Barbara E Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2387439/publications.pdf

Version: 2024-02-01

28242 60583 13,278 87 55 81 citations h-index g-index papers 88 88 88 6347 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrophysiology of sleep–wake systems. , 2021, , .		О
2	Chemical neuroanatomy of sleep–wake systems. , 2021, , .		0
3	Arousal and sleep circuits. Neuropsychopharmacology, 2020, 45, 6-20.	2.8	131
4	Discharge and Role of GABA Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recordings in Mice. Journal of Neuroscience, 2020, 40, 5970-5989.	1.7	6
5	In memoriam Michel Jouvet 1925–2017. Sleep Medicine, 2018, 41, 116-117.	0.8	1
6	The mysteries of sleep and waking unveiled by Michel Jouvet. Sleep Medicine, 2018, 49, 14-19.	0.8	7
7	Discharge and Role of Acetylcholine Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recording in Mice. ENeuro, 2018, 5, ENEURO.0270-18.2018.	0.9	35
8	Principal cell types of sleep–wake regulatory circuits. Current Opinion in Neurobiology, 2017, 44, 101-109.	2.0	45
9	Homeostatic regulation through GABA and acetylcholine muscarinic receptors of motor trigeminal neurons following sleep deprivation. Brain Structure and Function, 2017, 222, 3163-3178.	1.2	11
10	Homeostatic Changes in GABA and Glutamate Receptors on Excitatory Cortical Neurons during Sleep Deprivation and Recovery. Frontiers in Systems Neuroscience, 2017, 11, 17.	1.2	28
11	Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation. ENeuro, 2017, 4, ENEURO.0269-17.2017.	0.9	7
12	Control of Sleep-Wake States: Acetylcholine ⯆., 2017, , .		O
13	GABA Receptors on Orexin and Melanin-Concentrating Hormone Neurons Are Differentially Homeostatically Regulated Following Sleep Deprivation. ENeuro, 2016, 3, ENEURO.0077-16.2016.	0.9	22
14	Neuroscience: What Are Cortical Neurons Doing during Sleep?. Current Biology, 2016, 26, R1147-R1150.	1.8	6
15	Orexin Neurons Respond Differentially to Auditory Cues Associated with Appetitive versus Aversive Outcomes. Journal of Neuroscience, 2016, 36, 1747-1757.	1.7	38
16	Discharge Profiles across the Sleepâ€"Waking Cycle of Identified Cholinergic, GABAergic, and Glutamatergic Neurons in the Pontomesencephalic Tegmentum of the Rat. Journal of Neuroscience, 2014, 34, 4708-4727.	1.7	244
17	The Role of Hcrt/Orx and MCH Neurons in Sleep-Wake State Regulation. Sleep, 2013, 36, 1769-1772.	0.6	37
18	Somatostatin varicosities contain the vesicular GABA transporter and contact orexin neurons in the hypothalamus. European Journal of Neuroscience, 2012, 36, 3388-3395.	1.2	5

#	Article	IF	Citations
19	Immunohistochemical evidence for synaptic release of GABA from melanin-concentrating hormone containing varicosities in the locus coeruleus. Neuroscience, 2012, 223, 269-276.	1.1	48
20	Neurobiology of waking and sleeping. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 98, 131-149.	1.0	53
21	Sleep-Deprivation Regulates \hat{l} ±-2 Adrenergic Responses of Rat Hypocretin/Orexin Neurons. PLoS ONE, 2011, 6, e16672.	1.1	24
22	Rat Hypocretin/Orexin Neurons Are Maintained in a Depolarized State by TRPC Channels. PLoS ONE, 2010, 5, e15673.	1.1	25
23	Immunohistochemical evidence for synaptic release of glutamate from orexin terminals in the locus coeruleus. Neuroscience, 2010, 169, 1150-1157.	1.1	72
24	GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. European Journal of Neuroscience, 2010, 32, 448-457.	1.2	127
25	Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2418-2422.	3.3	394
26	Activity Profiles of Cholinergic and Intermingled GABAergic and Putative Glutamatergic Neurons in the Pontomesencephalic Tegmentum of Urethane-Anesthetized Rats. Journal of Neuroscience, 2009, 29, 4664-4674.	1.7	104
27	Glia, Adenosine, and Sleep. Neuron, 2009, 61, 156-157.	3.8	41
28	Discharge Profiles of Identified GABAergic in Comparison to Cholinergic and Putative Glutamatergic Basal Forebrain Neurons across the Sleep–Wake Cycle. Journal of Neuroscience, 2009, 29, 11828-11840.	1.7	181
29	Muscarinicâ€⊋ and orexinâ€⊋ receptors on GABAergic and other neurons in the rat mesopontine tegmentum and their potential role in sleep–wake state control. Journal of Comparative Neurology, 2008, 510, 607-630.	0.9	56
30	<i>Modulation of Cortical Activation and Behavioral Arousal by Cholinergic and Orexinergic Systems</i> Annals of the New York Academy of Sciences, 2008, 1129, 26-34.	1.8	143
31	Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. European Journal of Neuroscience, 2008, 27, 654-670.	1.2	243
32	Dynamic changes in GABAA receptors on basal forebrain cholinergic neurons following sleep deprivation and recovery. BMC Neuroscience, 2007, 8, 15.	0.8	32
33	Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience, 2006, 143, 1051-1064.	1.1	187
34	Vesicular glutamate (VGlut), GABA (VGAT), and acetylcholine (VACht) transporters in basal forebrain axon terminals innervating the lateral hypothalamus. Journal of Comparative Neurology, 2006, 496, 453-467.	0.9	53
35	Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. Journal of Comparative Neurology, 2006, 499, 645-661.	0.9	102
36	Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. European Journal of Neuroscience, 2005, 21, 2807-2816.	1.2	185

#	Article	IF	Citations
37	Basic Mechanisms of Sleep-Wake States. , 2005, , 136-153.		118
38	Discharge of Identified Orexin/Hypocretin Neurons across the Sleep-Waking Cycle. Journal of Neuroscience, 2005, 25, 6716-6720.	1.7	778
39	Is the basalo-cortical system simply an extra-thalamic relay of the ascending reticular activating system? A discourse with Mircea Steriade. Thalamus & Related Systems, 2005, 3, 275.	0.5	O
40	Cholinergic Basal Forebrain Neurons Burst with Theta during Waking and Paradoxical Sleep. Journal of Neuroscience, 2005, 25, 4365-4369.	1.7	417
41	From waking to sleeping: neuronal and chemical substrates. Trends in Pharmacological Sciences, 2005, 26, 578-586.	4.0	518
42	Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices. Neuroscience, 2005, 130, 807-811.	1.1	112
43	Exclusive Postsynaptic Action of Hypocretin-Orexin on Sublayer 6b Cortical Neurons. Journal of Neuroscience, 2004, 24, 6760-6764.	1.7	142
44	Nicotinic Enhancement of the Noradrenergic Inhibition of Sleep-Promoting Neurons in the Ventrolateral Preoptic Area. Journal of Neuroscience, 2004, 24, 63-67.	1.7	120
45	Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Progress in Brain Research, 2004, 145, 157-169.	0.9	251
46	Gabaergic neurons with $\hat{l}\pm 2$ -adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience, 2004, 129, 803-810.	1.1	96
47	Sleep-Wake Related Discharge Properties of Basal Forebrain Neurons Recorded With Micropipettes in Head-Fixed Rats. Journal of Neurophysiology, 2004, 92, 1182-1198.	0.9	115
48	Paradoxical REM sleep promoting and permitting neuronal networks. Archives Italiennes De Biologie, 2004, 142, 379-96.	0.1	78
49	Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat. Journal of Comparative Neurology, 2003, 458, 11-31.	0.9	172
50	Alpha 2 adrenergic receptors on GABAergic, putative sleep-promoting basal forebrain neurons. European Journal of Neuroscience, 2003, 18, 723-727.	1.2	72
51	Rhythmically Discharging Basal Forebrain Units Comprise Cholinergic, GABAergic, and Putative Glutamatergic Cells. Journal of Neurophysiology, 2003, 89, 1057-1066.	0.9	123
52	The Wake-Promoting Hypocretin–Orexin Neurons Are in an Intrinsic State of Membrane Depolarization. Journal of Neuroscience, 2003, 23, 1557-1562.	1.7	156
53	Arousal systems. Frontiers in Bioscience - Landmark, 2003, 8, s438-451.	3.0	486
54	Selective Action of Orexin (Hypocretin) on Nonspecific Thalamocortical Projection Neurons. Journal of Neuroscience, 2002, 22, 7835-7839.	1.7	144

#	Article	IF	CITATIONS
55	c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. European Journal of Neuroscience, 2002, 15, 774-778.	1.2	108
56	Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience, 2001, 107, 249-263.	1.1	157
57	Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state. European Journal of Neuroscience, 2000, 12, 2166-2184.	1.2	122
58	c-Fos Expression in GABAergic, Serotonergic, and Other Neurons of the Pontomedullary Reticular Formation and Raphe after Paradoxical Sleep Deprivation and Recovery. Journal of Neuroscience, 2000, 20, 4669-4679.	1.7	113
59	Discharge Profiles of Juxtacellularly Labeled and Immunohistochemically Identified GABAergic Basal Forebrain Neurons Recorded in Association with the Electroencephalogram in Anesthetized Rats. Journal of Neuroscience, 2000, 20, 9252-9263.	1.7	142
60	Discharge Properties of Juxtacellularly Labeled and Immunohistochemically Identified Cholinergic Basal Forebrain Neurons Recorded in Association with the Electroencephalogram in Anesthetized Rats. Journal of Neuroscience, 2000, 20, 1505-1518.	1.7	162
61	Neurotensin-Induced Bursting of Cholinergic Basal Forebrain Neurons Promotes γ and θ Cortical Activity Together with Waking and Paradoxical Sleep. Journal of Neuroscience, 2000, 20, 8452-8461.	1.7	124
62	The interpretation of physiology. Behavioral and Brain Sciences, 2000, 23, 955-956.	0.4	5
63	Differential c-Fos Expression in Cholinergic, Monoaminergic, and GABAergic Cell Groups of the Pontomesencephalic Tegmentum after Paradoxical Sleep Deprivation and Recovery. Journal of Neuroscience, 1999, 19, 3057-3072.	1.7	259
64	Pharmacological characterization and differentiation of non-cholinergic nucleus basalis neurons in vitro. NeuroReport, 1998, 9, 61-65.	0.6	36
65	Differential Modulation of High-Frequency γ-Electroencephalogram Activity and Sleep–Wake State by Noradrenaline and Serotonin Microinjections into the Region of Cholinergic Basalis Neurons. Journal of Neuroscience, 1998, 18, 2653-2666.	1.7	258
66	GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. Journal of Comparative Neurology, 1997, 383, 163-177.	0.9	296
67	GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat., 1997, 383, 163.		1
68	GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. Journal of Comparative Neurology, 1997, 383, 163-177.	0.9	9
69	Differential Oscillatory Properties of Cholinergic and Non-cholinergic Nucleus Basalis Neurons in Guinea Pig Brain Slice. European Journal of Neuroscience, 1996, 8, 169-182.	1.2	87
70	GABAergic neurons in the rat pontomesencephalic tegmentum: Codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. Journal of Comparative Neurology, 1995, 363, 177-196.	0.9	315
71	Projections of GABAergic and cholinergic basal forebrain and GABAergic preoptic-anterior hypothalamic neurons to the posterior lateral hypothalamus of the rat. Journal of Comparative Neurology, 1994, 339, 251-268.	0.9	168
72	Codistribution of GABA- with acetylcholine-synthesizing neurons in the basal forebrain of the rat. Journal of Comparative Neurology, 1993, 329, 438-457.	0.9	363

#	Article	IF	CITATIONS
73	Chapter 5: The organization of central cholinergic systems and their functional importance in sleep-waking states. Progress in Brain Research, 1993, 98, 61-71.	0.9	199
74	GABA-synthesizing neurons in the medulla: Their relationship to serotonin-containing and spinally projecting neurons in the rat. Journal of Comparative Neurology, 1991, 313, 349-367.	0.9	116
75	Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. Journal of Comparative Neurology, 1990, 295, 485-514.	0.9	176
76	Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Research, 1988, 458, 285-302.	1.1	428
77	Distribution of acetylcholine and catecholamine neurons in the cat brainstem: A choline acetyltransferase and tyrosine hydroxylase immunohistochemical study. Journal of Comparative Neurology, 1987, 261, 15-32.	0.9	275
78	Modification of Paradoxical Sleep Following Transections of the Reticular Formation at the Pontomedullary Junction. Sleep, 1986, 9, 1-23.	0.6	96
79	The need for a new model of sleep cycle generation. Behavioral and Brain Sciences, 1986, 9, 409-411.	0.4	2
80	The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. Journal of Comparative Neurology, 1985, 242, 56-92.	0.9	914
81	Computer graphics analysis of sleep-wakefulness state changes after pontine lesions. Brain Research Bulletin, 1984, 13, 53-68.	1.4	71
82	Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. Journal of Comparative Neurology, 1983, 215, 382-396.	0.9	290
83	Understanding the physiological correlates of a behavioral state as a constellation of events. Behavioral and Brain Sciences, 1981, 4, 482-483.	0.4	2
84	Toward an understanding of the basic mechanisms of the sleep-waking cycle. Behavioral and Brain Sciences, 1978, 1, 495-495.	0.4	9
85	Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Research, 1977, 127, 23-53.	1.1	818
86	Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Research, 1977, 124, 473-496.	1.1	312
87	The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Research, 1973, 58, 157-177.	1.1	252