Alessandro Casnati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391174/publications.pdf

Version: 2024-02-01

210 papers

11,476 citations

20817 60 h-index 97 g-index

224 all docs

224 docs citations

times ranked

224

6599 citing authors

#	Article	IF	CITATIONS
1	Synthesis, Complexation, and Membrane Transport Studies of 1,3-Alternate Calix[4]arene-crown-6 Conformers: A New Class of Cesium Selective Ionophores. Journal of the American Chemical Society, 1995, 117, 2767-2777.	13.7	606
2	Multivalent glycoconjugates as anti-pathogenic agents. Chemical Society Reviews, 2013, 42, 4709-4727.	38.1	464
3	Calixarene-based multivalent ligands. Chemical Society Reviews, 2007, 36, 254-266.	38.1	383
4	1,3-Dialkoxycalix[4]arenecrowns-6 in 1,3-Alternate Conformation: Cesium-Selective Ligands that Exploit Cation-Arene Interactions. Angewandte Chemie International Edition in English, 1994, 33, 1506-1509.	4.4	335
5	Peptido- and Glycocalixarenes:  Playing with Hydrogen Bonds around Hydrophobic Cavities. Accounts of Chemical Research, 2003, 36, 246-254.	15.6	259
6	DNA Condensation and Cell Transfection Properties of Guanidinium Calixarenes:  Dependence on Macrocycle Lipophilicity, Size, and Conformation. Journal of the American Chemical Society, 2006, 128, 14528-14536.	13.7	199
7	1,3â€ <i>Alternate</i> Calix[4]arenecrownâ€5 Conformers: New Synthetic Ionophores with Better K ⁺ /Na ⁺ Selectivity than Valinomycin. Chemistry - A European Journal, 1996, 2, 436-445.	3.3	185
8	Complexation of Halide Anions and Tricarboxylate Anions by Neutral Urea-Derivatized p-tert-Butylcalix[6]arenes. Journal of Organic Chemistry, 1995, 60, 6448-6454.	3.2	179
9	The 1,2-alternate conformation of calix[4] arenes: a rare conformation? Dynamic 1H NMR studies of flexible tetraalkylated calix[4] arenes. Journal of the American Chemical Society, 1991, 113, 2385-2392.	13.7	178
10	Writing Patterns of Molecules on Molecular Printboards. Angewandte Chemie - International Edition, 2004, 43, 369-373.	13.8	162
11	Chloromethylation of calixarenes and synthesis of new water soluble macrocyclic hosts. Tetrahedron, 1989, 45, 2177-2182.	1.9	154
12	Water-Soluble Calixarene Hosts that Specifically Recognize the Trimethylammonium Group or the Benzene Ring of Aromatic Ammonium Cations: A Combined1H NMR, Calorimetric, and Molecular Mechanics Investigation. Chemistry - A European Journal, 1999, 5, 738-744.	3.3	150
13	Calixarenes: from biomimetic receptors to multivalent ligands for biomolecular recognition. New Journal of Chemistry, 2010, 34, 2715.	2.8	149
14	Synthesis and Properties of <i>O</i> â€Glycosyl Calix[4]Arenes (Calixsugars). Chemistry - A European Journal, 1997, 3, 1774-1782.	3.3	146
15	Multivalent glycocalixarenes for recognition of biological macromolecules: glycocalyx mimics capable of multitasking. Chemical Society Reviews, 2013, 42, 4623.	38.1	138
16	Calix[<i>n</i>]areneâ€Based Glycoclusters: Bioactivity of Thioureaâ€Linked Galactose/Lactose Moieties as Inhibitors of Binding of Medically Relevant Lectins to a Glycoprotein and Cellâ€Surface Glycoconjugates and Selectivity among Human Adhesion/Growthâ€Regulatory Galectins. ChemBioChem, 2008, 9, 1649-1661.	2.6	134
17	Divalent Binding of a Bis(adamantyl)-Functionalized Calix[4]arene to β-cyclodextrin-based Hosts: An Experimental and Theoretical Study on Multivalent Binding in Solution and at Self-Assembled Monolayers. Journal of the American Chemical Society, 2004, 126, 6627-6636.	13.7	133
18	Arginine clustering on calix[4] arene macrocycles for improved cell penetration and DNA delivery. Nature Communications, 2013, 4, 1721.	12.8	133

#	Article	IF	CITATIONS
19	Facilitated Transport of Hydrophilic Salts by Mixtures of Anion and Cation Carriers and by Ditopic Carriers. Journal of the American Chemical Society, 1999, 121, 10142-10151.	13.7	132
20	Moulding calixarenes for biomacromolecule targeting. Chemical Communications, 2015, 51, 14140-14159.	4.1	130
21	Hydrophilic Clicked 2,6-Bis-triazolyl-pyridines Endowed with High Actinide Selectivity and Radiochemical Stability: Toward a Closed Nuclear Fuel Cycle. Journal of the American Chemical Society, 2016, 138, 7232-7235.	13.7	124
22	Synthesis, antimicrobial activity and binding properties of calix[4] arene based vancomycin mimics. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2699-2704.	2.2	120
23	Lanthanide complexes of encapsulating ligands: Luminescent devices at the molecular level. Pure and Applied Chemistry, 1995, 67, 135-140.	1.9	118
24	A new chiral rigid cone water soluble peptidocalix [4] arene and its inclusion complexes with \hat{l}_{\pm} -amino acids and aromatic ammonium cations. Tetrahedron Letters, 1999, 40, 4741-4744.	1.4	118
25	Control of Calix[6]arene Conformations by Self-Inclusion of 1,3,5-Tri-O-alkyl Substituents: Synthesis and NMR Studies. Journal of the American Chemical Society, 1994, 116, 5814-5822.	13.7	110
26	syn-1,2-dialkylated calix[4]arenes: general intermediates in the NaH/DMF tetraalkylation of calix[4]arenes. Tetrahedron Letters, 1991, 32, 2675-2678.	1.4	109
27	Molecular Acrobatics:Â Self-Assembly of Calixarene-Porphyrin Cages. Journal of the American Chemical Society, 2003, 125, 14181-14189.	13.7	109
28	Encapsulation of lanthanide ions in calixarene receptors. A strongly luminescent terbium(3+) complex. Journal of the Chemical Society Chemical Communications, 1990, , 878.	2.0	106
29	Bridged calix[6]arenes in the cone conformation: New receptors for quaternary ammonium cations. Tetrahedron, 1995, 51, 591-598.	1.9	105
30	Synthesis and Structure of ChiralCone Calix[4]arenes Functionalized at the Upper Rim with L-Alanine Units. European Journal of Organic Chemistry, 1998, 1998, 897-905.	2.4	102
31	Thiourea-linked upper rim calix[4]arene neoglycoconjugates: synthesis, conformations and binding properties. Organic and Biomolecular Chemistry, 2003, 1, 1802-1809.	2.8	101
32	Synthesis of monoalkylated calix[4] arenes via direct alkylation. Tetrahedron, 1991, 47, 8379-8384.	1.9	100
33	New Efficient Calixarene Amide Ionophores for the Selective Removal of Strontium Ion from Nuclear Waste:Â Synthesis, Complexation, and Extraction Properties. Journal of the American Chemical Society, 2001, 123, 12182-12190.	13.7	94
34	Macrocyclic Nonviral Vectors: High Cell Transfection Efficiency and Low Toxicity in a Lower Rim Guanidinium Calix[4]arene. Organic Letters, 2008, 10, 3953-3956.	4.6	94
35	Molecular and Supramolecular Homochirality: Enantiopure Perfluorocarbon Rotamers and Halogen-Bonded Fluorous Double Helices. Angewandte Chemie - International Edition, 2006, 45, 1915-1918.	13.8	93
36	A general synthesis of water soluble upper rim calix[n]arene guanidinium derivatives which bind to plasmid DNA. Tetrahedron, 2004, 60, 11613-11618.	1.9	92

#	Article	lF	Citations
37	Water soluble calix[4]arenes. A thermodynamic investigation of proton complex formation. Supramolecular Chemistry, 1992, 1, 19-24.	1.2	91
38	Nuclear waste treatment by means of supported liquid membranes containing calixcrown compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 19, 399-408.	1.6	88
39	Biomimetic macrocyclic receptors for carboxylate anion recognition based on C-linked peptidocalix[4]arenes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4842-4847.	7.1	88
40	Catalysis of Diribonucleoside Monophosphate Cleavage by Water Soluble Copper(II) Complexes of Calix[4]arene Based Nitrogen Ligands. Journal of the American Chemical Society, 2006, 128, 12322-12330.	13.7	87
41	Sugar Calixarenes: Preparation of Calix[4]arenes Substituted at the Lower and Upper Rims withO-Glycosyl Groups. Angewandte Chemie International Edition in English, 1995, 33, 2479-2481.	4.4	85
42	Inclusion of naturally occurring amino acids in water soluble calix[4]arenes: a microcalorimetric and 1H NMR investigation supported by molecular modeling. Organic and Biomolecular Chemistry, 2006, 4, 243-249.	2.8	85
43	Synthesis and properties of new calixarene-based ditopic receptors for the simultaneous complexation of cations and carboxylate anions. Journal of the Chemical Society Perkin Transactions II, 1998, , 1307-1312.	0.9	82
44	A general synthesis of calix[4]arene monoalkyl ethers. Tetrahedron, 1991, 47, 2221-2228.	1.9	81
45	Complexation of a Peptidocalix[4]arene, a Vancomycin Mimic, with Alanine-Containing Guests by NMR Diffusion Measurements. Journal of Organic Chemistry, 2000, 65, 5026-5030.	3.2	80
46	Procedures for the Selective Alkylation of Calix[6] arenes at the Lower Rim. Synthesis, 1993, 1993, 380-386.	2.3	79
47	A Synthetic Divalent Cholera Toxin Glycocalix[4]arene Ligand Having Higher Affinity than Natural GM1 Oligosaccharide. Journal of the American Chemical Society, 2005, 127, 3660-3661.	13.7	79
48	Efficient and Selective Cleavage of RNA Oligonucleotides by Calix[4]arene-Based Synthetic Metallonucleases. Journal of the American Chemical Society, 2007, 129, 12512-12520.	13.7	79
49	N-Linked Peptidocalix[4]arene Bisureas as Enantioselective Receptors for Amino Acid Derivatives. Journal of Organic Chemistry, 2007, 72, 3223-3231.	3.2	77
50	Conformational freezing of p-tert-butylcalix[6] arene in the cone structure by selective functionalization at the lower rim: synthesis of new preorganized ligands. Journal of the Chemical Society Chemical Communications, 1991, , 1413.	2.0	76
51	Entropic origin of the sulfonate groups' electrostatic assistance in the complexation of quaternary ammonium cations by water soluble calix[4]arenes. Perkin Transactions II RSC, 2000, , 419-423.	1.1	72
52	Assembly of a Supramolecular Capsule on a Molecular Printboard. Journal of the American Chemical Society, 2004, 126, 17050-17058.	13.7	71
53	Chiral Dimeric Capsules fromN,C-Linked Peptidocalix[4]arenes Self-Assembled through an Antiparallel β-Sheetlike Motif. Journal of the American Chemical Society, 2004, 126, 6204-6205.	13.7	70
54	Selective 1,2-functionalization of calix[4] arenes at the lower rim. Synthesis of a new type of bis-calixcrown ether. Journal of the Chemical Society Chemical Communications, 1990, , 1597.	2.0	69

#	Article	IF	Citations
55	Synthesis and Properties of Upper Rim C-Linked Peptidocalix[4] arenes. European Journal of Organic Chemistry, 2001, 2001, 595-602.	2.4	69
56	Synthesis of water soluble molecular receptors from calix[4] arenes fixed in the cone conformation. Tetrahedron, 1993, 49, 9815-9822.	1.9	68
57	Upper Rim Guanidinocalix[4]arenes as Artificial Phosphodiesterases. Journal of Organic Chemistry, 2012, 77, 3381-3389.	3.2	65
58	Selective Complexation by p-tert-Butylcalix[6] arene in Monolayers at the Water-Air Interface. Langmuir, 1995, 11, 1268-1272.	3.5	64
59	Synthesis, conformations and redox properties of diametrical calix[4]arenediquinones. Recueil Des Travaux Chimiques Des Pays-Bas, 1993, 112, 384-392.	0.0	61
60	Selectivity of Calix[4]arene-crown-6 for Cesium Ion in Ise: Effect of the Conformation. Analytical Chemistry, 1995, 67, 4234-4238.	6.5	61
61	Synthesis of new calixcrowns and their anchoring to silica gel for the selective separation of Cs+ and K+. Chemical Communications, 1996, , 2277.	4.1	61
62	Lower Rim Guanidinocalix[4]arenes: Macrocyclic Nonviral Vectors for Cell Transfection. Bioconjugate Chemistry, 2012, 23, 993-1002.	3.6	59
63	2,9-Dicarbonyl-1,10-phenanthroline derivatives with an unprecedented Am(iii)/Eu(iii) selectivity under highly acidic conditions. Dalton Transactions, 2013, 42, 16930.	3.3	58
64	Enlarging the size of calix[4]arene-crowns-6 to improve Cs+/K+ selectivity: a theoretical and experimental study. Tetrahedron, 2004, 60, 7869-7876.	1.9	57
65	Calixarene-Based Picolinamide Extractants for Selective An/Ln Separation from Radioactive Waste. European Journal of Organic Chemistry, 2005, 2005, 2338-2348.	2.4	57
66	X-ray Crystal Structures and Molecular Modelling Studies of Calix[4]dibenzocrowns-6 and Their Alkali Metal Cation Complexes. European Journal of Organic Chemistry, 1998, 1998, 1559-1568.	2.4	55
67	New synthetic receptors based on calix[4]arenes for the selective recognition of ions and neutral molecules. Pure and Applied Chemistry, 1996, 68, 1213-1218.	1.9	52
68	New artificial receptors from selectively functionalized calix[4] arenes. Supramolecular Chemistry, 1993, 1, 235-246.	1.2	51
69	Di- and Trinuclear Zn2+Complexes of Calix[4]arene Based Ligands as Catalysts of Acyl and Phosphoryl Transfer Reactions. Journal of Organic Chemistry, 2005, 70, 624-630.	3.2	50
70	Picomolar inhibition of cholera toxin by a pentavalent ganglioside GM1os-calix[5]arene. Organic and Biomolecular Chemistry, 2013, 11, 4340-4349.	2.8	50
71	Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: a structure–activity relationship study. Organic and Biomolecular Chemistry, 2015, 13, 1708-1723.	2.8	49
72	A Prototype Calix[4]arene-Based Receptor for Carbohydrate Recognition Containing Peptide and Phosphate Binding Groups. Journal of Organic Chemistry, 2003, 68, 6296-6303.	3.2	48

#	Article	IF	CITATIONS
73	A new water-soluble calix[4]arene ditopic receptor rigidified by microsolvation: Acid-base and inclusion properties. Tetrahedron Letters, 1997, 38, 1999-2002.	1.4	47
74	Glycoligand-targeted core–shell nanospheres with tunable drug release profiles from calixarene–cyclodextrin heterodimers. Chemical Communications, 2014, 50, 7440-7443.	4.1	47
75	The barium(II) complex of p-tert-butylcalix[4]arene-crown-5: a novel nucleophilic catalyst with transacylase activity. Journal of the American Chemical Society, 1992, 114, 10956-10958.	13.7	46
76	Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene. Scientific Reports, 2019, 9, 3036.	3.3	46
77	Synthesis of Upper and Lower Rim Binaphthyl Bridged Calix[4]arenes:Â New Potential Chiral Hosts for Molecular Recognition and Catalysis. Journal of Organic Chemistry, 1997, 62, 8654-8659.	3.2	44
78	Gold nanoparticles decorated by clustered multivalent cone-glycocalixarenes actively improve the targeting efficiency toward cancer cells. Chemical Communications, 2014, 50, 11029.	4.1	43
79	Cesium-selective chemically modified field effect transistors with calix[4]arene-crown-6 derivatives. Analytica Chimica Acta, 1995, 310, 263-267.	5.4	42
80	2,2′-Bipyridine Lariat Calixcrowns: A New Class of Encapsulating Ligands Forming Highly Luminescent Eu3+ and Tb3+ Complexes. Chemistry - A European Journal, 2000, 6, 1026-1034.	3.3	42
81	A Calix[4]arene GdIII Complex Endowed with High Stability, Relaxivity, and Binding Affinity to Serum Albumin. Angewandte Chemie - International Edition, 2001, 40, 4737-4739.	13.8	41
82	Cobalt Bis(dicarbollides)(1-) Covalently Attached to the Calix[4] arene Platform: The First Combination of Organic Bowl-Shaped Matrices and Inorganic Metallaborane Cluster Anions. European Journal of Organic Chemistry, 2005, 2005, 2022-2039.	2.4	41
83	Phosphonated Calixarene as a "Molecular Glue―for Protein Crystallization. Crystal Growth and Design, 2018, 18, 2467-2473.	3.0	41
84	Building Multivalent Iminosugar-Based Ligands on Calixarene Cores via Nitrone Cycloadditions. Journal of Organic Chemistry, 2012, 77, 6980-6988.	3.2	40
85	Selective Complexation and Membrane Transport of Guanidinium Salts by Calix[6]arene Amides. Israel Journal of Chemistry, 1992, 32, 79-87.	2.3	38
86	Synthesis of calix[6] arenes partially functionalized at the upper rim. Tetrahedron, 1995, 51, 12699-12720.	1.9	38
87	Evidence for cation-π interactions in calixcrown·KPic complexes from X-ray crystal structure analysis and energy calculations. Supramolecular Chemistry, 1995, 5, 179-184.	1.2	38
88	Selective Extraction of Cesium at Tracer Level Concentration from a Sodium Nitrate Solution with Calix-Crowns. Molecular Modeling Study of the Cs ⁺ /Na ⁺ Selectivity. Separation Science and Technology, 1997, 32, 175-191.	2.5	37
89	Docetaxel-Loaded Nanoparticles Assembled from \hat{I}^2 -Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells. Frontiers in Pharmacology, 2017, 8, 249.	3.5	37
90	Photophysics of 1,3-alternate calix[4]arene-crowns and of their metal ion complexes: evidence for cationâ€"Í€ interactions in solution. New Journal of Chemistry, 2000, 24, 155-158.	2.8	36

#	Article	IF	CITATIONS
91	Study of the behavior of calix[4]arene-based sodium-selective electrodes by means of ANOVA. Analytical Chemistry, 1993, 65, 3156-3160.	6.5	35
92	p-(Benzyloxy)calix[8]arene:Â One-Pot Synthesis and Functionalization. Journal of Organic Chemistry, 1997, 62, 6236-6239.	3.2	35
93	Charge assisted hydrophobic binding of ethanol into the cavity of calix[4]arene receptors in aqueous solution. Tetrahedron Letters, 1997, 38, 4685-4688.	1.4	35
94	A novel self-assembled supramolecular architecture involving cation, anion and a calix[4]arene heteroditopic receptor. Tetrahedron Letters, 2002, 43, 7311-7314.	1.4	35
95	Novel cinchona carbamate selectors with complementary enantioseparation characteristics for N-acylated amino acids. Chirality, 2003, 15, S17-S29.	2.6	35
96	Conformationally Mobile Glucosylthioureidocalix[6]- and Calix[8]arenes: Synthesis, Aggregation and Lectin Binding. Supramolecular Chemistry, 2008, 20, 161-168.	1.2	34
97	Incorporation of a calixarene-based glucose functionalised bolaamphiphile into lipid bilayers for multivalent lectin recognition. Organic and Biomolecular Chemistry, 2013, 11, 4811.	2.8	34
98	Time-Resolved Laser Fluorescence Spectroscopy Study of the Coordination Chemistry of a Hydrophilic CHON [1,2,3-Triazol-4-yl]pyridine Ligand with Cm(III) and Eu(III). Inorganic Chemistry, 2017, 56, 2135-2144.	4.0	34
99	Alkaline earth and uranyl cation complexes of a calix[4]arene-tetraamide: MD and FEP simulations in aqueous and acetonitrile solutions and X-ray structure of its Sr(Picrate)2 complex. Journal of the Chemical Society Perkin Transactions II, 1996, , 1065.	0.9	33
100	Modulation of cation binding in calix[4]arene amides: synthesis, complexation and molecular modelling studies. Journal of the Chemical Society Perkin Transactions II, 1999, , 1727-1738.	0.9	33
101	Catalysis of Acyl Group Transfer by a Double-Displacement Mechanism: The Cleavage of Aryl Esters Catalyzed by Calixcrown-Ba2+ Complexes. Chemistry - A European Journal, 2000, 6, 1322-1330.	3.3	33
102	CO2Capture by Multivalent Amino-Functionalized Calix[4]arenes: Self-Assembly, Absorption, and QCM Detection Studies. Journal of Organic Chemistry, 2011, 76, 3720-3732.	3.2	32
103	Ribonuclease Activity of an Artificial Catalyst That Combines a Ligated Cu ^{II} Ion and a Guanidinium Group at the Upper Rim of a <i>cone</i> Calix[4]arene Platform. Journal of Organic Chemistry, 2015, 80, 5887-5893.	3.2	32
104	Optimization and Single-Stage Centrifugal Contactor Experiments with the Novel Hydrophilic Complexant PyTri-Diol for the <i>i>i</i> -SANEX Process. Solvent Extraction and Ion Exchange, 2018, 36, 373-386.	2.0	32
105	Selective Functionalization of Calix[6] arenes at the Upper Rim. Synthesis, 1994, 1994, 47-50.	2.3	31
106	CMPO-substituted calix[6]- and calix[8] arene extractants for the separation of An3+/Ln3+ from radioactive waste. Tetrahedron, 2006, 62, 6749-6753.	1.9	30
107	Calixarenes and cations: a time-lapse photography of the big-bang. Chemical Communications, 2013, 49, 6827.	4.1	30
108	Complexation Properties of p-tert-Butylcalix[6]arene Hexamide in Monolayers at the Waterâ [^] Air Interface. Langmuir, 1996, 12, 1589-1593.	3.5	29

#	Article	IF	CITATIONS
109	Calix[4]arenes with perfluorinated alcoholic functions at the upper rim: a new class of neutral anion receptors. Chemical Communications, 1998, , 2607-2608.	4.1	29
110	Dendrimer-coated magnetic particles for radionuclide separation. Journal of Magnetism and Magnetic Materials, 2005, 293, 559-566.	2.3	29
111	Calix[4]arene-Based Zn2+Complexes as Shape- and Size-Selective Catalysts of Ester Cleavage. Journal of Organic Chemistry, 2005, 70, 5398-5402.	3.2	29
112	Synthesis of calix[4]arene receptors incorporating (2,2′-bipyridin-6-yl)methyl and (9-methyl-1,10-phenanthrolin-2-yl)methyl chromophores and luminescence of their Eu3+and Tb3+complexes. Journal of the Chemical Society Perkin Transactions II, 1996, , 395-399.	0.9	28
113	Calix[6]arene-picolinamide extractants for radioactive waste: effect of modification of the basicity of the pyridine N atom on the extraction efficiency and An/Ln separation. Dalton Transactions, 2010, 39, 2546.	3.3	28
114	Amphiphilic Guanidinocalixarenes Inhibit Lipopolysaccharide (LPS)- and Lectin-Stimulated Toll-like Receptor 4 (TLR4) Signaling. Journal of Medicinal Chemistry, 2017, 60, 4882-4892.	6.4	28
115	Strontium complexes of calixarene amides in the solid state: structural dependence on the ligand size and on the counter ions. Dalton Transactions RSC, 2000, , 3411-3415.	2.3	27
116	Synthesis and spectroscopic studies of isosteviol-calix[4]arene and -calix[6]arene conjugates. Tetrahedron, 2005, 61, 5457-5463.	1.9	27
117	Di- and trinuclear arrangements of zinc(II)-1,5,9-triazacyclododecane units on the calix[4]arene scaffold: Efficiency and substrate selectivity in the catalysis of ester cleavage. Inorganica Chimica Acta, 2007, 360, 981-986.	2.4	27
118	The Role of Buildingâ€Block Metrics in the Halogenâ€Bondingâ€Driven Selfâ€Assembly of Calixarenes, Inorganic Salts and Diiodoperfluoroalkanes. Chemistry - A European Journal, 2009, 15, 7903-7912.	3.3	27
119	Luminescence of Eu3+ and Tb3+ complexes of new macrobicyclic ligands derived from p-tert-butylcalix[4]arene. Inorganica Chimica Acta, 1996, 252, 19-24.	2.4	26
120	Synthesis of upper rim calix[4]arene divalent glycoclusters via amide bond conjugation. Tetrahedron, 2005, 61, 1149-1154.	1.9	26
121	Low-generation dendrimers with a calixarene core and based on a chiral C 2-symmetric pyrrolidine as iminosugar mimics. Beilstein Journal of Organic Chemistry, 2012, 8, 951-957.	2.2	26
122	Highly efficient intramolecular Cannizzaro reaction between 1,3-distal formyl groups at the upper rim of a cone-calix[4]arene. Organic and Biomolecular Chemistry, 2012, 10, 5109.	2.8	26
123	Multivalent and Multifunctional Calixarenes in Bionanotechnology. European Journal of Organic Chemistry, 2020, 2020, 5056-5069.	2.4	26
124	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 41, 193-200.	1.6	25
125	ATP cleavage by cone tetraguanidinocalix[4]arene. Organic and Biomolecular Chemistry, 2012, 10, 8941.	2.8	25
126	Diguanidinocalix[4]arenes as effective and selective catalysts of the cleavage of diribonucleoside monophosphates. RSC Advances, 2014, 4, 34412-34416.	3.6	25

#	Article	IF	Citations
127	Counterion complexation of calixarene ligands in monolayers and micellar solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 167, 105-113.	4.7	24
128	New Tetrafunctionalized < i>Cone < i>Calix [4] arenes as Neutral Hosts for Anion Recognition. Supramolecular Chemistry, 2000, 12, 53-65.	1.2	24
129	Quinoline-Containing Calixarene Fluoroionophores: A Combined NMR, Photophysical and Modeling Study. European Journal of Organic Chemistry, 2003, 2003, 1475-1485.	2.4	24
130	Dinuclear Barium(II) Complexes Based on a Calix[4]arene Scaffold as Catalysts of Acyl Transfer. Chemistry - A European Journal, 2004, 10, 4436-4442.	3.3	24
131	Calix[6]areneâ€Picolinamide Extractants for Radioactive Waste Treatment: Effect of Additional Carboxy Binding Sites in the Pyridine 6â€Positions on Complexation, Extraction Efficiency and An/Ln Separation. European Journal of Organic Chemistry, 2010, 2010, 2675-2686.	2.4	24
132	Upper Rim Bifunctional <i>cone</i> -Calix[4] arenes Based on a Ligated Metal Ion and a Guanidinium Unit as DNAase and RNAase Mimics. Journal of Organic Chemistry, 2016, 81, 4728-4735.	3.2	24
133	Zuckercalixarene: Synthese von Calix[4]arenen mit <i>O</i> à€Glycosylsubstituenten am oberen oder unteren Rand. Angewandte Chemie, 1994, 106, 2533-2535.	2.0	23
134	Selfâ€Assembled Chiral Dimeric Capsules from Difunctionalized <i>N</i> , <i>C</i> à€Linked Peptidocalix[4]arenes: Scope and Limitations. European Journal of Organic Chemistry, 2008, 2008, 869-886.	2.4	23
135	Glucosylthioureidocalix[4]arenes: Synthesis, conformations and gas phase recognition of amino acids. Organic and Biomolecular Chemistry, 2010, 8, 906-915.	2.8	23
136	Activation of the Aromatic Core of 3,3′-(Pyridine-2,6-diylbis(1 <i>H</i> -1,2,3-triazole-4,1-diyl))bis(propan-1-ol)â€"Effects on Extraction Performance, Stability Constants, and Basicity. Inorganic Chemistry, 2019, 58, 14642-14651.	4.0	23
137	Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles. Carbohydrate Polymers, 2021, 252, 117135.	10.2	23
138	CALIXARENES IN SPHERICAL METAL ION RECOGNITION. , 2000, , 62-84.		22
139	Counterion Complexation by Calixarene Ligands in Cesium and Potassium Dodecyl Sulfate Micelles. A Small Angle Neutron Scattering Studyâ€. Langmuir, 2000, 16, 188-194.	3.5	22
140	Development of a Selective Americium Separation Process Using H ₄ TPAEN as Water-Soluble Stripping Agent. Solvent Extraction and Ion Exchange, 2019, 37, 313-327.	2.0	22
141	Guanidinium Promoted Cleavage of Phosphoric Diesters: Kinetic Investigations and Calculations Provide Indications on the Operating Mechanism. Journal of Organic Chemistry, 2017, 82, 10461-10469.	3.2	21
142	A calix[4] arene with acylguanidine units as an efficient catalyst for phosphodiester bond cleavage in RNA and DNA model compounds. Organic and Biomolecular Chemistry, 2019, 17, 7482-7492.	2.8	21
143	Novel Schiff base compounds containing calix[4] arene. Inorganica Chimica Acta, 1997, 254, 209-212.	2.4	20
144	Anion transport across phospholipid bilayers promoted by a guanidinium calix[4]arene conjugate. Supramolecular Chemistry, 2013, 25, 631-640.	1.2	20

#	Article	IF	CITATIONS
145	One-shot preparation of an inherently chiral trifunctional calix[4] arene from an easily available cone-triformylcalix[4] arene. Organic and Biomolecular Chemistry, 2013, 11, 3642.	2.8	20
146	Efficient Delivery of MicroRNA and AntimiRNA Molecules Using an Argininocalix[4]arene Macrocycle. Molecular Therapy - Nucleic Acids, 2019, 18, 748-763.	5.1	20
147	Synthesis, Complexation and Photophysics in Protic Solvents of Lanthanide Complexes of Novel Calix[4]arene Polycarboxylic-2,2′-bipyridine Mixed Ligands. Supramolecular Chemistry, 2002, 14, 281-289.	1.2	19
148	Time Programmable Locking/Unlocking of the Calix[4]arene Scaffold by Means of Chemical Fuels. Chemistry - A European Journal, 2020, 26, 14954-14962.	3.3	19
149	Recognition of cationic species with synthetic receptors. Current Opinion in Chemical Biology, 1997, 1, 467-474.	6.1	18
150	Synthesis of Lower Rim Polyhydroxylated Calix[4] arenes. Synthesis, 2001, 2001, 2105-2112.	2.3	18
151	The first synthesis and characterisation of elusive cone 1,2-diformyl tetralkoxycalix[4]arenes and their derivatives. Tetrahedron, 2003, 59, 5539-5544.	1.9	18
152	Clicked and long spaced galactosyl- and lactosylcalix[4]arenes: new multivalent galectin-3 ligands. Beilstein Journal of Organic Chemistry, 2014, 10, 1672-1680.	2.2	18
153	Mannosylcalix[n]arenes as multivalent ligands for DC-SIGN. Carbohydrate Research, 2017, 453-454, 36-43.	2.3	18
154	2,6-Bis(1-alkyl-1H-1,2,3-triazol-4-yl)-pyridines: selective lipophilic chelating ligands for minor actinides. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 2013-2022.	1.5	18
155	Temporal Control of the Host–Guest Properties of a Calix[6]arene Receptor by the Use of a Chemical Fuel. Journal of Organic Chemistry, 2022, 87, 3623-3629.	3.2	18
156	Calix[4]arene Anion Receptors Bearing 2,2,2-trifluoroethanol Groups at The Upper Rim. Supramolecular Chemistry, 2006, 18, 199-218.	1.2	17
157	Upper-rim CMPO-substituted calix[6]- and calix[8] arene extractants for the An ³⁺ /Ln ³⁺ separation from radioactive waste. Radiochimica Acta, 2008, 96, 235-239.	1.2	17
158	Phosphoryl Transfer Processes Promoted by a Trifunctional Calix[4]arene Inspired by DNA Topoisomerase I. Journal of Organic Chemistry, 2016, 81, 9012-9019.	3.2	17
159	Probing the determinants of porosity in protein frameworks: co-crystals of cytochrome <i>c</i> and an octa-anionic calix[4] arene. Organic and Biomolecular Chemistry, 2020, 18, 211-214.	2.8	17
160	Water-soluble calixarenes as synthetic receptors. Remarkable influence of stereochemistry on the coordination properties of two new conformational isomers of a calix[4] arene tetracarboxylate $\sup 1 < \sup .$ Supramolecular Chemistry, 1995, 4, 287-295.	1.2	16
161	Synthesis, Complexation and Photophysics of <i>1,3-alternate</i> Calix[4]arene-crowns-6 Bearing Fluorophoric Units on the Bridge. Supramolecular Chemistry, 2001, 13, 419-434.	1.2	16
162	Peptidocalix[4] arene self-assembled nanotubes. Journal of Supramolecular Chemistry, 2002, 2, 219-226.	0.4	16

#	Article	IF	CITATIONS
163	Partitioning of minor actinides: Effects of gamma irradiation on the extracting capabilities of a selected calixarene-based picolinamide ligand. Radiation Physics and Chemistry, 2007, 76, 1285-1289.	2.8	15
164	Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene. Journal of the American Society for Mass Spectrometry, 2012, 23, 359-365.	2.8	15
165	Dissipative control of the fluorescence of a 1,3-dipyrenyl calix[4] arene in the cone conformation. Organic and Biomolecular Chemistry, 2021, 20, 132-138.	2.8	15
166	Synthesis and binding properties of calix[4] arene diamide dicarboxylic acids. New Journal of Chemistry, 2000, 24, 967-972.	2.8	13
167	Langmuir monolayers of calix[8]arene derivatives: complexation of alkaline earth ions at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 248, 135-143.	4.7	12
168	Designing nanoporous crystalline materials by self-assembly: 2D hydrogen-bonded networks from upper rim calix[4]arene diamide derivatives. Inorganica Chimica Acta, 2007, 360, 970-980.	2.4	11
169	Molecular Architecture and Symmetry Properties of 1,3-Alternate Calix[4] arenes with Orientable Groups at the Para Position of the Phenolic Rings. Journal of Organic Chemistry, 2016, 81, 9718-9727.	3.2	11
170	Halogen Bonds Direct the Solid State Architectures of a Multivalent Iodopropargylcalix[4]arene. Crystal Growth and Design, 2020, 20, 3611-3616.	3.0	11
171	Tetra-CMPO-derivatives of calix [4] arenes fixed in the $\langle i \rangle$ 1,3-alternate $\langle i \rangle$ conformation. Supramolecular Chemistry, 2010, 22, 347-357.	1.2	10
172	Assessing the mechanism of the synergistic action of calixarenes and Co-dicarbollides in lanthanide extractions. New Journal of Chemistry, 2010, 34, 2552.	2.8	10
173	Experimental and Theoretical Evidence of the Bidentate Binding Mode of Dichloroacetamido Groups at the Upper Rim of Calix[4]arene Hydrogen-Bonding Anion Receptors. Collection of Czechoslovak Chemical Communications, 2004, 69, 1063-1079.	1.0	10
174	Remarkable metal ion catalysis of methanolysis of O,O $\hat{a}\in^2$ -oxybis(ethyleneoxyethylene)-tert-butylcalix[4] arene monoacetate. Journal of the Chemical Society Chemical Communications, 1992, , 1291-1293.	2.0	9
175	Solid state interaction of steroids with calixarenes. I. A preliminary FTIR and DSC study on 4-en-3-keto-steroids. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 18, 341-351.	1.6	8
176	Scanning Force Microscopy of Upright-Standing, Isolated Calixareneâ^Porphyrin Heterodimers. Langmuir, 2005, 21, 8460-8465.	3.5	8
177	Metal ion control of stereochemistry in the acetylation of calix $[4]$ arene 1,3-diethers. Journal of the Chemical Society Perkin Transactions 1, 1991, , 2052.	0.9	7
178	Solid-phase synthesis of linear and cyclic peptides containing a calix[4] arene amino acid. Tetrahedron Letters, 2009, 50, 3450-3453.	1.4	7
179	Noncovalent complexation of glucosylthioureidocalix[4]arenes with carboxylates and their gasâ€phase characteristics: an ESlâ€FTICR mass spectrometric study. Journal of Mass Spectrometry, 2011, 46, 787-793.	1.6	7
180	Radiolytic degradation of a new diglycol-diamide ligand for actinide and lanthanide co-extraction from spent nuclear fuel. Radiation Physics and Chemistry, 2016, 124, 246-251.	2.8	7

#	Article	IF	CITATIONS
181	Liquid/Liquid Extraction Kinetics of Eu(III) and Am(III) by Extractants Designed for the Industrial Reprocessing of Nuclear Wastes. Industrial & Engineering Chemistry Research, 2020, 59, 13477-13490.	3.7	7
182	Multivalent Glycocalixarenes. , 2012, , 36-63.		7
183	Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration. Radiochimica Acta, 2022, 110, 515-525.	1.2	7
184	Hydrophilic 1,10-phenanthroline derivatives for selective Am(III) stripping into aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 1811.	1.5	6
185	Actinide–lanthanide co-extraction by rigidified diglycolamides. Solvent Extraction and Ion Exchange, 2018, 36, 41-53.	2.0	6
186	Crown Ethers Derived from Calix[4] arenes., 2001,, 365-384.		6
187	Barium(II)-ion assisted monodeacetylation of partial-cone calix[4]arene-crown-5 diacetate. A convenient preparation of partial-cone calix[4]arene-crown-5 monoacetate. Journal of the Chemical Society Perkin Transactions II, 1993, , 369.	0.9	5
188	Solvent-dependent host–guest complexation of two homologous merocyanines by a water-soluble calix[8]arene: Spectroscopic analysis and structural calculations. Journal of Molecular Structure, 2007, 846, 49-54.	3.6	5
189	Interactions of tolcapone analogues as stabilizers of the amyloidogenic protein transthyretin. Bioorganic Chemistry, 2020, 103, 104144.	4.1	4
190	Calixarene-decorated liposomes for intracellular cargo delivery. Organic and Biomolecular Chemistry, 2021, 19, 6598-6602.	2.8	4
191	A Structureâ€Activity Investigation on Modified Analogues of an Argininocalixarene Based Nonâ€viral Gene Vector. European Journal of Organic Chemistry, 2021, 2021, 4076-4087.	2.4	4
192	Proximal and distal N,C-linked tetra-peptidocalix [4] arenes as bifunctional receptors: synthesis, conformation and preliminary binding studies. Supramolecular Chemistry, 2010, 22, 776-788.	1.2	3
193	Large glucosylthioureidocalixarenes: selective hosts for mono- and bisphosphonates. Supramolecular Chemistry, 2012, 24, 228-233.	1.2	3
194	Upper-rim acidic peptidocalixarenes as crystal growth modifiers. Supramolecular Chemistry, 2014, 26, 488-499.	1.2	3
195	Inherently chiral cone-calix[4]arenes via a subsequent upper rim ring-closing/opening methodology. Organic and Biomolecular Chemistry, 2018, 16, 7255-7264.	2.8	3
196	Calixarenes Incorporating Sulfonamide Moieties: Versatile Ligands for Carbonic Anhydrases Inhibition. Chemistry - A European Journal, 2022, 28, .	3.3	3
197	Water-Soluble Calixarenes. , 2001, , 440-456.		2
198	Peptido- and Glycocalixarenes., 2007,, 233-257.		2

#	Article	IF	CITATIONS
199	Complete tetraglycosylation of a calix[4]arene by a chemo-enzymatic approach. Organic and Biomolecular Chemistry, 2017, 15, 10064-10072.	2.8	2
200	Delivery of Peptide Nucleic Acids Using an Argininocalix[4]arene as Vector. Methods in Molecular Biology, 2021, 2211, 123-143.	0.9	2
201	Calixarenes as Supramolecular Catalysts Endowed with Esterase and Phosphodiesterase Activity. , 2016, , 691-717.		1
202	Water-Soluble Calixarene Hosts that Specifically Recognize the Trimethylammonium Group or the Benzene Ring of Aromatic Ammonium Cations: A Combined 1H NMR, Calorimetric, and Molecular Mechanics Investigation., 1999, 5, 738.		1
203	Water-Soluble Calixarene Hosts that Specifically Recognize the Trimethylammonium Group or the Benzene Ring of Aromatic Ammonium Cations: A Combined 1H NMR, Calorimetric, and Molecular Mechanics Investigation. Chemistry - A European Journal, 1999, 5, 738-744.	3.3	1
204	Halogen-bonded architectures of multivalent calix[4] arenes. CrystEngComm, 2022, 24, 3770-3777.	2.6	1
205	Peptido- and Glycocalixarenes: Playing with Hydrogen Bonds Around Hydrophobic Cavities. ChemInform, 2003, 34, no.	0.0	0
206	A Prototype Calix[4] arene-Based Receptor for Carbohydrate Recognition Containing Peptide and Phosphate Binding Groups ChemInform, 2003, 34, no.	0.0	0
207	Noncovalent Synthesis of Organic Structures. ChemInform, 2005, 36, no.	0.0	0
208	A study on synergistic effects and protonation of a selected calixarene based picolinamide ligand used in the An/Ln separation. European Physical Journal D, 2006, 56, D453-D458.	0.4	0
209	Special issue of <i>Supramolecular Chemistry</i> honouring Professor Rocco Ungaro. Supramolecular Chemistry, 2013, 25, 535-536.	1.2	0
210	Biomimetic Receptors: Carboxylate Recognition. , 0, , 408-421.		0