaping. ACS Photonics, 2015, 2, 1658-1662.	6.6	8
31	Pick it up with light! An advanced summer program for secondary school students. Proceedings of SPIE, 2014, , .	0.8	0
32	Speckle optical tweezers: micromanipulation with random light fields. Optics Express, 2014, 22, 18159.	3.4	75
33	Long-term influence of fluid inertia on the diffusion of a Brownian particle. Physical Review E, 2014, 90, 042309.	2.1	12
34	Engineering particle trajectories in microfluidic flows using speckle light fields. , 2014, , .		1
35	Numerical simulation of optically trapped particles. , 2014, , .		1
36	Simulation of active Brownian particles in optical potentials. Proceedings of SPIE, 2014, , .	0.8	0

GIORGIO VOLPE

#	Article	IF	CITATIONS
37	Simulation of the active Brownian motion of a microswimmer. American Journal of Physics, 2014, 82, 659-664.	0.7	147
38	Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation. Scientific Reports, 2014, 4, 3936.	3.3	79
39	Numerical simulation of Brownian particles in optical force fields. , 2013, , .		0
40	Simulation of a Brownian particle in an optical trap. American Journal of Physics, 2013, 81, 224-230.	0.7	201
41	Multipolar radiation of quantum emitters with nanowire optical antennas. Nature Communications, 2013, 4, 1750.	12.8	148
42	Plasmon-Assisted Delivery of Single Nano-Objects in an Optical Hot Spot. Nano Letters, 2013, 13, 4299-4304.	9.1	52
43	Multipolar and Unidirectional Emission of Quantum Emitters Coupled to Optical Antennas. , 2012, , .		0
44	Near-Field Mapping of Plasmonic Antennas by Multiphoton Absorption in Poly(methyl methacrylate). Nano Letters, 2012, 12, 4864-4868.	9.1	42
45	Active Brownian motion tunable by light. Journal of Physics Condensed Matter, 2012, 24, 284129.	1.8	251
46	Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas. Physical Review Letters, 2012, 108, 217403.	7.8	154
47	Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. Optics Express, 2011, 19, 3612.	3.4	87
48	Nonlinear Optical Response of Nanoantennas. , 2011, , .		0
49	Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science, 2010, 329, 930-933.	12.6	1,262
50	Deterministic Subwavelength Control of Light Confinement in Nanostructures. Physical Review Letters, 2010, 105, 216802.	7.8	44
51	Direct Growth of Optical Antennas Using E-Beam-Induced Gold Deposition. Plasmonics, 2010, 5, 135-139.	3.4	24
52	El DÃa de la Luz II (The Day of Light II): optics demonstration for high school students. , 2009, , .		0
53	Quantitative assessment of non-conservative radiation forces in an optical trap. Europhysics Letters, 2009, 86, 38002.	2.0	54
54	Controlling the Optical Near Field of Nanoantennas with Spatial Phase-Shaped Beams. Nano Letters, 2009, 9, 3608-3611.	9.1	95

#ARTICLEIFCITATIONS55Singular-point characterization in microscopic flows. Physical Review E, 2008, 77, 037301.2.11656Photonic Torque Microscope., 2007, .0.057Photonic torque microscope., 2007, .0.058Brownian motion in a nonhomogeneous force field and photonic force microscope. Physical Review2.16459The Photonic Torque Microscope: Measuring Non-Conservative Force-Fields., 0, .0

GIORGIO VOLPE