Dina Bellizzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2387961/publications.pdf

Version: 2024-02-01

159585 168389 2,952 64 30 53 h-index citations g-index papers 66 66 66 4244 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antibacterial Activity and Epigenetic Remodeling of Essential Oils from Calabrian Aromatic Plants. Nutrients, 2022, 14, 391.	4.1	11
2	Impact of Nutrition on Age-Related Epigenetic RNA Modifications in Rats. Nutrients, 2022, 14, 1232.	4.1	5
3	Epigenetic Regulation of Mitochondrial Quality Control Genes in Multiple Myeloma: A Sequenom MassARRAY Pilot Investigation on HMCLs. Journal of Clinical Medicine, 2021, 10, 1295.	2.4	5
4	Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Frontiers in Microbiology, 2021, 12, 707515.	3. 5	27
5	A New Robust Epigenetic Model for Forensic Age Prediction. Journal of Forensic Sciences, 2020, 65, 1424-1431.	1.6	24
6	Gut Microbiota as Important Mediator Between Diet and DNA Methylation and Histone Modifications in the Host. Nutrients, 2020, 12, 597.	4.1	30
7	Multi-Tissue DNA Methylation Remodeling at Mitochondrial Quality Control Genes According to Diet in Rat Aging Models. Nutrients, 2020, 12, 460.	4.1	6
8	Epigenetics and Ageing. , 2019, , 99-133.		3
9	Anti-tumor Activity and Epigenetic Impact of the Polyphenol Oleacein in Multiple Myeloma. Cancers, 2019, 11, 990.	3.7	47
10	Mini Nutritional Assessment Scores Indicate Higher Risk for Prospective Mortality and Contrasting Correlation With Age-Related Epigenetic Biomarkers. Frontiers in Endocrinology, 2019, 10, 672.	3.5	1
11	Epigenetic signature: implications for mitochondrial quality control in human aging. Aging, 2019, 11, 1240-1251.	3.1	16
12	Individual DNA Methylation Profile is Correlated with Age and can be Targeted to Modulate Healthy Aging and Longevity. Current Pharmaceutical Design, 2019, 25, 4139-4149.	1.9	8
13	Aging and nutrition induce tissue-specific changes on global DNA methylation status in rats. Mechanisms of Ageing and Development, 2018, 174, 47-54.	4.6	31
14	A Genetic Variant of ASCT2 Hampers In Vitro RNA Splicing and Correlates with Human Longevity. Rejuvenation Research, 2018, 21, 193-199.	1.8	5
15	rRNA-gene methylation and biological aging. Aging, 2018, 10, 7-8.	3.1	7
16	The methylation of nuclear and mitochondrial DNA in ageing phenotypes and longevity. Mechanisms of Ageing and Development, 2017, 165, 156-161.	4.6	36
17	Centenarians as extreme phenotypes: An ecological perspective to get insight into the relationship between the genetics of longevity and age-associated diseases. Mechanisms of Ageing and Development, 2017, 165, 195-201.	4.6	36
18	Estradiol via estrogen receptor beta influences ROS levels through the transcriptional regulation of SIRT3 in human seminoma TCam-2 cells. Tumor Biology, 2017, 39, 101042831770164.	1.8	19

#	Article	IF	CITATIONS
19	Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opinion on Therapeutic Targets, 2017, 21, 91-101.	3.4	54
20	Methylation of the ribosomal RNA gene promoter is associated with aging and ageâ€related decline. Aging Cell, 2017, 16, 966-975.	6.7	63
21	SIRT1â€SIRT3 Axis Regulates Cellular Response to Oxidative Stress and Etoposide. Journal of Cellular Physiology, 2017, 232, 1835-1844.	4.1	39
22	Mitochondrial genome and epigenome two sides of the same coin. Frontiers in Bioscience - Landmark, 2017, 22, 888-908.	3.0	16
23	The impact of nutrients on the aging rate: A complex interaction of demographic, environmental and genetic factors. Mechanisms of Ageing and Development, 2016, 154, 49-61.	4.6	26
24	Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology, 2015, 16, 569-585.	3.9	57
25	Age-and gender-related pattern of methylation in the <i>MT-RNR1</i> gene. Epigenomics, 2015, 7, 707-716.	2.1	31
26	Aging and Longevity between Genetic Background and Lifestyle Intervention. BioMed Research International, 2014, 2014, 1-2.	1.9	2
27	Directed Organization of DNA Filaments in a Soft Matter Template. Langmuir, 2013, 29, 3398-3403.	3.5	12
28	Epigenetics and aging. Maturitas, 2013, 74, 130-136.	2.4	72
29	The Control Region of Mitochondrial DNA Shows an Unusual CpG and Non-CpG Methylation Pattern. DNA Research, 2013, 20, 537-547.	3.4	221
30	miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle, 2013, 12, 3650-3662.	2.6	96
31	Exploring the Role of Genetic Variability and Lifestyle in Oxidative Stress Response for Healthy Aging and Longevity. International Journal of Molecular Sciences, 2013, 14, 16443-16472.	4.1	86
32	Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics, 2012, 4, 17-27.	2.1	117
33	SIRT3 gene expression: A link between inherited mitochondrial DNA variants and oxidative stress. Gene, 2012, 497, 323-329.	2.2	38
34	SIRT3 protects from hypoxia and staurosporine-mediated cell death by maintaining mitochondrial membrane potential and intracellular pH. Cell Death and Differentiation, 2012, 19, 1815-1825.	11.2	63
35	Epidemiological, genetic and epigenetic aspects of the research on healthy ageing and longevity. Immunity and Ageing, 2012, 9, 6.	4.2	43
36	Global DNA methylation in old subjects is correlated with frailty. Age, 2012, 34, 169-179.	3.0	91

#	Article	IF	Citations
37	DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget, 2012, 3, 1246-1258.	1.8	138
38	MiR-29b Exerts Anti-Multiple Myeloma Activity by Targeting Key Oncogenic Pathways and Modulating DNA Methylation Profile Blood, 2012, 120, 2941-2941.	1.4	1
39	Two variants located in the upstream enhancer region of human UCP1 gene affect gene expression and are correlated with human longevity. Experimental Gerontology, 2011, 46, 897-904.	2.8	28
40	Mitochondrial function, mitochondrial DNA and ageing: a reappraisal. Biogerontology, 2010, 11, 575-588.	3.9	21
41	Experimental testing of a mathematical model relevant to the extrinsic pathway of apoptosis. Cell Stress and Chaperones, 2010, 15, 13-23.	2.9	13
42	Identification of GATA2 and AP-1 Activator Elements within the Enhancer VNTR Occurring in Intron 5 of the Human SIRT3 Gene. Molecules and Cells, 2009, 28, 87-92.	2.6	22
43	Mitochondrial DNA variability modulates mRNA and intra-mitochondrial protein levels of HSP60 and HSP75: experimental evidence from cybrid lines. Cell Stress and Chaperones, 2009, 14, 265-271.	2.9	27
44	Resistance of mtDNAâ€depleted cells to apoptosis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 528-537.	1.5	38
45	A novel sampling design to explore gene-longevity associations: the ECHA study. European Journal of Human Genetics, 2008, 16, 236-242.	2.8	18
46	EQUILIBRIUM, STABILITY AND DYNAMICAL RESPONSE IN A MODEL OF THE EXTRINSIC APOPTOSIS PATHWAY. Journal of Biological Systems, 2007, 15, 261-285.	1.4	5
47	Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics, 2007, 89, 143-150.	2.9	78
48	The mitochondrial DNA control region shows genetically correlated levels of heteroplasmy in leukocytes of centenarians and their offspring. BMC Genomics, 2007, 8, 293.	2.8	44
49	Dynamical analysis of the programmed cell death pathway. , 2007, , .		1
50	Mitochondrial DNA involvement in human longevity. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1388-1399.	1.0	64
51	Gene expression of cytokines and cytokine receptors is modulated by the common variability of the mitochondrial DNA in cybrid cell lines. Genes To Cells, 2006, 11, 883-891.	1.2	47
52	Evidence that the mouse insulin receptor substrate-1 belongs to the gene family on which the promoter is activated by estrogen receptor \hat{l}_{\pm} through its interaction with Sp1. Journal of Molecular Endocrinology, 2006, 36, 91-105.	2.5	25
53	A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics, 2005, 85, 258-263.	2.9	339
54	Association of the mitochondrial DNA haplogroup J with longevity is population specific. European Journal of Human Genetics, 2004, 12, 1080-1082.	2.8	93

#	Article	IF	CITATIONS
55	Heat shock response by EBV-immortalized B-lymphocytes from centenarians and control subjects: a model to study the relevance of stress response in longevity. Experimental Gerontology, 2004, 39, 83-90.	2.8	30
56	The allele (A)(-110) in the promoter region of the HSP70-1 gene is unfavorable to longevity in women. Biogerontology, 2003 , 4 , $215-220$.	3.9	46
57	Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Experimental Gerontology, 2003, 38, 1065-1070.	2.8	268
58	Frequency and coverage of trinucleotide repeats in eukaryotes. Gene, 2003, 317, 117-125.	2.2	31
59	The influences on human longevity by HUMTHO1.STR polymorphism (Tyrosine Hydroxylase gene). Mechanisms of Ageing and Development, 2002, 123, 1403-1410.	4.6	18
60	Estradiol Increases IRS-1 Gene Expression and Insulin Signaling in Breast Cancer Cells. Biochemical and Biophysical Research Communications, 2001, 288, 685-689.	2.1	64
61	Triplet repeats, over-expanded in neuromuscular diseases, are under-represented in mammalian DNA: a survey of models. Brain Research Bulletin, 2001, 56, 265-271.	3.0	6
62	A model for the involvement of Okazaki fragments maturation in the expansion of short tandem repeats. Gene, 2001, 276, 153-159.	2.2	2
63	A procedure for cloning genomic DNA fragments with increasing thermoresistance. Gene, 1998, 219, 63-71.	2.2	0
64	Heterogeneity of primer extension products in asymmetric PCR is due both to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2724-2728.	7.1	37