
Hideto Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2388027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications, 2000, 21, 117-132.	2.0	1,353
2	Stereocomplex formation between enantiomeric poly(lactides). Macromolecules, 1987, 20, 904-906.	2.2	1,275
3	Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromolecular Bioscience, 2005, 5, 569-597.	2.1	1,209
4	Crystal Modifications and Thermal Behavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy. Macromolecules, 2005, 38, 8012-8021.	2.2	775
5	Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(<scp>l</scp> -lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules, 2008, 41, 1352-1357.	2.2	737
6	Properties and morphologies of poly(?-lactide): 1. Annealing condition effects on properties and morphologies of poly(?-lactide). Polymer, 1995, 36, 2709-2716.	1.8	468
7	Poly(lactic acid) stereocomplexes: A decade of progress. Advanced Drug Delivery Reviews, 2016, 107, 97-135.	6.6	406
8	Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt. Macromolecules, 1993, 26, 6918-6926.	2.2	392
9	Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). Journal of Macromolecular Science - Physics, 1991, 30, 119-140.	0.4	344
10	Infrared Spectroscopic Study of CH3···OC Interaction during Poly(l-lactide)/Poly(d-lactide) Stereocomplex Formation. Macromolecules, 2005, 38, 1822-1828.	2.2	342
11	Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromolecular Chemistry and Physics, 1996, 197, 3483-3499.	1.1	335
12	Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): Effects of stereocomplex as nucleating agent. Polymer, 2006, 47, 3826-3837.	1.8	332
13	Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Calorimetric studies on blend films cast from dilute solution. Macromolecules, 1991, 24, 5651-5656.	2.2	330
14	Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(L-lactide) and poly(?-caprolactone) in phosphate-buffered solution. Journal of Applied Polymer Science, 1998, 67, 405-415.	1.3	290
15	Properties and morphology of poly(I -lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(I -lactide) in phosphate-buffered solution. Polymer Degradation and Stability, 2000, 67, 179-189.	2.7	270
16	Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer, 2003, 44, 2891-2896.	1.8	263
17	Structural Changes and Crystallization Dynamics of Poly(l-lactide) during the Cold-Crystallization Process Investigated by Infrared and Two-Dimensional Infrared Correlation Spectroscopy. Macromolecules, 2004, 37, 6433-6439.	2.2	257
18	Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-termin vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. Journal of Applied Polymer Science, 2000, 77, 1452-1464.	1.3	246

#	Article	IF	CITATIONS
19	Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions. Macromolecules, 1991, 24, 2719-2724.	2.2	226
20	Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules, 1992, 25, 5719-5723.	2.2	225
21	Stereocomplex formation between enantiomeric poly(lactic acid)s. 4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly(D-lactic acid) and poly(L-lactic) Tj ETQq1 1 0	.784321 4 rgf	3T / Qye rlock
22	Investigation of Phase Transitional Behavior of Poly(l-lactide)/Poly(d-lactide) Blend Used to Prepare the Highly-Oriented Stereocomplex. Macromolecules, 2007, 40, 1049-1054.	2.2	217
23	Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer, 2002, 43, 1789-1796.	1.8	207
24	Blends of aliphatic polyesters. I. Physical properties and morphologies of solution-cast blends from poly(DL-lactide) and poly(?-caprolactone). Journal of Applied Polymer Science, 1996, 60, 2367-2375.	1.3	197
25	Properties and morphology of poly(L-lactide). II. hydrolysis in alkaline solution. Journal of Polymer Science Part A, 1998, 36, 59-66.	2.5	195
26	Environmental degradation of biodegradable polyesters 1. Poly(Îμ-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater. Polymer Degradation and Stability, 2002, 75, 347-355.	2.7	194
27	In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well-stereo-complexed blend and non-blended films. Polymer, 2000, 41, 3621-3630.	1.8	184
28	Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules, 1992, 25, 4114-4118.	2.2	182
29	Stereocomplex Formation between Enantiomeric Poly(lactic acid)s. 12. Spherulite Growth of Low-Molecular-Weight Poly(lactic acid)s from the Melt. Biomacromolecules, 2004, 5, 1181-1186.	2.6	179
30	Weak Intermolecular Interactions during the Melt Crystallization of Poly(l-lactide) Investigated by Two-Dimensional Infrared Correlation Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 11514-11520.	1.2	173
31	Electrospinning of Poly(lactic acid) Stereocomplex Nanofibers. Biomacromolecules, 2006, 7, 3316-3320.	2.6	169
32	Poly(l-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polymer Degradation and Stability, 2001, 71, 415-424.	2.7	166
33	Stereocomplex formation between enantiomeric poly(lactic acids). 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution. Macromolecules, 1992, 25, 2940-2946.	2.2	151
34	Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer, 2007, 48, 4213-4225.	1.8	148
35	Stereocomplex formation between enantiomeric poly(lactic acid). VIII. Complex fibers spun from mixed solution of poly(D-lactic acid) and poly(L-lactic acid). Journal of Applied Polymer Science, 1994, 51, 337-344.	1.3	146
36	Photodegradation of biodegradable polyesters: A comprehensive study on poly(l-lactide) and poly(É›-caprolactone). Polymer Degradation and Stability, 2006, 91, 1128-1137.	2.7	145

#	Article	IF	CITATIONS
37	Enzymatic Hydrolysis of Poly(lactide)s:Â Effects of Molecular Weight,l-Lactide Content, and Enantiomeric and Diastereoisomeric Polymer Blending. Biomacromolecules, 2001, 2, 597-604.	2.6	144
38	Physical Properties, Crystallization, and Spherulite Growth of Linear and 3-Arm Poly(l-lactide)s. Biomacromolecules, 2005, 6, 244-254.	2.6	138
39	In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Biomaterials, 2003, 24, 537-547.	5.7	137
40	Non-Isothermal Crystallization Behavior of Poly(L-lactic acid) in the Presence of Various Additives. Macromolecular Materials and Engineering, 2006, 291, 325-335.	1.7	137
41	Confirmation of Disorderα Form of Poly(L-lactic acid) by the X-ray Fiber Pattern and Polarized IR/Raman Spectra Measured for Uniaxially-Oriented Samples. Macromolecular Symposia, 2006, 242, 274-278.	0.4	135
42	A New Strategy for Recycling and Preparation of Poly(l-lactic acid):Â Hydrolysis in the Melt. Biomacromolecules, 2003, 4, 835-840.	2.6	132
43	Blends of isotactic and atactic poly(lactide)s: 2. Molecular-weight effects of atactic component on crystallization and morphology of equimolar blends from the melt. Polymer, 1996, 37, 595-602.	1.8	123
44	Spherulite growth of l-lactide copolymers: Effects of tacticity and comonomers. Polymer, 2005, 46, 4917-4927.	1.8	123
45	Blends of aliphatic polyesters. III. Biodegradation of solution-cast blends from poly(L-lactide) and poly(?-caprolactone). Journal of Applied Polymer Science, 1998, 70, 2259-2268.	1.3	118
46	Poly(l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed crystalline thickness. Polymer, 2001, 42, 4463-4467.	1.8	117
47	Water vapor permeability of poly(lactide)s: Effects of molecular characteristics and crystallinity. Journal of Applied Polymer Science, 2006, 99, 2245-2252.	1.3	116
48	Poly(L-lactide). IX. Hydrolysis in acid media. Journal of Applied Polymer Science, 2002, 86, 186-194.	1.3	113
49	Blends of crystalline and amorphous poly(lactide). III. Hydrolysis of solution-cast blend films. Journal of Applied Polymer Science, 1997, 63, 855-863.	1.3	112
50	Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly(l-lactic acid)s. Polymer Degradation and Stability, 2006, 91, 1665-1673.	2.7	110
51	Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s. Polymer, 2009, 50, 4007-4017.	1.8	110
52	Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 255-260.	1.5	109
53	Environmental degradation of biodegradable polyesters 2. Poly(Îμ-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in natural dynamic seawater. Polymer Degradation and Stability, 2002, 75, 357-365.	2.7	107
54	Crystal Structure of Poly(lactic acid) Stereocomplex: Random Packing Model of PDLA and PLLA Chains As Studied by X-ray Diffraction Analysis. Macromolecules, 2017, 50, 8048-8065.	2.2	100

#	Article	IF	CITATIONS
55	Part 7. Effects of poly(L-lactide-co-?-caprolactone) on morphology, structure, crystallization, and physical properties of blends of poly(L-lactide) and poly(?-caprolactone). Polymer International, 2003, 52, 269-275.	1.6	97
56	Poly(L-Lactide), 8. High-Temperature Hydrolysis of Poly(L-Lactide) Films with Different Crystallinities and Crystalline Thicknesses in Phosphate-Buffered Solution. Macromolecular Materials and Engineering, 2001, 286, 398-406.	1.7	96
57	Blends of aliphatic polyesters: V non-enzymatic and enzymatic hydrolysis of blends from hydrophobic poly(l-lactide) and hydrophilic poly(vinyl alcohol). Polymer Degradation and Stability, 2001, 71, 403-413.	2.7	95
58	Differences in the CH3â< OC interactions among poly(l-lactide), poly(l-lactide)/poly(d-lactide) stereocomplex, and poly(3-hydroxybutyrate) studied by infrared spectroscopy. Journal of Molecular Structure, 2005, 735-736, 249-257.	1.8	95
59	Poly(l-lactide): XII. Formation, growth, and morphology of crystalline residues as extended-chain crystallites through hydrolysis of poly(l-lactide) films in phosphate-buffered solution. Polymer Degradation and Stability, 2004, 84, 515-523.	2.7	90
60	Enhanced Stereocomplex Crystallization of Biodegradable Enantiomeric Poly(lactic acid)s by Repeated Casting. Macromolecular Materials and Engineering, 2011, 296, 583-589.	1.7	88
61	Crystallization Behaviors of Poly(3-hydroxybutyrate) and Poly(l-lactic acid) in Their Immiscible and Miscible Blends. Journal of Physical Chemistry B, 2006, 110, 24463-24471.	1.2	79
62	Stereocomplex Crystallization and Spherulite Growth of Low Molecular Weight Poly(Lâ€lactide) and Poly(Dâ€lactide) from the Melt. Macromolecular Chemistry and Physics, 2009, 210, 993-1002.	1.1	79
63	In vitro hydrolysis of poly(?-lactide) crystalline residues as extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered solution at 37°C. Biomaterials, 2004, 25, 5449-5455.	5.7	78
64	Water Vapor Permeability of Poly(<scp>L</scp> â€lactide)/Poly(<scp>D</scp> â€lactide) Stereocomplexes. Macromolecular Materials and Engineering, 2010, 295, 709-715.	1.7	76
65	Porous biodegradable polyesters. I. Preparation of porous poly(L-lactide) films by extraction of poly(ethylene oxide) from their blends. Journal of Applied Polymer Science, 2000, 75, 629-637.	1.3	75
66	Porous Biodegradable Polyesters, 3. Preparation of Porous Poly(É›-caprolactone) Films from Blends by Selective Enzymatic Removal of Poly(L-lactide). Macromolecular Bioscience, 2001, 1, 59-65.	2.1	75
67	Comparative study on hydrolytic degradation and monomer recovery of poly(l-lactic acid) in the solid and in the melt. Polymer Degradation and Stability, 2008, 93, 1956-1963.	2.7	75
68	Stereocomplex crystallization and spherulite growth behavior of poly(l-lactide)-b-poly(d-lactide) stereodiblock copolymers. Polymer, 2010, 51, 4937-4947.	1.8	75
69	In Vitro Hydrolysis of Blends from Enantiomeric Poly(lactide)s. 3. Homocrystallized and Amorphous Blend Films. Biomacromolecules, 2003, 4, 7-11.	2.6	73
70	Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(ε-caprolactone) and poly(l-lactide). International Journal of Biological Macromolecules, 2001, 29, 83-89.	3.6	71
71	Poly(L-lactide): v. effects of storage in swelling solvents on physical properties and structure of poly(L-lactide). Journal of Applied Polymer Science, 2001, 79, 1582-1589.	1.3	70
72	Highly Enhanced Nucleating Effect of Meltâ€Recrystallized Stereocomplex Crystallites on Poly(<scp>L</scp> ″actic acid) Crystallization. Macromolecular Materials and Engineering, 2011, 296, 887-893.	1.7	70

#	Article	IF	CITATIONS
73	Stereocomplex Formation between Enantiomeric Substituted Poly(lactide)s: Blends of Poly[(<i>S</i>)-2-hydroxybutyrate] and Poly[(<i>R</i>)-2-hydroxybutyrate]. Macromolecules, 2009, 42, 7263-7266.	2.2	69
74	Blends of aliphatic polyesters. IV. Morphology, swelling behavior, and surface and bulk properties of blends from hydrophobic poly(L-lactide) and hydrophilic poly(vinyl alcohol). Journal of Applied Polymer Science, 2001, 81, 2151-2160.	1.3	68
75	In vitro hydrolysis of poly(l-lactide) crystalline residues as extended-chain crystallites. Polymer Degradation and Stability, 2004, 85, 647-656.	2.7	68
76	Stereocomplex Crystallization Behavior and Physical Properties of Linear 1â€Arm, 2â€Arm, and Branched 4â€Arm Poly(<scp>L</scp> ″actide)/Poly(<scp>D</scp> ″actide) Blends: Effects of Chain Directional Change and Branching. Macromolecular Chemistry and Physics, 2013, 214, 776-786.	1.1	68
77	Synchronous and separate homo-crystallization of enantiomeric poly(l-lactic acid)/poly(d-lactic acid) blends. Polymer, 2012, 53, 747-754.	1.8	67
78	Heterostereocomplexation between Biodegradable and Optically Active Polyesters as a Versatile Preparation Method for Biodegradable Materials. Biomacromolecules, 2010, 11, 252-258.	2.6	65
79	Crystallization behavior and physical properties of linear 2-arm and branched 4-arm poly(l-lactide)s: Effects of branching. Polymer, 2013, 54, 2422-2434.	1.8	65
80	Biodegradable Polyesters as Crystallization-Accelerating Agents of Poly(<scp>l</scp> -lactide). ACS Applied Materials & Interfaces, 2009, 1, 1719-1730.	4.0	64
81	Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. Journal of Applied Polymer Science, 2003, 87, 1628-1633.	1.3	61
82	Enhanced crystallization of poly(L-lactide-co-É>-caprolactone) during storage at room temperature. Journal of Applied Polymer Science, 2000, 76, 947-953.	1.3	60
83	Alkaline and Enzymatic Degradation ofL-Lactide Copolymers, 1. Macromolecular Bioscience, 2005, 5, 135-148.	2.1	60
84	Enzymatic, Alkaline, and Autocatalytic Degradation of Poly(l-lactic acid):Â Effects of Biaxial Orientation. Biomacromolecules, 2006, 7, 380-387.	2.6	59
85	Polyglycolide as a Biodegradable Nucleating Agent for Poly(<scp>L</scp> â€lactide). Macromolecular Materials and Engineering, 2008, 293, 947-951.	1.7	59
86	Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: Effects of block length. Journal of Applied Polymer Science, 2013, 129, 2502-2517.	1.3	58
87	Alkaline and enzymatic degradation ofL-lactide copolymers. II. Crystallized films of poly(L-lactide-co-D-lactide) and poly(L-lactide) with similar crystallinities. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1064-1075.	2.4	57
88	Enzymatic Degradation of Poly(l-Lactic Acid): Effects of UV Irradiation. Journal of Polymers and the Environment, 2006, 14, 239-248.	2.4	57
89	Blends of isotactic and atactic poly(lactide). I. Effects of mixing ratio of isomers on crystallization of blends from melt. Journal of Applied Polymer Science, 1995, 58, 1793-1802.	1.3	54
90	Crystallization behavior of linear 1-arm and 2-arm poly(l-lactide)s: Effects of coinitiators. Polymer, 2008, 49, 1385-1397.	1.8	54

#	Article	IF	CITATIONS
91	Poly(l-lactide) XI. Lactide formation by thermal depolymerisation of poly(l-lactide) in a closed system. Polymer Degradation and Stability, 2003, 81, 501-509.	2.7	52
92	Stereocomplex formation between poly(Lâ€lactic acid) and poly(Dâ€lactic acid) with disproportionately low and high molecular weights from the melt. Polymer International, 2012, 61, 442-450.	1.6	52
93	Twist-bend nematic liquid crystals based on thioether linkage. New Journal of Chemistry, 2019, 43, 6786-6793.	1.4	52
94	Accelerated hydrolytic degradation of Poly(l-lactide)/Poly(d-lactide) stereocomplex up to late stage. Polymer Degradation and Stability, 2010, 95, 477-484.	2.7	51
95	Development of novel bistolane-based liquid crystalline molecules with an alkylsulfanyl group for highly birefringent materials. RSC Advances, 2016, 6, 16568-16574.	1.7	51
96	Stereocomplex formation between enantiomeric poly(lactic acid)s. X. Binary blends from poly(D-lactide-CO-glycolide) and poly(L-lactide-CO-glycolide). Journal of Applied Polymer Science, 1994, 53, 1061-1071.	1.3	50
97	Blends of aliphatic polyesters. VIII. Effects of poly(L-lactide-co-?-caprolactone) on enzymatic hydrolysis of poly(L-lactide), poly(?-caprolactone), and their blend films. Journal of Applied Polymer Science, 2003, 87, 412-419.	1.3	50
98	Degradation of poly(d-lactic acid) by a thermophile. Polymer Degradation and Stability, 2003, 81, 167-171.	2.7	49
99	Surface hydrophilicity and enzymatic hydrolyzability of biodegradable polyesters: 1. effects of alkaline treatment. Polymer International, 2003, 52, 843-852.	1.6	49
100	In Vitro Hydrolysis of Poly(l-lactide) Crystalline Residues as Extended-Chain Crystallites:Â II. Effects of Hydrolysis Temperature. Biomacromolecules, 2004, 5, 1021-1028.	2.6	49
101	Effect of LTI content on impact fracture property of PLA/PCL/LTI polymer blends. Journal of Materials Science, 2006, 41, 6501-6504.	1.7	49
102	The design of liquid crystalline bistolane-based materials with extremely high birefringence. RSC Advances, 2016, 6, 92845-92851.	1.7	49
103	Physical properties and enzymatic hydrolysis of poly(L-lactide)-TiO2 composites. Journal of Applied Polymer Science, 2005, 96, 190-199.	1.3	45
104	Precursors in stereo-complex crystals of poly(<scp>L</scp> -lactic acid)/poly(<scp>D</scp> -lactic acid) blends under shear flow. Journal of Applied Crystallography, 2014, 47, 14-21.	1.9	45
105	Stereocomplex Crystallization and Homocrystallization of Star-Shaped Four-Armed Stereo Diblock Poly(lactide)s with Different <scp>l</scp> -Lactyl Unit Contents: Isothermal Crystallization from the Melt. Journal of Physical Chemistry B, 2016, 120, 1183-1193.	1.2	44
106	Crystal modulus of poly (lactic acid)s, and their stereocomplex. Polymer, 2018, 138, 124-131.	1.8	44
107	Effects of rapid crystallization on hydrolytic degradation and mechanical properties of poly(l-lactide-co-îµ-caprolactone). Reactive and Functional Polymers, 2006, 66, 1362-1372.	2.0	43
108	Hydrolytic degradation behavior of stereo multiblock and diblock poly(lactic acid)s: Effects of block lengths. Polymer Degradation and Stability, 2013, 98, 709-719.	2.7	43

#	Article	IF	CITATIONS
109	Highly Enhanced Accelerating Effect of Meltâ€Recrystallized Stereocomplex Crystallites on Poly(<scp>L</scp> ″actic acid) Crystallization, 2–Effects of Poly(<scp>D</scp> ″actic acid) Concentration. Macromolecular Materials and Engineering, 2013, 298, 270-282.	1.7	43
110	Hydrolytic Degradation of Amorphous Films ofL-Lactide Copolymers with Glycolide andD-Lactide. Macromolecular Materials and Engineering, 2006, 291, 357-368.	1.7	42
111	Thioether-linked liquid crystal dimers and trimers: The twist-bend nematic phase. Journal of Molecular Structure, 2020, 1199, 126913.	1.8	42
112	Solid-state 13C NMR analyses of the structures of crystallized and quenched poly(lactide)s: Effects of crystallinity, water absorption, hydrolytic degradation, and tacticity. Polymer, 2010, 51, 2215-2220.	1.8	41
113	Highly accelerated stereocomplex crystallization by blending star-shaped 4-armed stereo diblock poly(lactide)s with poly(d -lactide) and poly(l -lactide) cores. Polymer, 2014, 55, 6444-6450.	1.8	41
114	Porous biodegradable polyester blends of poly(L-lactic acid) and poly(É>-caprolactone): physical properties, morphology, and biodegradation. Polymer International, 2007, 56, 258-266.	1.6	40
115	Synthesis, physical properties, and crystallization of optically active poly(<scp>L</scp> â€phenyllactic) Tj ETQq1 1 Polymer Science, 2008, 110, 3954-3962.	l 0.78431 1.3	4 rgBT /Ove 39
116	Nitrate Removal Efficiency and Bacterial Community Dynamics in Denitrification Processes Using Poly (<sc>L</sc> -lactic acid) as the Solid Substrate. Microbes and Environments, 2011, 26, 212-219.	0.7	39
117	Porous biodegradable polyesters. II. Physical properties, morphology, and enzymatic and alkaline hydrolysis of porous poly(?-caprolactone) films. Journal of Applied Polymer Science, 2001, 80, 2281-2291.	1.3	38
118	Crystallization and hydrolytic/thermal degradation of a novel stereocomplexationable blend of poly(L-2-hydroxybutyrate) and poly(D-2-hydroxybutyrate). Polymer Journal, 2011, 43, 317-324.	1.3	38
119	Hetero-stereocomplex formation of stereoblock copolymer of substituted and non-substituted poly(lactide)s. Polymer, 2011, 52, 1318-1325.	1.8	37
120	Hydrogen bonding liquid crystalline benzoic acids with alkylthio groups: phase transition behavior and insights into the cybotactic nematic phase. New Journal of Chemistry, 2017, 41, 6514-6522.	1.4	37
121	Supramolecular hydrogen-bonded liquid crystals based on 4-n-alkylthiobenzoic acids and 4,4′-bipyridine: Their mesomorphic behavior with comparative study including alkyl and alkoxy counterparts. Journal of Molecular Liquids, 2019, 280, 153-159.	2.3	37
122	Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s. Materials, 2011, 4, 1384-1398.	1.3	35
123	Homo―and heteroâ€stereocomplexes of substituted poly(lactide)s as promising biodegradable crystallizationâ€accelerating agents of poly(<scp>L</scp> ″actide). Journal of Applied Polymer Science, 2011, 122, 321-333.	1.3	35
124	Synthesis and Characterization of Stereo Multiblock Poly(lactic acid)s with Different Block Lengths by Melt Polycondensation of Poly(<scp>L</scp> â€lactic acid)/Poly(<scp>D</scp> â€lactic acid) Blends. Macromolecular Reaction Engineering, 2012, 6, 446-457.	0.9	35
125	Ternary Stereocomplex Formation of One <scp>l</scp> -Configured and Two <scp>d</scp> -Configured Optically Active Polyesters, Poly(<scp>l</scp> -2-hydroxybutanoic acid), Poly(<scp>d</scp> -2-hydroxybutanoic acid), and Poly(<scp>d</scp> -lactic acid). ACS Macro Letters, 2012. 1, 687-691.	2.3	35
126	Physical properties and enzymatic hydrolysis of poly(l-lactide)–CaCO3 composites. Polymer Degradation and Stability, 2002, 78, 119-127.	2.7	34

#	Article	IF	CITATIONS
127	Novel diphenylacetylene-based room-temperature liquid crystalline molecules with alkylthio groups, and investigation of the role for terminal alkyl chains in mesogenic incidence and tendency. Liquid Crystals, 2018, 45, 811-820.	0.9	34
128	Ether―and Thioetherâ€Linked Naphthaleneâ€Based Liquidâ€Crystal Dimers: Influence of Chalcogen Linkage and Mesogenicâ€Arm Symmetry on the Incidence and Stability of the Twist–Bend Nematic Phase. Chemistry - A European Journal, 2020, 26, 3767-3775.	1.7	34
129	Enzymatic Degradation of Biodegradable Polyester Composites of Poly(L-lactic acid) and Poly(É›-caprolactone). Macromolecular Materials and Engineering, 2006, 291, 1245-1254.	1.7	32
130	lsothermal Crystallization Process of Poly(<scp>l</scp> -lactic acid)/Poly(<scp>d</scp> -lactic acid) Blends after Rapid Cooling from the Melt. ACS Omega, 2016, 1, 476-482.	1.6	32
131	Molecular Weight Dependence of the Poly(l-lactide)/Poly(d-lactide) Stereocomplex at the Airâ^'Water Interface. Biomacromolecules, 2006, 7, 2728-2735.	2.6	31
132	Stereocomplex crystallization and homo-crystallization of enantiomeric poly(2-hydroxybutyrate)s: Effects of molecular weight and crystallization conditions. Polymer, 2012, 53, 5385-5392.	1.8	30
133	Phase transitions and birefringence of bistolane-based nematic molecules with an alkyl, alkoxy and alkylthio group. Molecular Crystals and Liquid Crystals, 2017, 647, 422-429.	0.4	30
134	Hetero-stereocomplex formation between substituted poly(lactic acid)s with linear and branched side chains, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid). Polymer, 2014, 55, 721-726.	1.8	29
135	Synthesis, properties, and crystallization of the alternating stereocopolymer poly(<scp>l</scp> -lactic) Tj ETQq1 1 poly(lactic acid). Polymer Chemistry, 2018, 9, 2446-2457.	0.784314 1.9	rgBT /Over 29
136	Environmental degradation of biodegradable polyesters. IV. The effects of pores and surface hydrophilicity on the biodegradation of poly(?-caprolactone) and poly[(R)-3-hydroxybutyrate] films in controlled seawater. Journal of Applied Polymer Science, 2003, 90, 587-593.	1.3	28
137	Photodegradation of Poly(L-lactic acid): Effects of Photosensitizer. Macromolecular Materials and Engineering, 2005, 290, 1192-1203.	1.7	28
138	Selenium-linked liquid crystal dimers for twist-bend nematogens. Journal of Molecular Liquids, 2019, 289, 111097.	2.3	28
139	Hydrolytic degradation of poly[(R)-3-hydroxybutyric acid] in the melt. Polymer, 2005, 46, 2157-2162.	1.8	27
140	Highly enhanced accelerating effect of meltâ€recrystallized stereocomplex crystallites on poly(<scp>L</scp> â€lactic acid) crystallization: effects of molecular weight of poly(<scp>D</scp> â€lactic) Tj ETQ	q û 	372#Overlock
141	Synthesis of meso-lactide by thermal configurational inversion and depolymerization of poly(l) Tj ETQq1 1 0.7843 141, 77-83.	14 rgBT /(2.7	Overlock 10 27
142	Stereocomplex Formation between Enantiomeric Alternating Lactic Acid-Based Copolymers as a Versatile Method for the Preparation of High Performance Biobased Biodegradable Materials. ACS Applied Polymer Materials, 2019, 1, 1476-1484.	2.0	27
143	Stereocomplex crystallization and homo-crystallization of enantiomeric substituted poly(lactic) Tj ETQq1 1 0.7843	814 rgBT / 1.8	Overlock 10
144	Photodegradation of Poly(lactic acid) Stereocomplex by UV-Irradiation. Journal of Polymers and the Environment, 2012, 20, 706-712.	2.4	25

#	Article	IF	CITATIONS
145	Hydrolytic degradation of poly(<scp>L</scp> â€ŀactic acid): Combined effects of UV treatment and crystallization. Journal of Applied Polymer Science, 2012, 125, 2394-2406.	1.3	25

146 Synthesis, stereocomplex crystallization and homo-crystallization of enantiomeric poly(lactic) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 702

147	Poly(L-lactide)/C60 nanocomposites: Effects of C60 on crystallization of poly(L-lactide). Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2167-2176.	2.4	24
148	Crystallization Behavior of Stereo Diblock Poly(Lactide)s with Relatively Short Poly(<scp>D</scp> ‣actide) Segment from Partially Melted State. Macromolecular Materials and Engineering, 2014, 299, 1089-1105.	1.7	24
149	Stereocomplex Crystallization between <scp>l</scp> - and <scp>d</scp> -Configured Staggered Asymmetric Random Copolymers Based on 2-Hydroxyalkanoic Acids. Crystal Growth and Design, 2018, 18, 6009-6019.	1.4	24
150	Title is missing!. Journal of Polymers and the Environment, 2003, 11, 57-65.	2.4	23
151	Surface Hydrophilicities and Enzymatic Hydrolyzability of Biodegradable Polyesters, 2. Macromolecular Bioscience, 2003, 3, 51-58.	2.1	23
152	Depolymerization of Poly (L-lactic acid) under Hydrothermal Conditions. Kobunshi Ronbunshu, 2004, 61, 561-566.	0.2	23
153	Stereocomplexation of quaternary or ternary monomer units and dual stereocomplexation in enantiomeric binary and quaternary polymer blends of poly(2-hydroxybutanoic acid)s, poly(2-hydroxybutanoic acid)co-lactic acid)s, and poly(lactic acid)s. RSC Advances, 2015, 5, 83331-83342.	1.7	23
154	Synthesis, phase transitions and birefringence of novel liquid crystalline 1,4-phenylene bis(4-alkylthio) Tj ETQqC	0 0 0 rgBT /0	Overlock 10 Tf
155	Melt-processed biodegradable polyester blends of poly(L-lactic acid) and poly(É>-caprolactone): Effects of processing conditions on biodegradation. Journal of Applied Polymer Science, 2007, 104, 831-841.	1.3	22
156	Effects of Molar Mass of Poly(l-lactide acid) on the Crystallization of Poly[(R)-3-hydroxybutyrate] in Their Ultrathin Blend Films. Macromolecules, 2012, 45, 2485-2493.	2.2	22
157	Stereocomplex Crystallization of Starâ€Shaped 4â€Armed Equimolar Stereo Diblock Poly(lactide)s with Different Molecular Weights: Isothermal Crystallization from the Melt. Macromolecular Chemistry and Physics, 2016, 217, 1547-1557.	1.1	22
158	Thioether-linked azobenzene-based liquid crystal dimers exhibiting the twist-bend nematic phase over a wide temperature range. Liquid Crystals, 2021, 48, 641-652.	0.9	22
158 159	Thioether-linked azobenzene-based liquid crystal dimers exhibiting the twist-bend nematic phase over a wide temperature range. Liquid Crystals, 2021, 48, 641-652. In Vitro Hydrolysis of Blends from Enantiomeric Poly(lactide)s. 2. Well-Stereocomplexed Fiber and Film Journal of Fiber Science and Technology, 2001, 57, 198-202.	0.9	22 22
	wide temperature range. Liquid Crystals, 2021, 48, 641-652. In Vitro Hydrolysis of Blends from Enantiomeric Poly(lactide)s. 2. Well-Stereocomplexed Fiber and		
159	wide temperature range. Liquid Crystals, 2021, 48, 641-652. In Vitro Hydrolysis of Blends from Enantiomeric Poly(lactide)s. 2. Well-Stereocomplexed Fiber and Film Journal of Fiber Science and Technology, 2001, 57, 198-202. Hydrolytic degradation of poly(ε-caprolactone) in the melt. Polymer Degradation and Stability, 2005,	0.0	22

#	Article	IF	CITATIONS
163	Separate Crystallization and Cocrystallization of Poly(<scp>L</scp> a€lactide) in the Presence of <scp>L</scp> â€Lactideâ€Based Copolymers With Low Crystallizability, Poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€glycolide) and Poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€ <scp>D</scp> â€lactide). Macromolecular Chemistry and Physics, 2012,	1.1	21

164 Cocrystallization of monomer units in lactic acid-based biodegradable copolymers, poly(l-lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 70

165	Methylene- and thioether-linked cyanobiphenyl-based liquid crystal dimers CB <i>n</i> SCB exhibiting room temperature twist-bend nematic phases and glasses. Materials Advances, 2021, 2, 1760-1773.	2.6	21
166	Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications, 2000, 21, 117-132.	2.0	20
167	Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers. Scientific Reports, 2017, 7, 45170.	1.6	19
168	Cocrystallization of monomer units of biobased and biodegradable Poly(l-lactic acid-co-glycolic acid) random copolymers. Polymer Journal, 2018, 50, 1079-1088.	1.3	19
169	Effect of Hydrolysis on Fracture Behavior of Poly(L-lactide). Kobunshi Ronbunshu, 2003, 60, 644-651.	0.2	18
170	Novel Preparation Method for Poly(l-lactide)-Based Block Copolymers:Â Extended Chain Crystallites as a Solid-State Macro-Coinitiator. Biomacromolecules, 2007, 8, 1730-1738.	2.6	18
171	Ternary stereocomplex crystallization of poly(I-2-hydroxybutanoic acid), poly(d-2-hydroxybutanoic) Tj ETQq1 1 (0.784314 r 1.8	gBT /Overloc
172	Distinct twist-bend nematic phase behaviors associated with the ester-linkage direction of thioether-linked liquid crystal dimers. Materials Advances, 2021, 2, 261-272.	2.6	18
173	Phase behaviors of classic liquid crystal dimers and trimers: Alternate induction of smectic and twist-bend nematic phases depending on spacer parity for liquid crystal trimers. Journal of Molecular Liquids, 2021, 326, 115319.	2.3	18
174	New Strategy for Controlling Biodegradability of Biodegradable Polyesters by Enzyme atalyzed Surface Grafting. Macromolecular Rapid Communications, 2007, 28, 1651-1656.	2.0	17
175	Stereocomplex- and homo-crystallization of blends from 2-armed poly(l-lactide) and poly(d-lactide) with identical and opposite chain directional architectures and of 2-armed stereo diblock poly(lactide). Polymer, 2016, 96, 167-181.	1.8	17
176	Homo- and Stereocomplex Crystallization of Star-Shaped Four-Armed Stereo Diblock Copolymers of Crystalline and Amorphous Poly(lactide)s: Effects of Incorporation and Position of Amorphous Blocks. Journal of Physical Chemistry B, 2016, 120, 11052-11063.	1.2	17
177	Alkylthio- and alkyl-substituted asymmetric diphenyldiacetylene-based liquid crystals: phase transitions, mesophase and single-crystal structures, and birefringence. Liquid Crystals, 2019, 46, 1621-1630.	0.9	17
178	Birefringence and photoluminescence properties of diphenylacetylene-based liquid crystal dimers. New Journal of Chemistry, 2020, 44, 17531-17541.	1.4	17
179	Stereocomplex- and homo-crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, enantiomeric Poly(l-lactide)-b-Poly(dl-lactide) and Poly(d-lactide)-b-Poly(dl-lactide). Polymer, 2021, 213, 123226.	1.8	17

180 Hydrolytic Degradation and Monomer Recovery of Poly(butylene succinate) and Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

#	Article	IF	CITATIONS
181	Heteroâ€Stereocomplex Crystallization between Starâ€Shaped 4â€Arm Poly(<scp>l</scp> â€2â€hydroxybutanoic) 215, 1879-1888.		1 0.78431 15
182	Ternary Stereocomplex and Hetero-Stereocomplex Crystallizability of Substituted and Unsubstituted Poly(lactic acid)s. Crystal Growth and Design, 2018, 18, 521-530.	1.4	15
183	Viscoelastic properties of a thioether-based heliconical twist–bend nematogen. Physical Chemistry Chemical Physics, 2020, 22, 9593-9599.	1.3	15
184	Carbonyl- and thioether-linked cyanobiphenyl-based liquid crystal dimers exhibiting twist-bend nematic phases. Tetrahedron, 2021, 81, 131870.	1.0	15
185	Quaternary stereocomplex formation of substituted poly(lactic acid)s, l- and d-configured poly(2-hydroxybutanoic acid)s and l- and d-configured poly(2-hydroxy-3-methylbutanoic acid)s. Polymer, 2015, 68, 57-64.	1.8	14
186	Non-isothermal crystallization behavior of stereo diblock polylactides with relatively short poly(<scp>d</scp> -lactide) segments from the melt. Polymer International, 2015, 64, 54-65.	1.6	14
187	Effect of incorporated star-shaped four-armed stereo diblock poly(lactide) on the crystallization behavior of linear one-armed poly(l-lactide) or poly(d-lactide). Polymer Journal, 2016, 48, 209-213.	1.3	14
188	Physical Properties, Crystallization, and Thermal/Hydrolytic Degradation of Poly(<scp>L</scp> ″actide)/Nano/Microâ€Diamond Composites. Macromolecular Materials and Engineering, 2013, 298, 1149-1159.	1.7	13
189	Long terminal linear alkyl group as internal crystallization accelerating moiety of poly(l-lactide). Polymer, 2014, 55, 4786-4798.	1.8	13
190	Hydrolytic degradation and crystallization behavior of linear 2â€armed and starâ€shaped 4â€armed poly(<scp>l</scp> â€lactide)s: Effects of branching architecture and crystallinity. Journal of Applied Polymer Science, 2015, 132, .	1.3	13
191	Improvement of methanogenic activity of anaerobic digestion using poly(l-lactic acid) with enhanced chemical hydrolyzability based on physicochemical parameters. Journal of Environmental Management, 2018, 226, 476-483.	3.8	13
192	Enhanced crystallization of poly(<scp>L</scp> ″actideâ€ <i>co</i> ″µâ€€aprolactone) in the presence of water. Journal of Applied Polymer Science, 2009, 112, 715-720.	1.3	12
193	Heterostereocomplex―and Homocrystallization and Thermal Properties and Degradation of Substituted Poly(lactic acid)s, Poly(<scp>l</scp> â€2â€hydroxybutanoic acid) and Poly(<scp>d</scp> â€2â€hydroxyâ€3â€methylbutanoic acid). Macromolecular Chemistry and Physics, 2016, 217, 2483-2493.	1.1	12
194	The effect of fluorine substitutions on the refractive index properties for π-conjugated calamitic nematic materials. Phase Transitions, 2017, 90, 549-556.	0.6	12
195	Synthesis and Stereocomplexation of New Enantiomeric Stereo Periodical Copolymers Poly(<scp>l</scp> -lactic acid– <scp>l</scp> -lactic acid– <scp>d</scp> -lactic acid) and Poly(<scp>d</scp> -lactic acid– <scp>d</scp> -lactic acid– <scp>l</scp> -lactic acid). Macromolecules, 2021. 54. 6226-6237.	2.2	12
196	Effects of alkylthio groups on phase transitions of organic molecules and liquid crystals: a comparative study with alkyl and alkoxy groups. CrystEngComm, 2022, 24, 1877-1890.	1.3	12
197	Relatively Short Poly(<scp>D</scp> â€lactide) Segments as Intraâ€ <scp>C</scp> rystallizationâ€ <scp>A</scp> ccelerating Moieties in Stereo Diblock Poly(lactide)s. Macromolecular Materials and Engineering, 2014, 299, 430-435.	1.7	11
198	Hydrolytic degradation of linear 2-arm and branched 4-arm poly(dl-lactide)s: Effects of branching and terminal hydroxyl groups. Polymer Degradation and Stability, 2014, 102, 59-66.	2.7	11

#	Article	IF	CITATIONS
199	Thioether-linked benzylideneaniline-based twist-bend nematic liquid crystal dimers: Insights into spacer lengths, mesogenic arm structures, and linkage types. Tetrahedron, 2021, 95, 132351.	1.0	11
200	Recycling of poly lactic acid into lactic acid with high temperature and high pressure water. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	11
201	Enzymatic degradation of poly(L-lactic acid) fibers: Effects of small drawing. Journal of Applied Polymer Science, 2007, 103, 2064-2071.	1.3	10
202	Hydrolytic degradation and thermal properties of linear 1-arm and 2-arm poly(dl-lactic acid)s: Effects of coinitiator-induced molecular structural difference. Polymer Degradation and Stability, 2011, 96, 2229-2236.	2.7	10
203	Stereocomplex crystallization and homo-crystallization of star-shaped four-armed stereo diblock poly(lactide)s during precipitation and non-isothermal crystallization. Polymer Journal, 2016, 48, 1087-1093.	1.3	10
204	Stereocomplex Crystallization of Star-Shaped Four-Armed Stereo Diblock Poly(lactide) from the Melt: Effects of Incorporated Linear One-Armed Poly(<scp>l</scp> -lactide) or Poly(<scp>d</scp> -lactide). Journal of Physical Chemistry B, 2017, 121, 9936-9946.	1.2	10
205	Novel Hydrogen-bonded Liquid Crystalline Complexes between 4-Alkylthiobenzoic Acids and 4-Phenylpyridine. Chemistry Letters, 2017, 46, 1657-1659.	0.7	10
206	Screening of crystalline species and enhanced nucleation of enantiomeric poly(lactide) systems by melt-quenching. Polymer Bulletin, 2019, 76, 1199-1216.	1.7	10
207	Accelerated crystallization of poly(<scp>L</scp> â€lactide) by physical aging. Journal of Applied Polymer Science, 2010, 116, 1190-1196.	1.3	9
208	Accelerated Stereocomplex Crystallization of Poly(<scp>L</scp> â€lactide)/Poly(<scp>D</scp> â€lactide) Blends by Long Terminal Linear Alkyl Groups. Macromolecular Materials and Engineering, 2015, 300, 391-402.	1.7	9
209	Thioether-Linked Liquid Crystal Trimers: Odd–Even Effects of Spacers and the Influence of Thioether Bonds on Phase Behavior. Materials, 2022, 15, 1709.	1.3	9
210	Thermal properties and degradation of enantiomeric copolyesteramides poly(lactic acid-co-alanine)s. Polymer Degradation and Stability, 2020, 171, 109047.	2.7	8
211	Synthesis and stereocomplex formation of enantiomeric alternating copolymers with two types of chiral centers, poly(lactic acid- <i>alt</i> -2-hydroxybutanoic acid)s. RSC Advances, 2020, 10, 39000-39007.	1.7	8
212	Effect of Additive on Fracture Properties of PLA/PCL Polymer Blend. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2006, 72, 173-178.	0.2	7
213	Effect of LTI Blending on Fracture Properties of PLA/PCL Polymer Blend. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 1157-1164.	0.5	7
214	Stereocomplex Crystallization of Linear Two-Armed Stereo Diblock Copolymers: Effects of Chain Directional Change, Coinitiator Moiety, and Terminal Groups. Journal of Physical Chemistry B, 2017, 121, 2695-2702.	1.2	7
215	Stereocomplex―and Homoâ€Crystallization and Phaseâ€Transition Behavior of Relatively Highâ€Molecularâ€Weight Linear One―and Twoâ€Armed and Starâ€Shaped Fourâ€Armed Poly(<scp>l</scp> â€lactide)/Poly(<scp>d</scp> â€lactide) Blends. Macromolecular Chemistry and Physics, 2017, 218, 1700286.	1.1	7
216	Nitrate removal performance and diversity of active denitrifying bacteria in denitrification reactors using poly(L-lactic acid) with enhanced chemical hydrolyzability. Environmental Science and Pollution Research, 2019, 26, 36236-36247.	2.7	7

#	Article	IF	CITATIONS
217	Quiescent Crystallization of Poly(Lactic Acid) and Its Copolymers-Based Materials. Advances in Polymer Science, 2019, , 37-86.	0.4	7
218	Stereocomplex and Individual Crystallizability of Random Copolymers Based on Chiral α-Monosubstituted 2-Hydroxyalkanoic Acids. Crystal Growth and Design, 2020, 20, 1047-1057.	1.4	7
219	Crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, poly(l-lactide)-b-poly(dl-lactide). Polymer Chemistry, 2020, 11, 5711-5724.	1.9	7
220	Alkylthio-based asymmetric liquid crystals: unravelling the substituent effects and intercalated cybotactic nematic and smectic phases. Materials Advances, 2022, 3, 3218-3228.	2.6	7
221	2,7-substituted fluorenone-based liquid crystal trimers: twist-bend nematic phase induced by outer thioether linkage. Phase Transitions, 2022, 95, 331-339.	0.6	7
222	New fabrication approach to develop a high birefringence photo-crosslinked film based on a sulfur-containing liquid crystalline molecule with large temperature dependence of birefringence. Molecular Crystals and Liquid Crystals, 2018, 662, 197-207.	0.4	6
223	Simultaneous stereocomplex cocrystallization from coexisting two types of stereocomplexationable poly(lactide) systems. CrystEngComm, 2019, 21, 3158-3169.	1.3	6
224	Stereocomplex- and homo-crystallization behavior, polymorphism, and thermal properties of enantiomeric random copolymers of I- and d-lactic acids from the melt. Polymer, 2021, 228, 123954.	1.8	6
225	Improvement of Fracture Properies of PLA/PCL Polymer Blends by Control of Phase Structures. Kobunshi Ronbunshu, 2006, 63, 626-632.	0.2	5
226	Strong Disturbance Effect of Comonomer Units with Opposite Configuration on Crystallization of Optically Active Monomer-Based Random Copolymers. Crystal Growth and Design, 2018, 18, 6155-6164.	1.4	5
227	A versatile strategy for the synthesis and mechanical property manipulation of networked biodegradable polymeric materials composed of well-defined alternating hard and soft domains. RSC Advances, 2019, 9, 7094-7106.	1.7	5
228	Temperature dependent poly(<scp>l</scp> -lactide) crystallization investigated by Fourier transform terahertz spectroscopy. Materials Advances, 0, , .	2.6	5
229	Synthesis and characterization of alkylthio-attached azobenzene-based liquid crystal polymers: Roles of the alkylthio bond and polymer chain in phase behavior and liquid crystal formation. Polymer, 2021, , 124194.	1.8	5
230	Biodegradable polyesters for medical and ecological applications. , 2000, 21, 117.		5
231	Draft Genome Sequence of Moorella sp. Strain Hama-1, a Novel Acetogenic Bacterium Isolated from a Thermophilic Digestion Reactor. Genome Announcements, 2018, 6, .	0.8	4
232	Prokaryotic Community Structures in a Thermophilic Anaerobic Digestion Reactor Converting Poly() Tj ETQq0 O Microbiology Resource Announcements, 2019, 8, .	0 rgBT /O 0.3	verlock 10 Tf 5 4
233	Stereocomplex crystallization, homocrystallization, and polymorphism of enantiomeric copolyesteramides poly(lactic acid― <i>co</i> â€alanine)s from the melt. Polymer Crystallization, 2020, 3, e10094.	0.5	4
234	Deuterated Liquid Crystals – practical synthesis of deuterium labeled 4-alkyl-4â€3-isothiocyanato-[1,1ʹ:4ʹ,1â€3]terphenyls. Journal of Molecular Liquids, 2022, 345, 117847.	2.3	4

#	Article	IF	CITATIONS
235	Synthesis, stereocomplex crystallization, homo-crystallization, and thermal properties and degradation of enantiomeric aromatic poly(lactic acid)s, poly(mandelic acid)s. Polymer Degradation and Stability, 2022, 195, 109803.	2.7	4
236	<title>Fracture properties of bioabsorbable HA/PLLA/PCL composite material</title> . , 2005, , .		3
237	Extreme modulation of liquid crystal viscoelasticity <i>via</i> altering the ester bond direction. Journal of Materials Chemistry C, 2021, 9, 9990-9996.	2.7	3
238	Crystal Morphology of Poly(<small>L</small> -lactic Acid) and Poly(<small>D</small> -lactic Acid) Blends during Cooling and Heating Processes. Kobunshi Ronbunshu, 2015, 72, 141-148.	0.2	2
239	Synchronous and separate homo-crystallization of an enantiomeric oligomeric poly(l-3-hydroxybutanoic acid)/poly(d-3-hydroxybutanoic acid) blend. Polymer Journal, 2016, 48, 215-220.	1.3	2
240	Study on Fracture Properties of Bioabsorbable Polymer Blend. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2003, 2003, 663-664.	0.0	2
241	Stereocomplex and individual crystallization behavior of symmetric or enantiomeric substituted Poly(lactic acid)s random copolymers with high crystallizabilities. Polymer, 2021, 237, 124352.	1.8	2
242	Back Cover: Macromol. Biosci. 7/2005. Macromolecular Bioscience, 2005, 5, 680-680.	2.1	1
243	Effect of P(LLA-CL) Blending on the Mechanical Properties of PLLA/PCL. Zairyo/Journal of the Society of Materials Science, Japan, 2007, 56, 211-216.	0.1	1
244	Draft Genome Sequence of Thermodesulfovibrio sp. Strain Kuro-1, a Thermophilic, Lactate-Degrading Anaerobe Isolated from a Thermophilic Anaerobic Digestion Reactor. Microbiology Resource Announcements, 2019, 8, .	0.3	1
245	Isolation of lactate-degrading bacteria from anaerobic sludge in a thermophilic anaerobic digestion reactor treating poly(L-lactic acid). AIP Conference Proceedings, 2019, , .	0.3	1
246	Biodegradable polyesters for medical and ecological applications. , 2000, 21, 117.		1
247	Poly(l-Lactide). , 2015, , 1-12.		1
248	Macromol. Chem. Phys. 20/2012. Macromolecular Chemistry and Physics, 2012, 213, 2204-2204.	1.1	0
249	Nitrate removal properties of solid-phase denitrification processes using acid-blended poly(L-lactic) Tj ETQq1 1 0	.784314 r 0.3	gBT /Overloc
250	Complete Genome Sequence of <i>Gelria</i> sp. Strain Kuro-4, a Thermophilic Anaerobe Isolated from a Thermophilic Anaerobic Digestion Reactor Treating Poly(<scp>L</scp> -Lactic Acid). Microbiology Resource Announcements, 2021, 10, e0054421.	0.3	0
251	Improvement of mechanical properties of bioabsorbable PLLA/PCL polymer blends due to P(LLA-CL) blending(3A2 Cellular & amp; Tissue Engineering & amp; Biomaterials II). The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2007, 2007.3, \$175.	0.0	0
252	Degradation Mechanism and Rate of Biomass Derived Poly (lactic acid). Journal of the Japan Society of Colour Material, 2008, 81, 54-60.	0.0	0