Rajan Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/239103/publications.pdf Version: 2024-02-01

RAIAN SINCH

#	Article	IF	CITATIONS
1	Current Treatment Options and Therapeutic Insights for Gastrointestinal Dysmotility and Functional Gastrointestinal Disorders. Frontiers in Pharmacology, 2022, 13, 808195.	3.5	32
2	Current Advances in RNA Therapeutics for Human Diseases. International Journal of Molecular Sciences, 2022, 23, 2736.	4.1	78
3	Metalloendopeptidase ADAM-like Decysin 1 (ADAMDEC1) in Colonic Subepithelial PDGFRα+ Cells Is a New Marker for Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2022, 23, 5007.	4.1	9
4	Transcriptome profiling of subepithelial PDGFRα cells in colonic mucosa reveals several cell-selective markers. PLoS ONE, 2022, 17, e0261743.	2.5	4
5	Enterochromaffin Cells–Gut Microbiota Crosstalk: Underpinning the Symptoms, Pathogenesis, and Pharmacotherapy in Disorders of Gut-Brain Interaction. Journal of Neurogastroenterology and Motility, 2022, 28, 357-375.	2.4	7
6	Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders. Journal of Neurogastroenterology and Motility, 2021, 27, 19-34.	2.4	111
7	Prevalence and risk factors of gastroesophageal reflux disease in a rural Indian population. Indian Journal of Gastroenterology, 2021, 40, 56-64.	1.4	7
8	Micro-organic basis of functional gastrointestinal (GI) disorders: Role of microRNAs in GI pacemaking cells. Indian Journal of Gastroenterology, 2021, 40, 102-110.	1.4	6
9	Gut microbiota dysbiosis in functional gastrointestinal disorders: Underpinning the symptoms and pathophysiology. JGH Open, 2021, 5, 976-987.	1.6	32
10	miR-10b-5p Rescues Diabetes and Gastrointestinal Dysmotility. Gastroenterology, 2021, 160, 1662-1678.e18.	1.3	41
11	Pathophysiological mechanisms underlying gastrointestinal symptoms in patients with COVID-19. World Journal of Gastroenterology, 2021, 27, 2341-2352.	3.3	37
12	Serotonin Deficiency Is Associated With Delayed Gastric Emptying. Gastroenterology, 2021, 160, 2451-2466.e19.	1.3	38
13	Colonic Motility Is Improved by the Activation of 5-HT2B Receptors on Interstitial Cells of Cajal in Diabetic Mice. Gastroenterology, 2021, 161, 608-622.e7.	1.3	20
14	Role of microRNAs in Disorders of Gut–Brain Interactions: Clinical Insights and Therapeutic Alternatives. Journal of Personalized Medicine, 2021, 11, 1021.	2.5	12
15	Sa1137 AN ADHESIOGENIC ROLE OF THBS4 IN THE DEVELOPMENT OF POSTSURGICAL ABDOMINAL ADHESIONS IN MICE. Gastroenterology, 2020, 158, S-288.	1.3	0
16	653 MIR-10B-5P RESCUES AND PREVENTS DIABETIC GASTROPARESIS THROUGH KLF11-KIT PATHWAY. Gastroenterology, 2020, 158, S-141-S-142.	1.3	0
17	Sa1710 A NEW ROLE OF THE HTR2B RECEPTOR IN GASTROINTESTINAL MOTILITY IN DIET-INDUCED DIABETIC OBESE MICE. Gastroenterology, 2020, 158, S-393.	1.3	0
18	Su1753 ESTROGEN PROTECTS TYPE 2 DIABETES AND GASTROINTESTINAL SLOW TRANSIT IN FEMALE MICE VIA MIR-10B-5P AND EGR1 PATHWAYS. Gastroenterology, 2020, 158, S-633-S-634.	1.3	0

Rajan Singh

#	Article	IF	CITATIONS
19	The Link between Oral and Gut Microbiota in Inflammatory Bowel Disease and a Synopsis of Potential Salivary Biomarkers. Applied Sciences (Switzerland), 2020, 10, 6421.	2.5	12
20	Sa1124 – Chronic Retardation of Gastrointestinal Transit Time Progressively Exacerbates the Development of the Type 2 Diabetes. Gastroenterology, 2019, 156, S-276-S-277.	1.3	0
21	417 – Functional Characterization of Enterochromaffin Cells Using a Tph1CREERT2 Mouse Reveals Serotonin Deficiency in Idiopathic Gastroparesis. Gastroenterology, 2019, 156, S-81.	1.3	0
22	Frequency and risk factors of functional gastroâ€intestinal disorders in a rural Indian population. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 378-387.	2.8	70
23	Ag/AgO Nanoparticles Grown via Time Dependent Double Mechanism in a 2D Layered Ni-PCP and Their Antibacterial Efficacy. Scientific Reports, 2017, 7, 44852.	3.3	11
24	Genetic variants of immune-related genes IL17F and IL10 are associated with functional dyspepsia: A case–control study. Indian Journal of Gastroenterology, 2017, 36, 343-352.	1.4	8
25	Esophageal Acidification During Nocturnal Acid-breakthrough with Ilaprazole Versus Omeprazole in Gastroesophageal Reflux Disease. Journal of Neurogastroenterology and Motility, 2017, 23, 208-217.	2.4	8
26	Mapping of Brain Activations to Rectal Balloon Distension Stimuli in Male Patients with Irritable Bowel Syndrome Using Functional Magnetic Resonance Imaging. Journal of Neurogastroenterology and Motility, 2017, 23, 415-427.	2.4	44
27	Functional dyspepsia is associated with GNβ3 C825T and CCK-AR T/C polymorphism. European Journal of Gastroenterology and Hepatology, 2016, 28, 226-232.	1.6	16
28	Catheter-Based 24-h pH-Metry and Impedance: Technique, Interpretation, and Clinical Application. , 2016, , 95-106.		2
29	Achalasia Is Associated With eNOS4a4a, iNOS22GA, and nNOS29TT Genotypes: A Case-control Study. Journal of Neurogastroenterology and Motility, 2015, 21, 380-389.	2.4	11
30	Pathogenesis of Irritable Bowel Syndrome: Is It Really in the Gene?. Journal of Neurogastroenterology and Motility, 2014, 20, 284-286.	2.4	5
31	Role of cholecystokinin receptor-A gene polymorphism in development of functional dyspepsia. Molecular Cytogenetics, 2014, 7, P111.	0.9	0
32	526 Genetic Polymorphisms in eNOS and iNOS Are Associated With Achalasia Cardia. Gastroenterology, 2013, 144, S-94.	1.3	0
33	Lactase persistence/nonâ€persistence genetic variants in irritable bowel syndrome in an endemic area for lactose malabsorption. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 1825-1830.	2.8	10
34	Epidemiology of Uninvestigated and Functional Dyspepsia in Asia: Facts and Fiction. Journal of Neurogastroenterology and Motility, 2011, 17, 235-244.	2.4	127
35	Regulation of endometrial blood flow in ovariectomized rats: assessment of the role of nitric oxide. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2009-H2017.	3.2	4