Sally A Amundson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2390978/publications.pdf

Version: 2024-02-01

201674 138484 3,574 59 27 58 citations g-index h-index papers 63 63 63 2738 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Transcriptomics for radiation biodosimetry: progress and challenges. International Journal of Radiation Biology, 2023, 99, 925-933.	1.8	21
2	The transcriptomic revolution and radiation biology. International Journal of Radiation Biology, 2022, 98, 428-438.	1.8	7
3	Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions – key session ConRad 2021. International Journal of Radiation Biology, 2022, 98, 843-854.	1.8	13
4	Effect of the p38 Mitogen-Activated Protein Kinase Signaling Cascade on Radiation Biodosimetry. Radiation Research, 2022, 198, .	1.5	3
5	Impact of aging on gene expression response to x-ray irradiation using mouse blood. Scientific Reports, 2021, 11, 10177.	3.3	9
6	Biofluid Metabolomics of Mice Exposed to External Low-Dose Rate Radiation in a Novel Irradiation System, the Variable Dose-Rate External ¹³⁷ Cs Irradiator. Journal of Proteome Research, 2021, 20, 5145-5155.	3.7	5
7	VADER: a variable dose-rate external 137Cs irradiator for internal emitter and low dose rate studies. Scientific Reports, 2020, 10, 19899.	3.3	12
8	Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure to 137Cs. Part 1: Global Transcriptomic Responses in Blood. Radiation Research, 2020, 196, 478-490.	1.5	12
9	Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure from 137Cs. Part 2: Integration of Gamma-H2AX and Gene Expression Biomarkers for Retrospective Radiation Biodosimetry. Radiation Research, 2020, 196, 491-500.	1.5	8
10	Effect of dose and dose rate on temporal \hat{I}^3 -H2AX kinetics in mouse blood and spleen mononuclear cells in vivo following Cesium-137 administration. BMC Molecular and Cell Biology, 2019, 20, 13.	2.0	15
11	Impact of inflammatory signaling on radiation biodosimetry: mouse model of inflammatory bowel disease. BMC Genomics, 2019, 20, 329.	2.8	18
12	An Integrated Preprocessing Approach for Exploring Single-Cell Gene Expression in Rare Cells. Scientific Reports, 2019, 9, 19758.	3.3	2
13	Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Scientific Reports, 2019, 9, 19434.	3.3	26
14	Transcriptomic responses in mouse blood during the first week after in vivo gamma irradiation. Scientific Reports, 2019, 9, 18364.	3.3	12
15	New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Scientific Reports, 2019, 9, 18441.	3. 3	19
16	Human Transcriptomic Response to Mixed Neutron-Photon Exposures Relevant to an Improvised Nuclear Device. Radiation Research, 2019, 192, 189.	1.5	19
17	Global Gene Expression Response in Mouse Models of DNA Repair Deficiency after Gamma Irradiation. Radiation Research, 2018, 189, 337.	1.5	21
18	Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS ONE, 2018, 13, e0198851.	2.5	64

#	Article	IF	Citations
19	Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays. Radiation Research, 2018, 190, 53.	1.5	4
20	Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation. BMC Genomics, 2018, 19, 504.	2.8	31
21	Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS ONE, 2018, 13, e0191402.	2.5	32
22	Gene Expression Studies for the Development of Particle Therapy. International Journal of Particle Therapy, 2018, 5, 49-59.	1.8	4
23	Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model. Radiation Research, 2017, 187, 443.	1.5	35
24	Comparison of gene expression response to neutron and x-ray irradiation using mouse blood. BMC Genomics, 2017, 18, 2.	2.8	57
25	Developing Human Radiation Biodosimetry Models: Testing Cross-Species Conversion Approaches Using an Ex Vivo Model System. Radiation Research, 2017, 187, 708.	1.5	38
26	In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes. Radiation and Environmental Biophysics, 2016, 55, 53-59.	1.4	25
27	A bead-based microfluidic approach to integrated single-cell gene expression analysis by quantitative RT-PCR. RSC Advances, 2015, 5, 4886-4893.	3.6	28
28	A microfluidic approach to parallelized transcriptional profiling of single cells. Microfluidics and Nanofluidics, 2015, 19, 1429-1440.	2.2	8
29	Effect of 90Sr internal emitter on gene expression in mouse blood. BMC Genomics, 2015, 16, 586.	2.8	30
30	Radiation dose-rate effects on gene expression for human biodosimetry. BMC Medical Genomics, 2015, 8, 22.	1.5	92
31	Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model. Radiation Research, 2015, 184, 24.	1.5	36
32	\hat{I}^3 -H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90. PLoS ONE, 2015, 10, e0143815.	2.5	15
33	Differential Effect of Active Smoking on Gene Expression in Male and Female Smokers. Journal of Carcinogenesis & Mutagenesis, 2014, 05, .	0.3	29
34	RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal response. Radiation Oncology, 2014, 9, 206.	2.7	14
35	Gene Expression Response of Mice after a Single Dose of 137Cs as an Internal Emitter. Radiation Research, 2014, 182, 380.	1.5	45
36	ATM Regulates Insulin-Like Growth Factor 1-Secretory Clusterin (IGF-1-sCLU) Expression that Protects Cells against Senescence. PLoS ONE, 2014, 9, e99983.	2.5	25

#	Article	IF	Citations
37	Single-cell responses to ionizing radiation. Radiation and Environmental Biophysics, 2013, 52, 523-530.	1.4	7
38	Widespread Decreased Expression of Immune Function Genes in Human Peripheral Blood Following Radiation Exposure. Radiation Research, 2013, 180, 575.	1.5	30
39	Cyclophilin B Expression Is Associated with In Vitro Radioresistance and Clinical Outcome after Radiotherapy. Neoplasia, 2011, 13, 1122-IN14.	5.3	20
40	Prediction of In Vivo Radiation Dose Status in Radiotherapy Patients using Ex Vivo and In Vivo Gene Expression Signatures. Radiation Research, 2011, 175, 257.	1.5	111
41	Whole mouse blood microRNA as biomarkers for exposure to ?-rays and ^{56 < /sup > Fe ions. International Journal of Radiation Biology, 2011, 87, 653-662.}	1.8	63
42	Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering. BMC Genomics, 2011, 12, 2.	2.8	42
43	Radiation-Induced Micro-RNA Expression Changes in Peripheral Blood Cells of Radiotherapy Patients. International Journal of Radiation Oncology Biology Physics, 2011, 80, 549-557.	0.8	120
44	Gene expression analysis with an integrated CMOS microarray by time-resolved fluorescence detection. Biosensors and Bioelectronics, 2011, 26, 2660-2665.	10.1	19
45	Gene expression signatures of radiation exposure in peripheral white blood cells of smokers and non-smokers. International Journal of Radiation Biology, 2011, 87, 791-801.	1.8	55
46	Mechanism of radiation-induced bystander effects: a unifying model. Journal of Pharmacy and Pharmacology, 2010, 60, 943-950.	2.4	294
47	Regulation of early signaling and gene expression in the \hat{l}_{\pm} -particle and bystander response of IMR-90 human fibroblasts. BMC Medical Genomics, 2010, 3, 31.	1.5	42
48	Integration of biological knowledge and gene expression data for biomarker selection. Cancer Biology and Therapy, 2010, 10, 1252-1255.	3.4	15
49	Functional genomics in radiation biology: a gateway to cellular systems-level studies. Radiation and Environmental Biophysics, 2008, 47, 25-31.	1.4	47
50	Global gene expression analyses of bystander and alpha particle irradiated normal human lung fibroblasts: Synchronous and differential responses. BMC Medical Genomics, 2008, 1, 63.	1.5	93
51	Development of Gene Expression Signatures for Practical Radiation Biodosimetry. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1236-1244.e76.	0.8	212
52	Functional Genomics and a New Era in Radiation Biology and Oncology. BioScience, 2008, 58, 491-500.	4.9	17
53	Integrating Global Gene Expression and Radiation Survival Parameters across the 60 Cell Lines of the National Cancer Institute Anticancer Drug Screen. Cancer Research, 2008, 68, 415-424.	0.9	226
54	Stress-specific signatures: expression profiling of p53 wild-type and -null human cells. Oncogene, 2005, 24, 4572-4579.	5.9	131

#	Article	IF	CITATIONS
55	Mechanism of radiation-induced bystander effect: Role of the cyclooxygenase-2 signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14641-14646.	7.1	239
56	Human In vivo Radiation-Induced Biomarkers. Cancer Research, 2004, 64, 6368-6371.	0.9	202
57	Differential responses of stress genes to low dose-rate gamma irradiation. Molecular Cancer Research, 2003, 1, 445-52.	3.4	177
58	Identification of Potential mRNA Biomarkers in Peripheral Blood Lymphocytes for Human Exposure to Ionizing Radiation. Radiation Research, 2000, 154, 342-346.	1.5	261
59	Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene, 1999, 18, 3666-3672.	5.9	314