
Hideto Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2388027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deuterated Liquid Crystals – practical synthesis of deuterium labeled 4-alkyl-4″-isothiocyanato-[1,1ʹ:4ʹ,1″]terphenyls. Journal of Molecular Liquids, 2022, 345, 117847.	2.3	4
2	Synthesis, stereocomplex crystallization, homo-crystallization, and thermal properties and degradation of enantiomeric aromatic poly(lactic acid)s, poly(mandelic acid)s. Polymer Degradation and Stability, 2022, 195, 109803.	2.7	4
3	Effects of alkylthio groups on phase transitions of organic molecules and liquid crystals: a comparative study with alkyl and alkoxy groups. CrystEngComm, 2022, 24, 1877-1890.	1.3	12
4	Alkylthio-based asymmetric liquid crystals: unravelling the substituent effects and intercalated cybotactic nematic and smectic phases. Materials Advances, 2022, 3, 3218-3228.	2.6	7
5	Thioether-Linked Liquid Crystal Trimers: Odd–Even Effects of Spacers and the Influence of Thioether Bonds on Phase Behavior. Materials, 2022, 15, 1709.	1.3	9
6	2,7-substituted fluorenone-based liquid crystal trimers: twist-bend nematic phase induced by outer thioether linkage. Phase Transitions, 2022, 95, 331-339.	0.6	7
7	Distinct twist-bend nematic phase behaviors associated with the ester-linkage direction of thioether-linked liquid crystal dimers. Materials Advances, 2021, 2, 261-272.	2.6	18
8	Stereocomplex- and homo-crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, enantiomeric Poly(I-lactide)-b-Poly(dl-lactide) and Poly(d-lactide)-b-Poly(dl-lactide). Polymer, 2021, 213, 123226.	1.8	17
9	Thioether-linked azobenzene-based liquid crystal dimers exhibiting the twist-bend nematic phase over a wide temperature range. Liquid Crystals, 2021, 48, 641-652.	0.9	22
10	Extreme modulation of liquid crystal viscoelasticity <i>via</i> altering the ester bond direction. Journal of Materials Chemistry C, 2021, 9, 9990-9996.	2.7	3
11	Methylene- and thioether-linked cyanobiphenyl-based liquid crystal dimers CB <i>n</i> SCB exhibiting room temperature twist-bend nematic phases and glasses. Materials Advances, 2021, 2, 1760-1773.	2.6	21
12	Carbonyl- and thioether-linked cyanobiphenyl-based liquid crystal dimers exhibiting twist-bend nematic phases. Tetrahedron, 2021, 81, 131870.	1.0	15
13	Phase behaviors of classic liquid crystal dimers and trimers: Alternate induction of smectic and twist-bend nematic phases depending on spacer parity for liquid crystal trimers. Journal of Molecular Liquids, 2021, 326, 115319.	2.3	18
14	Stereocomplex- and homo-crystallization behavior, polymorphism, and thermal properties of enantiomeric random copolymers of l- and d-lactic acids from the melt. Polymer, 2021, 228, 123954.	1.8	6
15	Synthesis and Stereocomplexation of New Enantiomeric Stereo Periodical Copolymers Poly(<scp>l</scp> -lactic acid– <scp>l</scp> -lactic acid– <scp>d</scp> -lactic acid) and Poly(<scp>d</scp> -lactic acid– <scp>d</scp> -lactic acid– <scp>l</scp> -lactic acid). Macromolecules, 2021. 54. 6226-6237.	2.2	12
16	Complete Genome Sequence of <i>Gelria</i> sp. Strain Kuro-4, a Thermophilic Anaerobe Isolated from a Thermophilic Anaerobic Digestion Reactor Treating Poly(<scp>L</scp> -Lactic Acid). Microbiology Resource Announcements, 2021, 10, e0054421.	0.3	0
17	Thioether-linked benzylideneaniline-based twist-bend nematic liquid crystal dimers: Insights into spacer lengths, mesogenic arm structures, and linkage types. Tetrahedron, 2021, 95, 132351.	1.0	11
18	Synthesis and characterization of alkylthio-attached azobenzene-based liquid crystal polymers: Roles of the alkylthio bond and polymer chain in phase behavior and liquid crystal formation. Polymer, 2021, , 124194.	1.8	5

#	Article	IF	CITATIONS
19	Stereocomplex and individual crystallization behavior of symmetric or enantiomeric substituted Poly(lactic acid)s random copolymers with high crystallizabilities. Polymer, 2021, 237, 124352.	1.8	2
20	Thioether-linked liquid crystal dimers and trimers: The twist-bend nematic phase. Journal of Molecular Structure, 2020, 1199, 126913.	1.8	42
21	Stereocomplex and Individual Crystallizability of Random Copolymers Based on Chiral α-Monosubstituted 2-Hydroxyalkanoic Acids. Crystal Growth and Design, 2020, 20, 1047-1057.	1.4	7
22	Thermal properties and degradation of enantiomeric copolyesteramides poly(lactic acid-co-alanine)s. Polymer Degradation and Stability, 2020, 171, 109047.	2.7	8
23	Ether―and Thioether‣inked Naphthaleneâ€Based Liquidâ€Crystal Dimers: Influence of Chalcogen Linkage and Mesogenicâ€Arm Symmetry on the Incidence and Stability of the Twist–Bend Nematic Phase. Chemistry - A European Journal, 2020, 26, 3767-3775.	1.7	34
24	Stereocomplex crystallization, homocrystallization, and polymorphism of enantiomeric copolyesteramides poly(lactic acid― <i>co</i> â€alanine)s from the melt. Polymer Crystallization, 2020, 3, e10094.	0.5	4
25	Birefringence and photoluminescence properties of diphenylacetylene-based liquid crystal dimers. New Journal of Chemistry, 2020, 44, 17531-17541.	1.4	17
26	Crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, poly(l-lactide)-b-poly(dl-lactide). Polymer Chemistry, 2020, 11, 5711-5724.	1.9	7
27	Viscoelastic properties of a thioether-based heliconical twist–bend nematogen. Physical Chemistry Chemical Physics, 2020, 22, 9593-9599.	1.3	15
28	Synthesis and stereocomplex formation of enantiomeric alternating copolymers with two types of chiral centers, poly(lactic acid- <i>alt</i> -2-hydroxybutanoic acid)s. RSC Advances, 2020, 10, 39000-39007.	1.7	8
29	Screening of crystalline species and enhanced nucleation of enantiomeric poly(lactide) systems by melt-quenching. Polymer Bulletin, 2019, 76, 1199-1216.	1.7	10
30	Draft Genome Sequence of Thermodesulfovibrio sp. Strain Kuro-1, a Thermophilic, Lactate-Degrading Anaerobe Isolated from a Thermophilic Anaerobic Digestion Reactor. Microbiology Resource Announcements, 2019, 8, .	0.3	1
31	Alkylthio- and alkyl-substituted asymmetric diphenyldiacetylene-based liquid crystals: phase transitions, mesophase and single-crystal structures, and birefringence. Liquid Crystals, 2019, 46, 1621-1630.	0.9	17
32	Prokaryotic Community Structures in a Thermophilic Anaerobic Digestion Reactor Converting Poly() Tj ETQq0 0 Microbiology Resource Announcements, 2019, 8, .	O rgBT /O 0.3	verlock 10 Tf 5 4
33	Nitrate removal performance and diversity of active denitrifying bacteria in denitrification reactors using poly(L-lactic acid) with enhanced chemical hydrolyzability. Environmental Science and Pollution Research, 2019, 26, 36236-36247.	2.7	7
34	Supramolecular hydrogen-bonded liquid crystals based on 4-n-alkylthiobenzoic acids and 4,4′-bipyridine: Their mesomorphic behavior with comparative study including alkyl and alkoxy counterparts. Journal of Molecular Liquids, 2019, 280, 153-159.	2.3	37
35	Quiescent Crystallization of Poly(Lactic Acid) and Its Copolymers-Based Materials. Advances in Polymer Science, 2019, , 37-86.	0.4	7
36	Selenium-linked liquid crystal dimers for twist-bend nematogens. Journal of Molecular Liquids, 2019, 289, 111097.	2.3	28

#	Article	IF	CITATIONS
37	Stereocomplex Formation between Enantiomeric Alternating Lactic Acid-Based Copolymers as a Versatile Method for the Preparation of High Performance Biobased Biodegradable Materials. ACS Applied Polymer Materials, 2019, 1, 1476-1484.	2.0	27
38	Simultaneous stereocomplex cocrystallization from coexisting two types of stereocomplexationable poly(lactide) systems. CrystEngComm, 2019, 21, 3158-3169.	1.3	6
39	Twist-bend nematic liquid crystals based on thioether linkage. New Journal of Chemistry, 2019, 43, 6786-6793.	1.4	52
40	A versatile strategy for the synthesis and mechanical property manipulation of networked biodegradable polymeric materials composed of well-defined alternating hard and soft domains. RSC Advances, 2019, 9, 7094-7106.	1.7	5
41	Isolation of lactate-degrading bacteria from anaerobic sludge in a thermophilic anaerobic digestion reactor treating poly(L-lactic acid). AIP Conference Proceedings, 2019, , .	0.3	1
42	Synthesis, properties, and crystallization of the alternating stereocopolymer poly(<scp>l</scp> -lactic) Tj ETQq0 C poly(lactic acid). Polymer Chemistry, 2018, 9, 2446-2457.	0 rgBT /C 1.9	overlock 10 T 29
43	Crystal modulus of poly (lactic acid)s, and their stereocomplex. Polymer, 2018, 138, 124-131.	1.8	44
44	Synthesis, stereocomplex crystallization and homo-crystallization of enantiomeric poly(lactic) Tj ETQq0 0 0 rgBT	/Oyerlock I.gr	10 Jf 50 462
45	Ternary Stereocomplex and Hetero-Stereocomplex Crystallizability of Substituted and Unsubstituted Poly(lactic acid)s. Crystal Growth and Design, 2018, 18, 521-530.	1.4	15
46	Novel diphenylacetylene-based room-temperature liquid crystalline molecules with alkylthio groups, and investigation of the role for terminal alkyl chains in mesogenic incidence and tendency. Liquid Crystals, 2018, 45, 811-820.	0.9	34
47	Synthesis, phase transitions and birefringence of novel liquid crystalline 1,4-phenylene bis(4-alkylthio) Tj ETQq1 1	0,784314	4 rgBT /Overl
48	Strong Disturbance Effect of Comonomer Units with Opposite Configuration on Crystallization of Optically Active Monomer-Based Random Copolymers. Crystal Growth and Design, 2018, 18, 6155-6164.	1.4	5
49	Stereocomplex Crystallization between <scp>l</scp> - and <scp>d</scp> -Configured Staggered Asymmetric Random Copolymers Based on 2-Hydroxyalkanoic Acids. Crystal Growth and Design, 2018, 18, 6009-6019.	1.4	24
50	Draft Genome Sequence of Moorella sp. Strain Hama-1, a Novel Acetogenic Bacterium Isolated from a Thermophilic Digestion Reactor. Genome Announcements, 2018, 6, .	0.8	4
51	Improvement of methanogenic activity of anaerobic digestion using poly(l-lactic acid) with enhanced chemical hydrolyzability based on physicochemical parameters. Journal of Environmental Management, 2018, 226, 476-483.	3.8	13
52	New fabrication approach to develop a high birefringence photo-crosslinked film based on a sulfur-containing liquid crystalline molecule with large temperature dependence of birefringence. Molecular Crystals and Liquid Crystals, 2018, 662, 197-207.	0.4	6
53	Cocrystallization of monomer units of biobased and biodegradable Poly(l-lactic acid-co-glycolic acid) random copolymers. Polymer Journal, 2018, 50, 1079-1088.	1.3	19
54	Stereocomplex Crystallization of Linear Two-Armed Stereo Diblock Copolymers: Effects of Chain Directional Change, Coinitiator Moiety, and Terminal Groups. Journal of Physical Chemistry B, 2017, 121, 2695-2702.	1.2	7

#	Article	IF	CITATIONS
55	Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers. Scientific Reports, 2017, 7, 45170.	1.6	19
56	Phase transitions and birefringence of bistolane-based nematic molecules with an alkyl, alkoxy and alkylthio group. Molecular Crystals and Liquid Crystals, 2017, 647, 422-429.	0.4	30
57	Synthesis of meso-lactide by thermal configurational inversion and depolymerization of poly(I) Tj ETQq1 1 0.7843 141, 77-83.	814 rgBT / 2.7	Overlock 1(27
58	Hydrogen bonding liquid crystalline benzoic acids with alkylthio groups: phase transition behavior and insights into the cybotactic nematic phase. New Journal of Chemistry, 2017, 41, 6514-6522.	1.4	37
59	Crystal Structure of Poly(lactic acid) Stereocomplex: Random Packing Model of PDLA and PLLA Chains As Studied by X-ray Diffraction Analysis. Macromolecules, 2017, 50, 8048-8065.	2.2	100
60	Stereocomplex Crystallization of Star-Shaped Four-Armed Stereo Diblock Poly(lactide) from the Melt: Effects of Incorporated Linear One-Armed Poly(<scp>l</scp> -lactide) or Poly(<scp>d</scp> -lactide). Journal of Physical Chemistry B, 2017, 121, 9936-9946.	1.2	10
61	Stereocomplex―and Homoâ€Crystallization and Phaseâ€Transition Behavior of Relatively Highâ€Molecularâ€Weight Linear One―and Twoâ€Armed and Starâ€Shaped Fourâ€Armed Poly(<scp>l</scp> â€lactide)/Poly(<scp>d</scp> â€lactide) Blends. Macromolecular Chemistry and Physics, 2017. 218. 1700286.	1.1	7
62	The effect of fluorine substitutions on the refractive index properties for π-conjugated calamitic nematic materials. Phase Transitions, 2017, 90, 549-556.	0.6	12
63	Novel Hydrogen-bonded Liquid Crystalline Complexes between 4-Alkylthiobenzoic Acids and 4-Phenylpyridine. Chemistry Letters, 2017, 46, 1657-1659.	0.7	10
64	Stereocomplex Crystallization of Starâ€Shaped 4â€Armed Equimolar Stereo Diblock Poly(lactide)s with Different Molecular Weights: Isothermal Crystallization from the Melt. Macromolecular Chemistry and Physics, 2016, 217, 1547-1557.	1.1	22
65	Heterostereocomplex―and Homocrystallization and Thermal Properties and Degradation of Substituted Poly(lactic acid)s, Poly(<scp>l</scp> â€2â€hydroxybutanoic acid) and Poly(<scp>d</scp> â€2â€hydroxyâ€3â€methylbutanoic acid). Macromolecular Chemistry and Physics, 2016, 217, 2483-2493.	1.1	12
66	Stereocomplex- and homo-crystallization of blends from 2-armed poly(l-lactide) and poly(d-lactide) with identical and opposite chain directional architectures and of 2-armed stereo diblock poly(lactide). Polymer, 2016, 96, 167-181.	1.8	17
67	Poly(lactic acid) stereocomplexes: A decade of progress. Advanced Drug Delivery Reviews, 2016, 107, 97-135.	6.6	406
68	Isothermal Crystallization Process of Poly(<scp>l</scp> -lactic acid)/Poly(<scp>d</scp> -lactic acid) Blends after Rapid Cooling from the Melt. ACS Omega, 2016, 1, 476-482.	1.6	32
69	The design of liquid crystalline bistolane-based materials with extremely high birefringence. RSC Advances, 2016, 6, 92845-92851.	1.7	49
70	Stereocomplex crystallization and homo-crystallization of star-shaped four-armed stereo diblock poly(lactide)s during precipitation and non-isothermal crystallization. Polymer Journal, 2016, 48, 1087-1093.	1.3	10
71	Homo- and Stereocomplex Crystallization of Star-Shaped Four-Armed Stereo Diblock Copolymers of Crystalline and Amorphous Poly(lactide)s: Effects of Incorporation and Position of Amorphous Blocks. Journal of Physical Chemistry B, 2016, 120, 11052-11063.	1.2	17
72	Effect of incorporated star-shaped four-armed stereo diblock poly(lactide) on the crystallization behavior of linear one-armed poly(l-lactide) or poly(d-lactide). Polymer Journal, 2016, 48, 209-213.	1.3	14

#	Article	IF	CITATIONS
73	Development of novel bistolane-based liquid crystalline molecules with an alkylsulfanyl group for highly birefringent materials. RSC Advances, 2016, 6, 16568-16574.	1.7	51
74	Stereocomplex Crystallization and Homocrystallization of Star-Shaped Four-Armed Stereo Diblock Poly(lactide)s with Different <scp>l</scp> -Lactyl Unit Contents: Isothermal Crystallization from the Melt. Journal of Physical Chemistry B, 2016, 120, 1183-1193.	1.2	44
75	Synchronous and separate homo-crystallization of an enantiomeric oligomeric poly(l-3-hydroxybutanoic acid)/poly(d-3-hydroxybutanoic acid) blend. Polymer Journal, 2016, 48, 215-220.	1.3	2
76	Crystal Morphology of Poly(<small>L</small> -lactic Acid) and Poly(<small>D</small> -lactic Acid) Blends during Cooling and Heating Processes. Kobunshi Ronbunshu, 2015, 72, 141-148.	0.2	2
77	Stereocomplex crystallization and homo-crystallization of enantiomeric substituted poly(lactic) Tj ETQq1 1 0.784	314 rgBT	Overlock 10
78	Stereocomplexation of quaternary or ternary monomer units and dual stereocomplexation in enantiomeric binary and quaternary polymer blends of poly(2-hydroxybutanoic acid)s, poly(2-hydroxybutanoic acid-co-lactic acid)s, and poly(lactic acid)s. RSC Advances, 2015, 5, 83331-83342.	1.7	23
79	Hydrolytic degradation and crystallization behavior of linear 2â€armed and starâ€shaped 4â€armed poly(<scp>l</scp> â€lactide)s: Effects of branching architecture and crystallinity. Journal of Applied Polymer Science, 2015, 132, .	1.3	13
80	Accelerated Stereocomplex Crystallization of Poly(<scp>L</scp> ″actide)/Poly(<scp>D</scp> ″actide) Blends by Long Terminal Linear Alkyl Groups. Macromolecular Materials and Engineering, 2015, 300, 391-402.	1.7	9
81	Quaternary stereocomplex formation of substituted poly(lactic acid)s, l- and d-configured poly(2-hydroxybutanoic acid)s and l- and d-configured poly(2-hydroxy-3-methylbutanoic acid)s. Polymer, 2015, 68, 57-64.	1.8	14
82	Cocrystallization of monomer units in lactic acid-based biodegradable copolymers, poly(l-lactic) Tj ETQq0 0 0 rgB	T /Overloc 1.8	k 10 Tf 50 38 21
83	Non-isothermal crystallization behavior of stereo diblock polylactides with relatively short poly(<scp>d</scp> -lactide) segments from the melt. Polymer International, 2015, 64, 54-65.	1.6	14
84	Poly(l-Lactide). , 2015, , 1-12.		1
85	Crystallization Behavior of Stereo Diblock Poly(Lactide)s with Relatively Short Poly(<scp>D</scp> ‣actide) Segment from Partially Melted State. Macromolecular Materials and Engineering, 2014, 299, 1089-1105.	1.7	24
86	Heteroâ€Stereocomplex Crystallization between Starâ€Shaped 4â€Arm Poly(<scp>l</scp> â€2â€hydroxybutanoi 215, 1879-1888.	c) Tj ETQq 1.1	0 0 0 rgBT /0 15
87	Highly accelerated stereocomplex crystallization by blending star-shaped 4-armed stereo diblock poly(lactide)s with poly(d -lactide) and poly(l -lactide) cores. Polymer, 2014, 55, 6444-6450.	1.8	41
88	Relatively Short Poly(<scp>D</scp> â€lactide) Segments as Intraâ€ <scp>C</scp> rystallizationâ€ <scp>A</scp> ccelerating Moieties in Stereo Diblock Poly(lactide)s. Macromolecular Materials and Engineering, 2014, 299, 430-435.	1.7	11
89	Hydrolytic degradation of linear 2-arm and branched 4-arm poly(dl-lactide)s: Effects of branching and terminal hydroxyl groups. Polymer Degradation and Stability, 2014, 102, 59-66.	2.7	11
90	Hetero-stereocomplex formation between substituted poly(lactic acid)s with linear and branched side chains, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid). Polymer, 2014, 55, 721-726.	1.8	29

#	Article	IF	CITATIONS
91	Long terminal linear alkyl group as internal crystallization accelerating moiety of poly(l-lactide). Polymer, 2014, 55, 4786-4798.	1.8	13
92	Precursors in stereo-complex crystals of poly(<scp>L</scp> -lactic acid)/poly(<scp>D</scp> -lactic acid) blends under shear flow. Journal of Applied Crystallography, 2014, 47, 14-21.	1.9	45
93	Highly enhanced accelerating effect of meltâ€recrystallized stereocomplex crystallites on poly(<scp>L</scp> â€lactic acid) crystallization: effects of molecular weight of poly(<scp>D</scp> â€lactic) Tj E	TQq 1. d 0.7	7843 1 4 rgBT
94	Stereocomplex Crystallization Behavior and Physical Properties of Linear 1â€Arm, 2â€Arm, and Branched 4â€Arm Poly(<scp>L</scp> â€lactide)/Poly(<scp>D</scp> â€lactide) Blends: Effects of Chain Directional Change and Branching. Macromolecular Chemistry and Physics, 2013, 214, 776-786.	1.1	68
95	Physical Properties, Crystallization, and Thermal/Hydrolytic Degradation of Poly(<scp>L</scp> â€lactide)/Nano/Microâ€Diamond Composites. Macromolecular Materials and Engineering, 2013, 298, 1149-1159.	1.7	13
96	Hydrolytic degradation behavior of stereo multiblock and diblock poly(lactic acid)s: Effects of block lengths. Polymer Degradation and Stability, 2013, 98, 709-719.	2.7	43
97	Crystallization behavior and physical properties of linear 2-arm and branched 4-arm poly(l-lactide)s: Effects of branching. Polymer, 2013, 54, 2422-2434.	1.8	65
98	Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: Effects of block length. Journal of Applied Polymer Science, 2013, 129, 2502-2517.	1.3	58
99	Ternary stereocomplex crystallization of poly(l-2-hydroxybutanoic acid), poly(d-2-hydroxybutanoic) Tj ETQq1 1 (0.784314 r 1.8	gBT {Overlock
100	Highly Enhanced Accelerating Effect of Meltâ€Recrystallized Stereocomplex Crystallites on Poly(<scp>L</scp> â€lactic acid) Crystallization, 2–Effects of Poly(<scp>D</scp> â€lactic acid) Concentration. Macromolecular Materials and Engineering, 2013, 298, 270-282.	1.7	43
101	Nitrate removal properties of solid-phase denitrification processes using acid-blended poly(L-lactic) Tj ETQq1 1	0.784314	rgBT /Overlock
102	Heterostereocomplex Crystallization and Homocrystallization From the Melt in Blends of Substituted and Unsubstituted Poly(lactide)s. Macromolecular Chemistry and Physics, 2012, 213, 2573-2581.	1.1	21
103	Macromol. Chem. Phys. 20/2012. Macromolecular Chemistry and Physics, 2012, 213, 2204-2204.	1.1	ο
104	Photodegradation of Poly(lactic acid) Stereocomplex by UV-Irradiation. Journal of Polymers and the Environment, 2012, 20, 706-712.	2.4	25
105	Separate Crystallization and Cocrystallization of Poly(<scp>L</scp> a€lactide) in the Presence of <scp>L</scp> â€Lactideâ€Based Copolymers With Low Crystallizability, Poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€glycolide) and Poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€ <scp>D</scp> â€lactide). Macromolecular Chemistry and Physics, 20	1.1)12,	21
106	Synthesis and Characterization of Stereo Multiblock Poly(lactic acid)s with Different Block Lengths by Melt Polycondensation of Poly(<scp>L</scp> ″actic acid)/Poly(<scp>D</scp> ″actic acid) Blends. Macromolecular Reaction Engineering, 2012, 6, 446-457.	0.9	35
107	Stereocomplex crystallization and homo-crystallization of enantiomeric poly(2-hydroxybutyrate)s: Effects of molecular weight and crystallization conditions. Polymer, 2012, 53, 5385-5392.	1.8	30
108	Ternary Stereocomplex Formation of One <scp>l</scp> -Configured and Two <scp>d</scp> -Configured Optically Active Polyesters, Poly(<scp>l</scp> -2-hydroxybutanoic acid), Poly(<scp>d</scp> -2-hydroxybutanoic acid), and Poly(<scp>d</scp> -lactic acid). ACS Macro Letters, 2012, 1, 687-691.	2.3	35

#	Article	IF	CITATIONS
109	Effects of Molar Mass of Poly(l-lactide acid) on the Crystallization of Poly[(R)-3-hydroxybutyrate] in Their Ultrathin Blend Films. Macromolecules, 2012, 45, 2485-2493.	2.2	22
110	Stereocomplex formation between poly(Lâ€lactic acid) and poly(Dâ€lactic acid) with disproportionately low and high molecular weights from the melt. Polymer International, 2012, 61, 442-450.	1.6	52
111	Hydrolytic degradation of poly(<scp>L</scp> ″actic acid): Combined effects of UV treatment and crystallization. Journal of Applied Polymer Science, 2012, 125, 2394-2406.	1.3	25
112	Synchronous and separate homo-crystallization of enantiomeric poly(l-lactic acid)/poly(d-lactic acid) blends. Polymer, 2012, 53, 747-754.	1.8	67
113	Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s. Materials, 2011, 4, 1384-1398.	1.3	35
114	Nitrate Removal Efficiency and Bacterial Community Dynamics in Denitrification Processes Using Poly (<sc>L</sc> -lactic acid) as the Solid Substrate. Microbes and Environments, 2011, 26, 212-219.	0.7	39
115	Crystallization and hydrolytic/thermal degradation of a novel stereocomplexationable blend of poly(L-2-hydroxybutyrate) and poly(D-2-hydroxybutyrate). Polymer Journal, 2011, 43, 317-324.	1.3	38
116	Hydrolytic degradation and thermal properties of linear 1-arm and 2-arm poly(dl-lactic acid)s: Effects of coinitiator-induced molecular structural difference. Polymer Degradation and Stability, 2011, 96, 2229-2236.	2.7	10
117	Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 255-260.	1.5	109
118	Enhanced Stereocomplex Crystallization of Biodegradable Enantiomeric Poly(lactic acid)s by Repeated Casting. Macromolecular Materials and Engineering, 2011, 296, 583-589.	1.7	88
119	Highly Enhanced Nucleating Effect of Meltâ€Recrystallized Stereocomplex Crystallites on Poly(<scp>L</scp> â€lactic acid) Crystallization. Macromolecular Materials and Engineering, 2011, 296, 887-893.	1.7	70
120	Homo―and heteroâ€stereocomplexes of substituted poly(lactide)s as promising biodegradable crystallizationâ€accelerating agents of poly(<scp>L</scp> â€lactide). Journal of Applied Polymer Science, 2011, 122, 321-333.	1.3	35
121	Hetero-stereocomplex formation of stereoblock copolymer of substituted and non-substituted poly(lactide)s. Polymer, 2011, 52, 1318-1325.	1.8	37
122	Accelerated crystallization of poly(<scp>L</scp> â€lactide) by physical aging. Journal of Applied Polymer Science, 2010, 116, 1190-1196.	1.3	9
123	Water Vapor Permeability of Poly(<scp>L</scp> â€lactide)/Poly(<scp>D</scp> â€lactide) Stereocomplexes. Macromolecular Materials and Engineering, 2010, 295, 709-715.	1.7	76
124	Accelerated hydrolytic degradation of Poly(l-lactide)/Poly(d-lactide) stereocomplex up to late stage. Polymer Degradation and Stability, 2010, 95, 477-484.	2.7	51
125	Solid-state 13C NMR analyses of the structures of crystallized and quenched poly(lactide)s: Effects of crystallinity, water absorption, hydrolytic degradation, and tacticity. Polymer, 2010, 51, 2215-2220.	1.8	41
126	Stereocomplex crystallization and spherulite growth behavior of poly(l-lactide)-b-poly(d-lactide) stereodiblock copolymers. Polymer, 2010, 51, 4937-4947.	1.8	75

#	Article	IF	CITATIONS
127	Heterostereocomplexation between Biodegradable and Optically Active Polyesters as a Versatile Preparation Method for Biodegradable Materials. Biomacromolecules, 2010, 11, 252-258.	2.6	65
128	Stereocomplex Crystallization and Spherulite Growth of Low Molecular Weight Poly(Lâ€lactide) and Poly(Dâ€lactide) from the Melt. Macromolecular Chemistry and Physics, 2009, 210, 993-1002.	1.1	79
129	Enhanced crystallization of poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€lµâ€caprolactone) in the presence of water. Journal of Applied Polymer Science, 2009, 112, 715-720.	1.3	12
130	Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s. Polymer, 2009, 50, 4007-4017.	1.8	110
131	Stereocomplex Formation between Enantiomeric Substituted Poly(lactide)s: Blends of Poly[(<i>S</i>)-2-hydroxybutyrate] and Poly[(<i>R</i>)-2-hydroxybutyrate]. Macromolecules, 2009, 42, 7263-7266.	2.2	69
132	Biodegradable Polyesters as Crystallization-Accelerating Agents of Poly(<scp>l</scp> -lactide). ACS Applied Materials & Interfaces, 2009, 1, 1719-1730.	4.0	64
133	Comparative study on hydrolytic degradation and monomer recovery of poly(l-lactic acid) in the solid and in the melt. Polymer Degradation and Stability, 2008, 93, 1956-1963.	2.7	75
134	Polyglycolide as a Biodegradable Nucleating Agent for Poly(<scp>L</scp> ″actide). Macromolecular Materials and Engineering, 2008, 293, 947-951.	1.7	59
135	Stereoselective Interaction between Isotactic and Optically Active Poly(lactic acid) and Phenylâ€Substituted Poly(lactic acid). Macromolecular Rapid Communications, 2008, 29, 1372-1377.	2.0	21
136	Synthesis, physical properties, and crystallization of optically active poly(<scp>L</scp> â€phenyllactic) Tj ETQq0 (Polymer Science, 2008, 110, 3954-3962.	0 0 rgBT /(1.3	Overlock 10 T 39
137	Crystallization behavior of linear 1-arm and 2-arm poly(l-lactide)s: Effects of coinitiators. Polymer, 2008, 49, 1385-1397.	1.8	54
138	Hydrolytic Degradation and Monomer Recovery of Poly(butylene succinate) and Poly(butylene) Tj ETQq0 0 0 rgB	T /Overloc	:k 10 Tf 50 30
139	Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(<scp>l</scp> -lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules, 2008, 41, 1352-1357.	2.2	737
140	Degradation Mechanism and Rate of Biomass Derived Poly (lactic acid). Journal of the Japan Society of Colour Material, 2008, 81, 54-60.	0.0	0
141	Effect of LTI Blending on Fracture Properties of PLA/PCL Polymer Blend. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 1157-1164.	0.5	7
142	Novel Preparation Method for Poly(l-lactide)-Based Block Copolymers:Â Extended Chain Crystallites as a Solid-State Macro-Coinitiator. Biomacromolecules, 2007, 8, 1730-1738.	2.6	18
143	Investigation of Phase Transitional Behavior of Poly(l-lactide)/Poly(d-lactide) Blend Used to Prepare the Highly-Oriented Stereocomplex. Macromolecules, 2007, 40, 1049-1054.	2.2	217
144	Effect of P(LLA-CL) Blending on the Mechanical Properties of PLLA/PCL. Zairyo/Journal of the Society of Materials Science, Japan, 2007, 56, 211-216.	0.1	1

#	Article	IF	CITATIONS
145	Enzymatic degradation of poly(L-lactic acid) fibers: Effects of small drawing. Journal of Applied Polymer Science, 2007, 103, 2064-2071.	1.3	10
146	Melt-processed biodegradable polyester blends of poly(L-lactic acid) and poly(É>-caprolactone): Effects of processing conditions on biodegradation. Journal of Applied Polymer Science, 2007, 104, 831-841.	1.3	22
147	New Strategy for Controlling Biodegradability of Biodegradable Polyesters by Enzymeâ€Catalyzed Surface Grafting. Macromolecular Rapid Communications, 2007, 28, 1651-1656.	2.0	17
148	Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer, 2007, 48, 4213-4225.	1.8	148
149	Poly(L-lactide)/C60 nanocomposites: Effects of C60 on crystallization of poly(L-lactide). Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2167-2176.	2.4	24
150	Porous biodegradable polyester blends of poly(L-lactic acid) and poly(É›-caprolactone): physical properties, morphology, and biodegradation. Polymer International, 2007, 56, 258-266.	1.6	40
151	Improvement of mechanical properties of bioabsorbable PLLA/PCL polymer blends due to P(LLA-CL) blending(3A2 Cellular & amp; Tissue Engineering & amp; Biomaterials II). The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2007, 2007.3, \$175.	0.0	0
152	Electrospinning of Poly(lactic acid) Stereocomplex Nanofibers. Biomacromolecules, 2006, 7, 3316-3320.	2.6	169
153	Crystallization Behaviors of Poly(3-hydroxybutyrate) and Poly(l-lactic acid) in Their Immiscible and Miscible Blends. Journal of Physical Chemistry B, 2006, 110, 24463-24471.	1.2	79
154	Molecular Weight Dependence of the Poly(l-lactide)/Poly(d-lactide) Stereocomplex at the Airâ^'Water Interface. Biomacromolecules, 2006, 7, 2728-2735.	2.6	31
155	Enzymatic, Alkaline, and Autocatalytic Degradation of Poly(l-lactic acid):Â Effects of Biaxial Orientation. Biomacromolecules, 2006, 7, 380-387.	2.6	59
156	Confirmation of Disorderα Form of Poly(L-lactic acid) by the X-ray Fiber Pattern and Polarized IR/Raman Spectra Measured for Uniaxially-Oriented Samples. Macromolecular Symposia, 2006, 242, 274-278.	0.4	135
157	Improvement of Fracture Properies of PLA/PCL Polymer Blends by Control of Phase Structures. Kobunshi Ronbunshu, 2006, 63, 626-632.	0.2	5
158	Effect of Additive on Fracture Properties of PLA/PCL Polymer Blend. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2006, 72, 173-178.	0.2	7
159	Photodegradation of biodegradable polyesters: A comprehensive study on poly(l-lactide) and poly(É>-caprolactone). Polymer Degradation and Stability, 2006, 91, 1128-1137.	2.7	145
160	Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly(l-lactic acid)s. Polymer Degradation and Stability, 2006, 91, 1665-1673.	2.7	110
161	Enzymatic Degradation of Poly(l-Lactic Acid): Effects of UV Irradiation. Journal of Polymers and the Environment, 2006, 14, 239-248.	2.4	57
162	Effect of LTI content on impact fracture property of PLA/PCL/LTI polymer blends. Journal of Materials Science, 2006, 41, 6501-6504.	1.7	49

#	Article	IF	CITATIONS
163	Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): Effects of stereocomplex as nucleating agent. Polymer, 2006, 47, 3826-3837.	1.8	332
164	Effects of rapid crystallization on hydrolytic degradation and mechanical properties of poly(l-lactide-co-ε-caprolactone). Reactive and Functional Polymers, 2006, 66, 1362-1372.	2.0	43
165	Water vapor permeability of poly(lactide)s: Effects of molecular characteristics and crystallinity. Journal of Applied Polymer Science, 2006, 99, 2245-2252.	1.3	116
166	Non-Isothermal Crystallization Behavior of Poly(L-lactic acid) in the Presence of Various Additives. Macromolecular Materials and Engineering, 2006, 291, 325-335.	1.7	137
167	Hydrolytic Degradation of Amorphous Films ofL-Lactide Copolymers with Glycolide andD-Lactide. Macromolecular Materials and Engineering, 2006, 291, 357-368.	1.7	42
168	Enzymatic Degradation of Biodegradable Polyester Composites of Poly(L-lactic acid) and Poly(É>-caprolactone). Macromolecular Materials and Engineering, 2006, 291, 1245-1254.	1.7	32
169	Recycling of poly lactic acid into lactic acid with high temperature and high pressure water. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	11
170	<title>Fracture properties of bioabsorbable HA/PLLA/PCL composite material</title> . , 2005, , .		3
171	Hydrolytic degradation of poly(ε-caprolactone) in the melt. Polymer Degradation and Stability, 2005, 89, 336-343.	2.7	21
172	Hydrolytic degradation of poly[(R)-3-hydroxybutyric acid] in the melt. Polymer, 2005, 46, 2157-2162.	1.8	27
173	Spherulite growth of l-lactide copolymers: Effects of tacticity and comonomers. Polymer, 2005, 46, 4917-4927.	1.8	123
174	Differences in the CH3⋯OC interactions among poly(l-lactide), poly(l-lactide)/poly(d-lactide) stereocomplex, and poly(3-hydroxybutyrate) studied by infrared spectroscopy. Journal of Molecular Structure, 2005, 735-736, 249-257.	1.8	95
175	Physical properties and enzymatic hydrolysis of poly(L-lactide)-TiO2 composites. Journal of Applied Polymer Science, 2005, 96, 190-199.	1.3	45
176	Alkaline and Enzymatic Degradation ofL-Lactide Copolymers, 1. Macromolecular Bioscience, 2005, 5, 135-148.	2.1	60
177	Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromolecular Bioscience, 2005, 5, 569-597.	2.1	1,209
178	Back Cover: Macromol. Biosci. 7/2005. Macromolecular Bioscience, 2005, 5, 680-680.	2.1	1
179	Photodegradation of Poly(L-lactic acid): Effects of Photosensitizer. Macromolecular Materials and Engineering, 2005, 290, 1192-1203.	1.7	28
180	Alkaline and enzymatic degradation ofL-lactide copolymers. II. Crystallized films of poly(L-lactide-co-D-lactide) and poly(L-lactide) with similar crystallinities. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1064-1075.	2.4	57

#	Article	IF	CITATIONS
181	Crystal Modifications and Thermal Behavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy. Macromolecules, 2005, 38, 8012-8021.	2.2	775
182	Infrared Spectroscopic Study of CH3···OC Interaction during Poly(l-lactide)/Poly(d-lactide) Stereocomplex Formation. Macromolecules, 2005, 38, 1822-1828.	2.2	342
183	Physical Properties, Crystallization, and Spherulite Growth of Linear and 3-Arm Poly(l-lactide)s. Biomacromolecules, 2005, 6, 244-254.	2.6	138
184	Stereocomplex Formation between Enantiomeric Poly(lactic acid)s. 12. Spherulite Growth of Low-Molecular-Weight Poly(lactic acid)s from the Melt. Biomacromolecules, 2004, 5, 1181-1186.	2.6	179
185	Poly(l-lactide): XII. Formation, growth, and morphology of crystalline residues as extended-chain crystallites through hydrolysis of poly(l-lactide) films in phosphate-buffered solution. Polymer Degradation and Stability, 2004, 84, 515-523.	2.7	90
186	In vitro hydrolysis of poly(l-lactide) crystalline residues as extended-chain crystallites. Polymer Degradation and Stability, 2004, 85, 647-656.	2.7	68
187	In vitro hydrolysis of poly(?-lactide) crystalline residues as extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered solution at 37°C. Biomaterials, 2004, 25, 5449-5455.	5.7	78
188	Structural Changes and Crystallization Dynamics of Poly(l-lactide) during the Cold-Crystallization Process Investigated by Infrared and Two-Dimensional Infrared Correlation Spectroscopy. Macromolecules, 2004, 37, 6433-6439.	2.2	257
189	Weak Intermolecular Interactions during the Melt Crystallization of Poly(l-lactide) Investigated by Two-Dimensional Infrared Correlation Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 11514-11520.	1.2	173
190	In Vitro Hydrolysis of Poly(l-lactide) Crystalline Residues as Extended-Chain Crystallites:Â II. Effects of Hydrolysis Temperature. Biomacromolecules, 2004, 5, 1021-1028.	2.6	49
191	Depolymerization of Poly (L-lactic acid) under Hydrothermal Conditions. Kobunshi Ronbunshu, 2004, 61, 561-566.	0.2	23
192	Title is missing!. Journal of Polymers and the Environment, 2003, 11, 57-65.	2.4	23
193	Surface Hydrophilicities and Enzymatic Hydrolyzability of Biodegradable Polyesters, 2. Macromolecular Bioscience, 2003, 3, 51-58.	2.1	23
194	Blends of aliphatic polyesters. VIII. Effects of poly(L-lactide-co-?-caprolactone) on enzymatic hydrolysis of poly(L-lactide), poly(?-caprolactone), and their blend films. Journal of Applied Polymer Science, 2003, 87, 412-419.	1.3	50
195	Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. Journal of Applied Polymer Science, 2003, 87, 1628-1633.	1.3	61
196	Environmental degradation of biodegradable polyesters. IV. The effects of pores and surface hydrophilicity on the biodegradation of poly(?-caprolactone) and poly[(R)-3-hydroxybutyrate] films in controlled seawater. Journal of Applied Polymer Science, 2003, 90, 587-593.	1.3	28
197	Degradation of poly(d-lactic acid) by a thermophile. Polymer Degradation and Stability, 2003, 81, 167-171.	2.7	49
198	Poly(l-lactide) XI. Lactide formation by thermal depolymerisation of poly(l-lactide) in a closed system. Polymer Degradation and Stability, 2003, 81, 501-509.	2.7	52

#	Article	IF	CITATIONS
199	In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Biomaterials, 2003, 24, 537-547.	5.7	137
200	Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer, 2003, 44, 2891-2896.	1.8	263
201	Part 7. Effects of poly(L-lactide-co-?-caprolactone) on morphology, structure, crystallization, and physical properties of blends of poly(L-lactide) and poly(?-caprolactone). Polymer International, 2003, 52, 269-275.	1.6	97
202	Surface hydrophilicity and enzymatic hydrolyzability of biodegradable polyesters: 1. effects of alkaline treatment. Polymer International, 2003, 52, 843-852.	1.6	49
203	A New Strategy for Recycling and Preparation of Poly(l-lactic acid):Â Hydrolysis in the Melt. Biomacromolecules, 2003, 4, 835-840.	2.6	132
204	In Vitro Hydrolysis of Blends from Enantiomeric Poly(lactide)s. 3. Homocrystallized and Amorphous Blend Films. Biomacromolecules, 2003, 4, 7-11.	2.6	73
205	Effect of Hydrolysis on Fracture Behavior of Poly(L-lactide). Kobunshi Ronbunshu, 2003, 60, 644-651.	0.2	18
206	Study on Fracture Properties of Bioabsorbable Polymer Blend. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2003, 2003, 663-664.	0.0	2
207	Poly(L-lactide). IX. Hydrolysis in acid media. Journal of Applied Polymer Science, 2002, 86, 186-194.	1.3	113
208	Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer, 2002, 43, 1789-1796.	1.8	207
209	Environmental degradation of biodegradable polyesters 2. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in natural dynamic seawater. Polymer Degradation and Stability, 2002, 75, 357-365.	2.7	107
210	Environmental degradation of biodegradable polyesters 1. Poly(Îμ-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater. Polymer Degradation and Stability, 2002, 75, 347-355.	2.7	194
211	Physical properties and enzymatic hydrolysis of poly(l-lactide)–CaCO3 composites. Polymer Degradation and Stability, 2002, 78, 119-127.	2.7	34
212	Enzymatic Hydrolysis of Poly(lactide)s:Â Effects of Molecular Weight,l-Lactide Content, and Enantiomeric and Diastereoisomeric Polymer Blending. Biomacromolecules, 2001, 2, 597-604.	2.6	144
213	Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(lµ-caprolactone) and poly(l-lactide). International Journal of Biological Macromolecules, 2001, 29, 83-89.	3.6	71
214	Poly(l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed crystalline thickness. Polymer, 2001, 42, 4463-4467.	1.8	117
215	Poly(l-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polymer Degradation and Stability, 2001, 71, 415-424.	2.7	166
216	Blends of aliphatic polyesters: V non-enzymatic and enzymatic hydrolysis of blends from hydrophobic poly(l-lactide) and hydrophilic poly(vinyl alcohol). Polymer Degradation and Stability, 2001, 71, 403-413.	2.7	95

#	Article	IF	CITATIONS
217	Poly(L-lactide): v. effects of storage in swelling solvents on physical properties and structure of poly(L-lactide). Journal of Applied Polymer Science, 2001, 79, 1582-1589.	1.3	70
218	Porous biodegradable polyesters. II. Physical properties, morphology, and enzymatic and alkaline hydrolysis of porous poly(?-caprolactone) films. Journal of Applied Polymer Science, 2001, 80, 2281-2291.	1.3	38
219	Blends of aliphatic polyesters. IV. Morphology, swelling behavior, and surface and bulk properties of blends from hydrophobic poly(L-lactide) and hydrophilic poly(vinyl alcohol). Journal of Applied Polymer Science, 2001, 81, 2151-2160.	1.3	68
220	Poly(L-Lactide), 8. High-Temperature Hydrolysis of Poly(L-Lactide) Films with Different Crystallinities and Crystalline Thicknesses in Phosphate-Buffered Solution. Macromolecular Materials and Engineering, 2001, 286, 398-406.	1.7	96
221	Porous Biodegradable Polyesters, 3. Preparation of Porous Poly(É>-caprolactone) Films from Blends by Selective Enzymatic Removal of Poly(L-lactide). Macromolecular Bioscience, 2001, 1, 59-65.	2.1	75
222	In Vitro Hydrolysis of Blends from Enantiomeric Poly(lactide)s. 2. Well-Stereocomplexed Fiber and Film Journal of Fiber Science and Technology, 2001, 57, 198-202.	0.0	22
223	Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications, 2000, 21, 117-132.	2.0	1,353
224	Porous biodegradable polyesters. I. Preparation of porous poly(L-lactide) films by extraction of poly(ethylene oxide) from their blends. Journal of Applied Polymer Science, 2000, 75, 629-637.	1.3	75
225	Enhanced crystallization of poly(L-lactide-co-É>-caprolactone) during storage at room temperature. Journal of Applied Polymer Science, 2000, 76, 947-953.	1.3	60
226	Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-termin vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. Journal of Applied Polymer Science, 2000, 77, 1452-1464.	1.3	246
227	In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well-stereo-complexed blend and non-blended films. Polymer, 2000, 41, 3621-3630.	1.8	184
228	Properties and morphology of poly(l -lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(l -lactide) in phosphate-buffered solution. Polymer Degradation and Stability, 2000, 67, 179-189.	2.7	270
229	Biodegradable polyesters for medical and ecological applications. , 2000, 21, 117.		1
230	Biodegradable polyesters for medical and ecological applications. , 2000, 21, 117.		5
231	Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications, 2000, 21, 117-132.	2.0	20
232	Properties and morphology of poly(L-lactide). II. hydrolysis in alkaline solution. Journal of Polymer Science Part A, 1998, 36, 59-66.	2.5	195
233	Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(L-lactide) and poly(?-caprolactone) in phosphate-buffered solution. Journal of Applied Polymer Science, 1998, 67, 405-415.	1.3	290
234	Blends of aliphatic polyesters. III. Biodegradation of solution-cast blends from poly(L-lactide) and poly(?-caprolactone). Journal of Applied Polymer Science, 1998, 70, 2259-2268.	1.3	118

#	Article	IF	CITATIONS
235	Blends of crystalline and amorphous poly(lactide). III. Hydrolysis of solution-cast blend films. Journal of Applied Polymer Science, 1997, 63, 855-863.	1.3	112
236	Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromolecular Chemistry and Physics, 1996, 197, 3483-3499.	1.1	335
237	Blends of aliphatic polyesters. I. Physical properties and morphologies of solution-cast blends from poly(DL-lactide) and poly(?-caprolactone). Journal of Applied Polymer Science, 1996, 60, 2367-2375.	1.3	197
238	Blends of isotactic and atactic poly(lactide)s: 2. Molecular-weight effects of atactic component on crystallization and morphology of equimolar blends from the melt. Polymer, 1996, 37, 595-602.	1.8	123
239	Blends of isotactic and atactic poly(lactide). I. Effects of mixing ratio of isomers on crystallization of blends from melt. Journal of Applied Polymer Science, 1995, 58, 1793-1802.	1.3	54
240	Properties and morphologies of poly(?-lactide): 1. Annealing condition effects on properties and morphologies of poly(?-lactide). Polymer, 1995, 36, 2709-2716.	1.8	468
241	Stereocomplex formation between enantiomeric poly(lactic acid). VIII. Complex fibers spun from mixed solution of poly(D-lactic acid) and poly(L-lactic acid). Journal of Applied Polymer Science, 1994, 51, 337-344.	1.3	146
242	Stereocomplex formation between enantiomeric poly(lactic acid)s. X. Binary blends from poly(D-lactide-CO-glycolide) and poly(L-lactide-CO-glycolide). Journal of Applied Polymer Science, 1994, 53, 1061-1071.	1.3	50
243	Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt. Macromolecules, 1993, 26, 6918-6926.	2.2	392
244	Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules, 1992, 25, 4114-4118.	2.2	182
245	Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules, 1992, 25, 5719-5723.	2.2	225
246	Stereocomplex formation between enantiomeric poly(lactic acids). 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution. Macromolecules, 1992, 25, 2940-2946.	2.2	151
247	Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Calorimetric studies on blend films cast from dilute solution. Macromolecules, 1991, 24, 5651-5656.	2.2	330
248	Stereocomplex formation between enantiomeric poly(lactic acid)s. 4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly(D-lactic acid) and poly(L-lactic) Tj ETQq0 0 0 r	gBT 202 verlo	ock2108 Tf 50 2
249	Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions. Macromolecules, 1991, 24, 2719-2724.	2.2	226
250	Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). Journal of Macromolecular Science - Physics, 1991, 30, 119-140.	0.4	344
251	Stereocomplex formation between enantiomeric poly(lactides). Macromolecules, 1987, 20, 904-906.	2.2	1,275
252	Temperature dependent poly(<scp> </scp> -lactide) crystallization investigated by Fourier transform terahertz spectroscopy. Materials Advances, 0, , .	2.6	5