
## Claire E Newman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2390038/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Martian Dust. , 2022, , 637-666.                                                                                                                                                                           |      | 6         |
| 2  | Diurnal Variability in Aeolian Sediment Transport at Gale Crater, Mars. Journal of Geophysical<br>Research E: Planets, 2022, 127, .                                                                        | 3.6  | 9         |
| 3  | Characteristics of convective vortices and dust devils at gale crater on Mars during MY33. Planetary and Space Science, 2022, 213, 105430.                                                                 | 1.7  | 2         |
| 4  | Winter Weakening of Titan's Stratospheric Polar Vortices. Planetary Science Journal, 2022, 3, 73.                                                                                                          | 3.6  | 4         |
| 5  | In situ recording of Mars soundscape. Nature, 2022, 605, 653-658.                                                                                                                                          | 27.8 | 30        |
| 6  | Multi-year measurements of ripple and dune migration on Mars: Implications for the wind regime and sand transport. Icarus, 2022, 380, 114966.                                                              | 2.5  | 5         |
| 7  | Earth-like thermal and dynamical coupling processes in the Martian climate system. Earth-Science<br>Reviews, 2022, 229, 104023.                                                                            | 9.1  | 18        |
| 8  | Orbital and In‣itu Investigation of Periodic Bedrock Ridges in Glen Torridon, Gale Crater, Mars.<br>Journal of Geophysical Research E: Planets, 2022, 127, .                                               | 3.6  | 18        |
| 9  | InSight Pressure Data Recalibration, and Its Application to the Study of Longâ€Term Pressure Changes on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .                                     | 3.6  | 12        |
| 10 | The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .                                                                                                       | 10.3 | 47        |
| 11 | Variability in Titan's Mesospheric HCN and Temperature Structure as Observed by ALMA. Planetary<br>Science Journal, 2022, 3, 146.                                                                          | 3.6  | 2         |
| 12 | The Aeolian Environment in Glen Torridon, Gale Crater, Mars. Journal of Geophysical Research E:<br>Planets, 2022, 127, .                                                                                   | 3.6  | 14        |
| 13 | The whirlwinds of Elysium: A catalog and meteorological characteristics of "dust devil―vortices<br>observed by InSight on Mars. Icarus, 2021, 355, 114119.                                                 | 2.5  | 20        |
| 14 | Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 2: Local Meteorology, Transport<br>Dynamics, and Model Analysis. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006514.  | 3.6  | 19        |
| 15 | Multi-model Meteorological and Aeolian Predictions for Mars 2020 and the Jezero Crater Region.<br>Space Science Reviews, 2021, 217, 20.                                                                    | 8.1  | 35        |
| 16 | The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. Space Science Reviews, 2021, 217, 48.                                                          | 8.1  | 57        |
| 17 | Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 1: Multiâ€Instrument Observations,<br>Analysis, and Implications. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006757. | 3.6  | 23        |
| 18 | Titan: Earth-like on the Outside, Ocean World on the Inside. Planetary Science Journal, 2021, 2, 112.                                                                                                      | 3.6  | 21        |

2

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Gravity Wave Observations by the Mars Science Laboratory REMS Pressure Sensor and Comparison<br>With Mesoscale Atmospheric Modeling With MarsWRF. Journal of Geophysical Research E: Planets,<br>2021, 126, e2021JE006907.                                         | 3.6  | 11        |
| 20 | Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander. Planetary Science Journal, 2021, 2, 130.                                                                                                                                       | 3.6  | 80        |
| 21 | The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory<br>Mission. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006804.                                                                               | 3.6  | 16        |
| 22 | Large Eddy Simulations of the Dusty Martian Convective Boundary Layer With MarsWRF. Journal of<br>Geophysical Research E: Planets, 2021, 126, e2020JE006752.                                                                                                       | 3.6  | 17        |
| 23 | Interâ€annual, seasonal and regional variations in the Martian convective boundary layer derived from<br>GCM simulations with a semiâ€interactive dust transport model. Journal of Geophysical Research E:<br>Planets, 2021, 126, e2021JE006965.                   | 3.6  | 3         |
| 24 | Lander and rover histories of dust accumulation on and removal from solar arrays on Mars.<br>Planetary and Space Science, 2021, 207, 105337.                                                                                                                       | 1.7  | 23        |
| 25 | A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based<br>on Halfâ€aâ€Year of InSight Atmospheric Measurements and Largeâ€Eddy Simulations. Journal of Geophysical<br>Research E: Planets, 2021, 126, .               | 3.6  | 45        |
| 26 | Dust and water ice variability and their interaction pattern during Martian low-dust and high-dust periods. Planetary and Space Science, 2021, 209, 105357.                                                                                                        | 1.7  | 1         |
| 27 | Constraints on Emission Source Locations of Methane Detected by Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2021, 126, .                                                                                                                  | 3.6  | 5         |
| 28 | Mars 2020 Mission Overview. Space Science Reviews, 2020, 216, 1.                                                                                                                                                                                                   | 8.1  | 239       |
| 29 | The Lineâ€of‣ight Extinction Record at Gale Crater as Observed by MSL's Mastcam and Navcam through<br>ⰼ2,500 Sols. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006465.                                                                           | 3.6  | 3         |
| 30 | Effects of a Large Dust Storm in the Near‣urface Atmosphere as Measured by InSight in Elysium<br>Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory.<br>Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006493. | 3.6  | 30        |
| 31 | Geology of the InSight landing site on Mars. Nature Communications, 2020, 11, 1014.                                                                                                                                                                                | 12.8 | 107       |
| 32 | The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.                                                                                                                                                                               | 12.9 | 161       |
| 33 | Advective Fluxes in the Martian Regolith as a Mechanism Driving Methane and Other Trace Gas<br>Emissions to the Atmosphere. Geophysical Research Letters, 2020, 47, e2019GL085694.                                                                                 | 4.0  | 9         |
| 34 | Monitoring of Dust Devil Tracks Around the InSight Landing Site, Mars, and Comparison With In Situ<br>Atmospheric Data. Geophysical Research Letters, 2020, 47, e2020GL087234.                                                                                     | 4.0  | 30        |
| 35 | Meteorological Predictions for Mars 2020 Perseverance Rover Landing Site at Jezero Crater. Space<br>Science Reviews, 2020, 216, 1.                                                                                                                                 | 8.1  | 62        |
| 36 | Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.                                                                                                                                                                            | 12.9 | 274       |

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Replication of the historic record of martian global dust storm occurrence in an atmospheric general circulation model. Icarus, 2019, 317, 197-208.                                                                                                                      | 2.5  | 12        |
| 38 | The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the<br>ExoMars Trace Gas Orbiter and Curiosity Observations. Geophysical Research Letters, 2019, 46,<br>9430-9438.                                                            | 4.0  | 31        |
| 39 | Effects of the MY34/2018 Global Dust Storm as Measured by MSL REMS in Gale Crater. Journal of<br>Geophysical Research E: Planets, 2019, 124, 1899-1912.                                                                                                                  | 3.6  | 40        |
| 40 | MarsWRF Convective Vortex and Dust Devil Predictions for Gale Crater Over 3 Mars Years and<br>Comparison With MSLâ€REMS Observations. Journal of Geophysical Research E: Planets, 2019, 124,<br>3442-3468.                                                               | 3.6  | 41        |
| 41 | An initial assessment of the impact of postulated orbit-spin coupling on Mars dust storm variability in fully interactive dust simulations. Icarus, 2019, 317, 649-668.                                                                                                  | 2.5  | 20        |
| 42 | Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part I: Wind retrieval and Gale's wind speeds and directions. Icarus, 2019, 319, 909-925.                                                                                          | 2.5  | 45        |
| 43 | Methane seasonal cycle at Gale Crater on Mars consistent with regolith adsorption and diffusion.<br>Nature Geoscience, 2019, 12, 321-325.                                                                                                                                | 12.9 | 24        |
| 44 | Vertical and horizontal heterogeneity of atmospheric dust loading in northern Gale Crater, Mars.<br>Icarus, 2019, 329, 197-206.                                                                                                                                          | 2.5  | 6         |
| 45 | Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophysical<br>Research Letters, 2019, 46, 71-79.                                                                                                                                       | 4.0  | 138       |
| 46 | Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part II: Wind probability distributions. Icarus, 2019, 319, 645-656.                                                                                                               | 2.5  | 36        |
| 47 | EOLIAN BEDFORMS IN THE REGION SURROUNDING THE INSIGHT LANDING SITE, MARS. , 2019, , .                                                                                                                                                                                    |      | 1         |
| 48 | The cascade from local to global dust storms on Mars: Temporal and spatial thresholds on thermal and dynamical feedback. Icarus, 2018, 302, 514-536.                                                                                                                     | 2.5  | 21        |
| 49 | The sensitivity of solsticial pauses to atmospheric ice and dust in the MarsWRF General Circulation Model. Icarus, 2018, 311, 23-34.                                                                                                                                     | 2.5  | 40        |
| 50 | Seasonal Deposition and Lifting of Dust on Mars as Observed by the Curiosity Rover. Scientific Reports, 2018, 8, 17576.                                                                                                                                                  | 3.3  | 36        |
| 51 | Coarse Sediment Transport in the Modern Martian Environment. Journal of Geophysical Research E:<br>Planets, 2018, 123, 1380-1394.                                                                                                                                        | 3.6  | 44        |
| 52 | Complex bedding geometry in the upper portion of Aeolis Mons, Gale crater, Mars. Icarus, 2018, 314, 246-264.                                                                                                                                                             | 2.5  | 20        |
| 53 | The Bagnold Dunes in Southern Summer: Active Sediment Transport on Mars Observed by the Curiosity<br>Rover. Geophysical Research Letters, 2018, 45, 8853-8863.                                                                                                           | 4.0  | 50        |
| 54 | On the relationship between surface pressure, terrain elevation, and air temperature. Part I: The large<br>diurnal surface pressure range at Gale Crater, Mars and its origin due to lateral hydrostatic<br>adjustment. Planetary and Space Science, 2018, 164, 132-157. | 1.7  | 30        |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit.<br>Journal of Geophysical Research E: Planets, 2017, 122, 2077-2110.                                                               | 3.6  | 77        |
| 56 | Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science<br>Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using<br>MarsWRF. Icarus, 2017, 291, 203-231. | 2.5  | 119       |
| 57 | Martian sand sheet characterization and implications for formation: A case study. Aeolian Research, 2017, 29, 1-11.                                                                                                                 | 2.7  | 11        |
| 58 | The Mars Dust Cycle. , 2017, , 295-337.                                                                                                                                                                                             |      | 70        |
| 59 | The Vertical Dust Profile Over Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2779-2792.                                                                                                                 | 3.6  | 22        |
| 60 | An integrated model for dune morphology and sand fluxes on Mars. Earth and Planetary Science Letters, 2017, 457, 204-212.                                                                                                           | 4.4  | 42        |
| 61 | Convective vortices and dust devils at the MSL landing site: Annual variability. Journal of Geophysical<br>Research E: Planets, 2016, 121, 1514-1549.                                                                               | 3.6  | 55        |
| 62 | Dust Devil Sediment Transport: From Lab to Field to Global Impact. Space Science Reviews, 2016, 203, 377-426.                                                                                                                       | 8.1  | 35        |
| 63 | Atmospheric tides in Gale Crater, Mars. Icarus, 2016, 268, 37-49.                                                                                                                                                                   | 2.5  | 45        |
| 64 | Simulating Titan's methane cycle with the TitanWRF General Circulation Model. Icarus, 2016, 267, 106-134.                                                                                                                           | 2.5  | 37        |
| 65 | Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus, 2015, 249, 129-142.                               | 2.5  | 66        |
| 66 | The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model. Icarus, 2015, 257, 47-87.                                   | 2.5  | 66        |
| 67 | Mars Science Laboratory relative humidity observations: Initial results. Journal of Geophysical<br>Research E: Planets, 2014, 119, 2132-2147.                                                                                       | 3.6  | 75        |
| 68 | Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux. Nature Communications, 2014, 5, 5096.                                                                                                         | 12.8 | 86        |
| 69 | Constraints on Mars' recent equatorial wind regimes from layered deposits and comparison with general circulation model results. Icarus, 2014, 230, 81-95.                                                                          | 2.5  | 15        |
| 70 | Curiosity's rover environmental monitoring station: Overview of the first 100 sols. Journal of<br>Geophysical Research E: Planets, 2014, 119, 1680-1688.                                                                            | 3.6  | 112       |
| 71 | A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.                                                                                                                       | 12.6 | 687       |
| 72 | Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover.<br>Science, 2014, 343, 1244797.                                                                                                    | 12.6 | 475       |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest. Journal of Geophysical Research E: Planets, 2014, 119, 1374-1389. | 3.6  | 46        |
| 74 | Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission.<br>Journal of Geophysical Research E: Planets, 2014, 119, 440-453.           | 3.6  | 80        |
| 75 | Pressure observations by the Curiosity rover: Initial results. Journal of Geophysical Research E:<br>Planets, 2014, 119, 82-92.                                               | 3.6  | 84        |
| 76 | The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation. Journal of Geophysical Research E: Planets, 2013, 118, 980-993.    | 3.6  | 37        |
| 77 | Growth and form of the mound in Gale Crater, Mars: Slope wind enhanced erosion and transport.<br>Geology, 2013, 41, 543-546.                                                  | 4.4  | 147       |
| 78 | Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.                                                                                                    | 12.6 | 103       |
| 79 | The impact of resolution on the dynamics of the martian global atmosphere: Varying resolution studies with the MarsWRF GCM. Icarus, 2012, 221, 276-288.                       | 2.5  | 97        |
| 80 | Atmospheric modeling of Mars methane surface releases. Planetary and Space Science, 2011, 59, 227-237.                                                                        | 1.7  | 54        |
| 81 | Stratospheric superrotation in the TitanWRF model. Icarus, 2011, 213, 636-654.                                                                                                | 2.5  | 81        |
| 82 | PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. Journal of Geophysical Research, 2007, 112, .                   | 3.3  | 220       |
| 83 | The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus, 2005, 174, 135-160.                                                                | 2.5  | 80        |
| 84 | A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images.<br>Journal of Geophysical Research, 2005, 110, n/a-n/a.                        | 3.3  | 105       |
| 85 | Modeling the Martian dust cycle, 1. Representations of dust transport processes. Journal of Geophysical Research, 2002, 107, 6-1-6-18.                                        | 3.3  | 194       |
| 86 | Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research, 2002, 107, 7-1-7-15.                           | 3.3  | 121       |