## Soumitesh Chakravorty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238562/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria.<br>Journal of Microbiological Methods, 2007, 69, 330-339.                                                                                                                                                                    | 1.6  | 876       |
| 2  | The New Xpert MTB/RIF Ultra: Improving Detection of <i>Mycobacterium tuberculosis</i> and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing. MBio, 2017, 8, .                                                                                                                                             | 4.1  | 431       |
| 3  | Multicenter Evaluation of the Cepheid Xpert Xpress SARS-CoV-2 Test. Journal of Clinical Microbiology, 2020, 58, .                                                                                                                                                                                                             | 3.9  | 146       |
| 4  | Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis. New England Journal of Medicine, 2017, 377, 1043-1054.                                                                                                                                                                                             | 27.0 | 129       |
| 5  | Rapid Universal Identification of Bacterial Pathogens from Clinical Cultures by Using a Novel Sloppy<br>Molecular Beacon Melting Temperature Signature Technique. Journal of Clinical Microbiology, 2010,<br>48, 258-267.                                                                                                     | 3.9  | 48        |
| 6  | Rapid Detection of Fluoroquinolone-Resistant and Heteroresistant Mycobacterium tuberculosis by<br>Use of Sloppy Molecular Beacons and Dual Melting-Temperature Codes in a Real-Time PCR Assay.<br>Journal of Clinical Microbiology, 2011, 49, 932-940.                                                                        | 3.9  | 48        |
| 7  | A Simple Reverse Transcriptase PCR Melting-Temperature Assay To Rapidly Screen for Widely<br>Circulating SARS-CoV-2 Variants. Journal of Clinical Microbiology, 2021, 59, e0084521.                                                                                                                                           | 3.9  | 48        |
| 8  | Detection of Isoniazid-, Fluoroquinolone-, Amikacin-, and Kanamycin-Resistant Tuberculosis in an<br>Automated, Multiplexed 10-Color Assay Suitable for Point-of-Care Use. Journal of Clinical<br>Microbiology, 2017, 55, 183-198.                                                                                             | 3.9  | 47        |
| 9  | Xpert MTB/XDR: a 10-Color Reflex Assay Suitable for Point-of-Care Settings To Detect Isoniazid,<br>Fluoroquinolone, and Second-Line-Injectable-Drug Resistance Directly from Mycobacterium<br>tuberculosis-Positive Sputum. Journal of Clinical Microbiology, 2021, 59, .                                                     | 3.9  | 43        |
| 10 | Rapid, High-Throughput Detection of Rifampin Resistance and Heteroresistance in Mycobacterium<br>tuberculosis by Use of Sloppy Molecular Beacon Melting Temperature Coding. Journal of Clinical<br>Microbiology, 2012, 50, 2194-2202.                                                                                         | 3.9  | 38        |
| 11 | Importance of Cough and M. tuberculosis Strain Type as Risks for Increased Transmission within<br>Households. PLoS ONE, 2014, 9, e100984.                                                                                                                                                                                     | 2.5  | 32        |
| 12 | Genotypic Susceptibility Testing of Mycobacterium tuberculosis Isolates for Amikacin and Kanamycin<br>Resistance by Use of a Rapid Sloppy Molecular Beacon-Based Assay Identifies More Cases of Low-Level<br>Drug Resistance than Phenotypic Lowenstein-Jensen Testing. Journal of Clinical Microbiology, 2015, 53,<br>43-51. | 3.9  | 32        |
| 13 | Rifampin Resistance, Beijing-W Clade-Single Nucleotide Polymorphism Cluster Group 2 Phylogeny, and the Rv2629 191-C Allele in <i>Mycobacterium tuberculosis</i> Strains. Journal of Clinical Microbiology, 2008, 46, 2555-2560.                                                                                               | 3.9  | 23        |
| 14 | Automatic Identification of Individual <i>rpoB</i> Gene Mutations Responsible for Rifampin Resistance<br>in Mycobacterium tuberculosis by Use of Melting Temperature Signatures Generated by the Xpert<br>MTB/RIF Ultra Assay. Journal of Clinical Microbiology, 2019, 58, .                                                  | 3.9  | 18        |
| 15 | Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature<br>Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone<br>and Aminoglycoside Resistance. PLoS ONE, 2015, 10, e0126257.                                                             | 2.5  | 12        |
| 16 | Inactivation of SARS-CoV-2 virus in saliva using a guanidium based transport medium suitable for<br>RT-PCR diagnostic assays. PLoS ONE, 2021, 16, e0252687.                                                                                                                                                                   | 2.5  | 11        |
| 17 | Sensitive Detection of Francisella tularensis Directly from Whole Blood by Use of the GeneXpert System. Journal of Clinical Microbiology, 2017, 55, 291-301.                                                                                                                                                                  | 3.9  | 10        |
| 18 | Detection of drug resistant Mycobacterium tuberculosis by high-throughput sequencing of DNA isolated from acid fast bacilli smears. PLoS ONE, 2020, 15, e0232343.                                                                                                                                                             | 2.5  | 7         |

| #  | Article                                                                                                                                                                      | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Tuberculosis Diagnostics in the New Millennium: Role in TB Identification and Control. Tuberculosis<br>Research and Treatment, 2012, 2012, 1-2.                              | 0.6  | 6         |
| 20 | Molecular Drug-Susceptibility Test for Tuberculosis. New England Journal of Medicine, 2017, 377, 2403-2404.                                                                  | 27.0 | 6         |
| 21 | A snapshot of the predominant single nucleotide polymorphism cluster groups of Mycobacterium tuberculosis clinical isolates in Delhi, India. Tuberculosis, 2016, 100, 72-81. | 1.9  | 5         |
| 22 | Sample collection and transport strategies to enhance yield, accessibility, and biosafety of COVID-19<br>RT-PCR testing. Journal of Medical Microbiology, 2021, 70, .        | 1.8  | 3         |