Nathalie Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391156/publications.pdf

Version: 2024-02-01

414414 236925 4,850 32 25 32 citations h-index g-index papers 32 32 32 7243 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Tox2 is required for the maintenance of GC T _{FH} cells and the generation of memory T _{FH} cells. Science Advances, 2021, 7, eabj1249.	10.3	12
2	T follicular helper cells, interleukin-21 and systemic lupus erythematosus. Rheumatology, 2017, 56, kew297.	1.9	24
3	Chromatin Accessibility Landscape of Cutaneous T Cell Lymphoma and Dynamic Response to HDAC Inhibitors. Cancer Cell, 2017, 32, 27-41.e4.	16.8	136
4	Molecular Mechanisms Regulating T Helper 1 versus T Follicular Helper Cell Differentiation in Humans. Cell Reports, 2016, 16, 1082-1095.	6.4	42
5	ICOS+PD-1+CXCR3+ T follicular helper cells contribute to the generation of high-avidity antibodies following influenza vaccination. Scientific Reports, 2016, 6, 26494.	3.3	139
6	T follicular helper (Tfh) cells in lupus: Activation and involvement in SLE pathogenesis. European Journal of Immunology, 2016, 46, 281-290.	2.9	121
7	OX40 Ligand Contributes to Human Lupus Pathogenesis by Promoting T Follicular Helper Response. Immunity, 2015, 42, 1159-1170.	14.3	189
8	Regulation of human helper T cell subset differentiation by cytokines. Current Opinion in Immunology, 2015, 34, 130-136.	5 . 5	192
9	Analysis of Human Blood Memory T Follicular Helper Subsets. Methods in Molecular Biology, 2015, 1291, 187-197.	0.9	18
10	Role of T Follicular Helper cells in Multiple Sclerosis. Journal of Nature and Science, 2015, 1, e139.	1.1	11
11	Phenotype and functions of memory Tfh cells in human blood. Trends in Immunology, 2014, 35, 436-442.	6.8	365
12	The cytokine TGF- \hat{l}^2 co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nature Immunology, 2014, 15, 856-865.	14.5	273
13	Human T Follicular Helper Cells: Development and Subsets. Advances in Experimental Medicine and Biology, 2013, 785, 87-94.	1.6	29
14	Blood Tfh Cells Come with Colors. Immunity, 2013, 39, 629-630.	14.3	68
15	Induction of ICOS ⁺ CXCR3 ⁺ CXCR5 ⁺ T _H Cells Correlates with Antibody Responses to Influenza Vaccination. Science Translational Medicine, 2013, 5, 176ra32.	12.4	547
16	IL-12 receptor \hat{l}^21 deficiency alters in vivo T follicular helper cell response in humans. Blood, 2013, 121, 3375-3385.	1.4	147
17	Targeting human dendritic cell subsets for improved vaccines. Seminars in Immunology, 2011, 23, 21-27.	5.6	75
18	Human Blood CXCR5+CD4+ T Cells Are Counterparts of T Follicular Cells and Contain Specific Subsets that Differentially Support Antibody Secretion. Immunity, 2011, 34, 108-121.	14.3	1,376

#	Article	IF	CITATIONS
19	Human Blood CXCR5+CD4+ T Cells Are Counterparts of T Follicular Cells and Contain Specific Subsets that Differentially Support Antibody Secretion. Immunity, 2011, 34, 135.	14.3	21
20	Human tonsil $\langle i \rangle B \langle i \rangle$ - $\langle i \rangle cell$ lymphoma $6 \langle i \rangle$ ($\langle i \rangle BCL6 \langle i \rangle$)-expressing CD4 $\langle sup \rangle + \langle sup \rangle$ T-cell subset specialized for B-cell help outside germinal centers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E488-97.	7.1	127
21	Harnessing human dendritic cell subsets for medicine. Immunological Reviews, 2010, 234, 199-212.	6.0	165
22	Dendritic cells and humoral immunity in humans. Immunology and Cell Biology, 2010, 88, 376-380.	2.3	48
23	Harnessing Human Dendritic Cell Subsets to Design Novel Vaccines. Annals of the New York Academy of Sciences, 2009, 1174, 24-32.	3.8	66
24	Human Dendritic Cells Induce the Differentiation of Interleukin-21-Producing T Follicular Helper-like Cells through Interleukin-12. Immunity, 2009, 31, 158-169.	14.3	319
25	Ex vivo characterization of human thymic dendritic cell subsets. Immunobiology, 2007, 212, 167-177.	1.9	15
26	The HIV-1 clade C promoter is particularly well adapted to replication in the gut in primary infection. Aids, 2006, 20, 657-666.	2.2	11
27	Differential susceptibility of human thymic dendritic cell subsets to X4 and R5 HIV-1 infection. Aids, 2006, 20, 533-542.	2.2	35
28	IL-7 Induces Immunological Improvement in SIV-Infected Rhesus Macaques under Antiviral Therapy. Journal of Immunology, 2006, 176, 914-922.	0.8	108
29	HIV-1 clade promoters strongly influence spatial and temporal dynamics of viral replication in vivo. Journal of Clinical Investigation, 2005, 115, 348-358.	8.2	28
30	Human immunodeficiency virus 1 favors the persistence of infection by activating macrophages through TNF. Virology, 2004, 329, 371-380.	2.4	36
31	Positive Regulation of CXCR4 Expression and Signaling by Interleukin-7 in CD4 + Mature Thymocytes Correlates with Their Capacity To Favor Human Immunodeficiency X4 Virus Replication. Journal of Virology, 2003, 77, 5784-5793.	3.4	68
32	Interleukin-7 and infection itself by human immunodeficiency virus 1 favor virus persistence in mature CD4+CD8â°'CD3+ thymocytes through sustained induction of Bcl-2. Blood, 2001, 98, 2166-2174.	1.4	39