
Nicholas R J Gascoigne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2385081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Themis is indispensable for IL-2 and IL-15 signaling in T cells. Science Signaling, 2022, 15, eabi9983.	3.6	11
2	Themis regulates metabolic signaling and effector functions in CD4+ T cells by controlling NFAT nuclear translocation. Cellular and Molecular Immunology, 2021, 18, 2249-2261.	10.5	10
3	New insights into the interactions between Blastocystis, the gut microbiota, and host immunity. PLoS Pathogens, 2021, 17, e1009253.	4.7	76
4	Targeting CAR to the Peptide-MHC Complex Reveals Distinct Signaling Compared to That of TCR in a Jurkat T Cell Model. Cancers, 2021, 13, 867.	3.7	9
5	DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nature Communications, 2021, 12, 2284.	12.8	28
6	Expansion of an Unusual Virtual Memory CD8+ Subpopulation Bearing Vα3.2 TCR in Themis-Deficient Mice. Frontiers in Immunology, 2021, 12, 644483.	4.8	5
7	CXCR4 signaling controls dendritic cell location and activation at steady state and in inflammation. Blood, 2021, 137, 2770-2784.	1.4	16
8	Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling. Science, 2021, 372, .	12.6	53
9	Single Molecule Force Spectroscopy Reveals Distinctions in Key Biophysical Parameters of αβ T-Cell Receptors Compared with Chimeric Antigen Receptors Directed at the Same Ligand. Journal of Physical Chemistry Letters, 2021, 12, 7566-7573.	4.6	15
10	A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity, 2021, 54, 2101-2116.e6.	14.3	99
11	Non-Stimulatory pMHC Enhance CD8 T Cell Effector Functions by Recruiting Coreceptor-Bound Lck. Frontiers in Immunology, 2021, 12, 721722.	4.8	0
12	T cell receptor and cytokine signal integration in CD8+ T cells is mediated by the protein Themis. Nature Immunology, 2020, 21, 186-198.	14.5	34
13	The Ups and Downs of Metabolism during the Lifespan of a T Cell. International Journal of Molecular Sciences, 2020, 21, 7972.	4.1	21
14	Defining the structural basis for human leukocyte antigen reactivity in clinical transplantation. Scientific Reports, 2020, 10, 18397.	3.3	6
15	Taming the Sentinels: Microbiome-Derived Metabolites and Polarization of T Cells. International Journal of Molecular Sciences, 2020, 21, 7740.	4.1	12
16	Single Cell Analysis of Drug Susceptibility of Mycobacterium abscessus during Macrophage Infection. Antibiotics, 2020, 9, 711.	3.7	3
17	Combinatorial Single-Cell Analyses of Granulocyte-Monocyte Progenitor Heterogeneity Reveals an Early Uni-potent Neutrophil Progenitor. Immunity, 2020, 53, 303-318.e5.	14.3	153
18	Lck bound to coreceptor is less active than free Lck. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15809-15817.	7.1	29

#	Article	IF	CITATIONS
19	Reprint of "Multi-modal image cytometry approach – From dynamic to whole organ imaging― Cellular Immunology, 2020, 350, 104086.	3.0	1
20	Autoimmune responses and inflammation in type 2 diabetes. Journal of Leukocyte Biology, 2020, 107, 739-748.	3.3	41
21	Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cellular and Molecular Immunology, 2020, 17, 600-612.	10.5	82
22	Efficient aortic lymphatic drainage is necessary for atherosclerosis regression induced by ezetimibe. Science Advances, 2020, 6, .	10.3	24
23	A Dual Inhibitor of Cdc7/Cdk9 Potently Suppresses T Cell Activation. Frontiers in Immunology, 2019, 10, 1718.	4.8	10
24	Multi-modal image cytometry approach – From dynamic to whole organ imaging. Cellular Immunology, 2019, 344, 103946.	3.0	3
25	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
26	Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends in Immunology, 2019, 40, 598-612.	6.8	67
27	Use of Single Chain MHC Technology to Investigate Co-agonism in Human CD8+ T Cell Activation. Journal of Visualized Experiments, 2019, , .	0.3	6
28	Defining the structural basis for human alloantibody binding to human leukocyte antigen allele HLA-A*11:01. Nature Communications, 2019, 10, 893.	12.8	26
29	Identification of Mediators of T-cell Receptor Signaling via the Screening of Chemical Inhibitor Libraries. Journal of Visualized Experiments, 2019, , .	0.3	8
30	Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity, 2018, 48, 364-379.e8.	14.3	450
31	Monomeric TCRs drive T cell antigen recognition. Nature Immunology, 2018, 19, 487-496.	14.5	111
32	A high content imaging flow cytometry approach to study mitochondria in T cells: MitoTracker Green FM dye concentration optimization. Methods, 2018, 134-135, 11-19.	3.8	25
33	Themis-associated phosphatase activity controls signaling in T cell development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11331-E11340.	7.1	21
34	Streamlining volumetric multi-channel image cytometry using hue-saturation-brightness-based surface creation. Communications Biology, 2018, 1, 136.	4.4	8
35	Nonstimulatory peptide–MHC enhances human T-cell antigen-specific responses by amplifying proximal TCR signaling. Nature Communications, 2018, 9, 2716.	12.8	12
36	Development of a screening strategy for new modulators of T cell receptor signaling and T cell activation. Scientific Reports, 2018, 8, 10046.	3.3	15

#	Article	IF	CITATIONS
37	CD8+ T cells have commitment issues. Nature Immunology, 2018, 19, 797-799.	14.5	3
38	Thymic Origins of T Cell Receptor Alloreactivity. Transplantation, 2017, 101, 1535-1541.	1.0	14
39	CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells. Frontiers in Immunology, 2017, 8, 1484.	4.8	37
40	TCR–like antibodies mediate complement and antibody-dependent cellular cytotoxicity against Epstein-Barr virus–transformed B lymphoblastoid cells expressing different HLA-A*02 microvariants. Scientific Reports, 2017, 7, 9923.	3.3	14
41	Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition. Frontiers in Immunology, 2016, 7, 24.	4.8	44
42	Targeting Epstein-Barr virus–transformed B lymphoblastoid cells using antibodies with T-cell receptor–like specificities. Blood, 2016, 128, 1396-1407.	1.4	17
43	TCR Signal Strength and T Cell Development. Annual Review of Cell and Developmental Biology, 2016, 32, 327-348.	9.4	127
44	SHP1â€ing thymic selection. European Journal of Immunology, 2016, 46, 2091-2094.	2.9	3
45	Vive la peptide différence!. Nature Immunology, 2016, 17, 896-898.	14.5	0
46	Inducing Ischemia-reperfusion Injury in the Mouse Ear Skin for Intravital Multiphoton Imaging of Immune Responses. Journal of Visualized Experiments, 2016, , .	0.3	9
47	Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. Journal of Investigative Dermatology, 2016, 136, 416-424.	0.7	62
48	Identification of a novel lymphoid population in the murine epidermis. Scientific Reports, 2015, 5, 12554.	3.3	13
49	Visualization of bone marrow monocyte mobilization using <i>Cx3cr1gfp/+Flt3Lâ^'/â^'</i> reporter mouse by multiphoton intravital microscopy. Journal of Leukocyte Biology, 2015, 97, 611-619.	3.3	15
50	A <scp>THEMIS</scp> : <scp>SHP</scp> 1 complex promotes Tâ€cell survival. EMBO Journal, 2015, 34, 393-409.	7.8	84
51	THEMIS: a critical TCR signal regulator for ligand discrimination. Current Opinion in Immunology, 2015, 33, 86-92.	5.5	30
52	Virus-specific T lymphocytes home to the skin during natural dengue infection. Science Translational Medicine, 2015, 7, 278ra35.	12.4	83
53	Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nature Communications, 2014, 5, 5624.	12.8	62
54	Tolerance lies in the timing. Nature, 2014, 515, 502-503.	27.8	0

#	Article	IF	CITATIONS
55	Costimulatory Molecule DNAM-1 Is Essential for Optimal Differentiation of Memory Natural Killer Cells during Mouse Cytomegalovirus Infection. Immunity, 2014, 40, 225-234.	14.3	148
56	Protein kinase C-Î∙ controls CTLA-4–mediated regulatory T cell function. Nature Immunology, 2014, 15, 465-472.	14.5	118
57	Fine-tuning T cell receptor signaling to control T cell development. Trends in Immunology, 2014, 35, 311-318.	6.8	67
58	Allelic Exclusion of TCR α-Chains upon Severe Restriction of Vα Repertoire. PLoS ONE, 2014, 9, e114320.	2.5	10
59	Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide–MHC. Journal of Experimental Medicine, 2013, 210, 1807-1821.	8.5	32
60	Themis sets the signal threshold for positive and negative selection in T-cell development. Nature, 2013, 504, 441-445.	27.8	99
61	GRB2-Mediated Recruitment of THEMIS to LAT Is Essential for Thymocyte Development. Journal of Immunology, 2013, 190, 3749-3756.	0.8	71
62	Too Fast to Die. Science Signaling, 2013, 6, pe33.	3.6	1
63	In Silico Modeling of Itk Activation Kinetics in Thymocytes Suggests Competing Positive and Negative IP4 Mediated Feedbacks Increase Robustness. PLoS ONE, 2013, 8, e73937.	2.5	8
64	The Role of Protein Kinase Cî· in T Cell Biology. Frontiers in Immunology, 2012, 3, 177.	4.8	11
65	Protein kinase Cî-, an emerging player in T-cell biology. Cell Cycle, 2012, 11, 837-838.	2.6	3
66	Tespa1: another gatekeeper for positive selection. Nature Immunology, 2012, 13, 530-532.	14.5	7
67	Intravital multiphoton imaging of immune responses in the mouse ear skin. Nature Protocols, 2012, 7, 221-234.	12.0	162
68	Negative Selection Assay Based on Stimulation of T Cell Receptor Transgenic Thymocytes with Peptide-MHC Tetramers. PLoS ONE, 2012, 7, e43191.	2.5	14
69	T Cell Receptor (TCR)-induced Tyrosine Phosphorylation Dynamics Identifies THEMIS as a New TCR Signalosome Component. Journal of Biological Chemistry, 2011, 286, 7535-7547.	3.4	75
70	Initiation of TCR Phosphorylation and Signal Transduction. Frontiers in Immunology, 2011, 2, 72.	4.8	24
71	CD8αα and â€Î±Î² isotypes are equally recruited to the immunological synapse through their ability to bind to MHC class I. EMBO Reports, 2011, 12, 1251-1256.	4.5	13
72	Signaling in thymic selection. Current Opinion in Immunology, 2011, 23, 207-212.	5.5	96

#	Article	IF	CITATIONS
73	T Cell Receptor Structures: Three for the Price of One. Immunity, 2011, 35, 1-3.	14.3	13
74	Protein Kinase C η Is Required for T Cell Activation and Homeostatic Proliferation. Science Signaling, 2011, 4, ra84.	3.6	50
75	CD8+ thymocyte differentiation: T cell two-step. Nature Immunology, 2010, 11, 189-190.	14.5	4
76	Co-Receptors and Recognition of Self at the Immunological Synapse. Current Topics in Microbiology and Immunology, 2010, 340, 171-189.	1.1	13
77	Spatiotemporal Patterning During T Cell Activation Is Highly Diverse. Science Signaling, 2009, 2, ra15.	3.6	88
78	Multiplexed labeling of samples with cell tracking dyes facilitates rapid and accurate internally controlled calcium flux measurement by flow cytometry. Journal of Immunological Methods, 2009, 350, 194-199.	1.4	16
79	Themis controls thymocyte selection through regulation of T cell antigen receptor–mediated signaling. Nature Immunology, 2009, 10, 848-856.	14.5	122
80	Do T cells need endogenous peptides for activation?. Nature Reviews Immunology, 2008, 8, 895-900.	22.7	25
81	The Lupus-Related Lmb3 Locus Contains a Disease-Suppressing Coronin-1A Gene Mutation. Immunity, 2008, 28, 40-51.	14.3	95
82	The T Cell Receptor's α-Chain Connecting Peptide Motif Promotes Close Approximation of the CD8 Coreceptor Allowing Efficient Signal Initiation. Journal of Immunology, 2008, 180, 8211-8221.	0.8	29
83	T cell activation enhancement by endogenous pMHC acts for both weak and strong agonists but varies with differentiation state. Journal of Experimental Medicine, 2007, 204, 2747-2757.	8.5	39
84	Role of the T cell receptor alpha chain in the development and phenotype of naturally arising CD4CD25 T cells. Molecular Immunology, 2006, 43, 246-254.	2.2	8
85	Altered Peptide Ligands Induce Delayed CD8-T Cell Receptor Interaction—a Role for CD8 in Distinguishing Antigen Quality. Immunity, 2006, 25, 203-211.	14.3	96
86	Spectral Shift of Fluorescent Dye FM4-64 Reveals Distinct Microenvironment of Nuclear Envelope in Living Cells. Traffic, 2006, 7, 1607-1613.	2.7	17
87	Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature, 2006, 444, 724-729.	27.8	531
88	Nonstimulatory peptides contribute to antigen-induced CD8–T cell receptor interaction at the immunological synapse. Nature Immunology, 2005, 6, 785-792.	14.5	120
89	Thymocyte stimulation by anti-TCR-β, but not by anti-TCR-α, leads to induction of developmental transcription program. Journal of Leukocyte Biology, 2005, 77, 830-841.	3.3	12
90	A Pivotal Role for the Multifunctional Calcium/Calmodulin-Dependent Protein Kinase II in T Cells: From Activation to Unresponsiveness. Journal of Immunology, 2005, 174, 5583-5592.	0.8	62

#	Article	IF	CITATIONS
91	Distinct Footprints of TCR Engagement with Highly Homologous Ligands. Journal of Immunology, 2004, 172, 7466-7475.	0.8	7
92	TCR affinity and negative regulation limit autoimmunity. Nature Medicine, 2004, 10, 1234-1239.	30.7	138
93	Molecular interactions at the T cell–antigen-presenting cell interface. Current Opinion in Immunology, 2004, 16, 114-119.	5.5	57
94	Using live FRET imaging to reveal early protein–protein interactions during T cell activation. Current Opinion in Immunology, 2004, 16, 418-427.	5.5	55
95	Photobleaching-Corrected FRET Efficiency Imaging of Live Cells. Biophysical Journal, 2004, 86, 3923-3939.	0.5	358
96	Surprisingly minor influence of TRAV11 (Vα14) polymorphism on NK T-receptor mCD1/α-galactosylceramide binding kinetics. Immunogenetics, 2003, 54, 874-883.	2.4	12
97	Allelic Exclusion of the TCR α-Chain Is an Active Process Requiring TCR-Mediated Signaling and c-Cbl. Journal of Immunology, 2003, 170, 4557-4563.	0.8	33
98	TCR Binding Kinetics Measured with MHC Class I Tetramers Reveal a Positive Selecting Peptide with Relatively High Affinity for TCR. Journal of Immunology, 2003, 171, 2427-2434.	0.8	53
99	CD28 plays a critical role in the segregation of PKCÂ within the immunologic synapse. Proceedings of the United States of America, 2002, 99, 9369-9373.	7.1	138
100	The VÎ \pm 14 NKT Cell TCR Exhibits High-Affinity Binding to a Glycolipid/CD1d Complex. Journal of Immunology, 2002, 169, 1340-1348.	0.8	119
101	Inhibition of T Cell Receptor-Coreceptor Interactions by Antagonist Ligands Visualized by Live FRET Imaging of the T-Hybridoma Immunological Synapse. Immunity, 2002, 16, 521-534.	14.3	124
102	T-cell Differentiation: MHC Class I's Sweet Tooth Lost on Maturity. Current Biology, 2002, 12, R99-R101.	3.9	9
103	Hijacking and exploitation of IL-10 by intracellular pathogens. Trends in Microbiology, 2001, 9, 86-92.	7.7	292
104	The Impact of Duration versus Extent of TCR Occupancy on T Cell Activation. Immunity, 2001, 15, 59-70.	14.3	218
105	The mouse Supt16h/Fact140 gene, encoding part of the FACT chromatin transcription complex, maps close to Tcra and is highly expressed in thymus. Mammalian Genome, 2001, 12, 664-667.	2.2	3
106	Positive selection in a Schnurri. Nature Immunology, 2001, 2, 989-991.	14.5	6
107	Immune Checkpoints in Viral Latency. Annual Review of Microbiology, 2001, 55, 531-560.	7.3	21
108	T-cell receptor binding kinetics in T-cell development and activation. Expert Reviews in Molecular Medicine, 2001, 3, 1-17.	3.9	90

#	Article	IF	CITATIONS
109	T Cell Receptor Binding Kinetics and Special Role of $\hat{VI\pm}$ in T Cell Development and Activation. Immunologic Research, 2000, 21, 225-232.	2.9	5
110	Qualitative and Quantitative Differences in T Cell Receptor Binding of Agonist and Antagonist Ligands. Immunity, 1999, 10, 227-237.	14.3	216
111	Allelic exclusion of the T cell receptor α-chain: developmental regulation of a post-translational event. Seminars in Immunology, 1999, 11, 337-347.	5.6	33
112	Thymic skewing of the CD4/CD8 ratio maps with the T-cell receptor α-chain locus. Current Biology, 1998, 8, 701-S3.	3.9	49
113	Preferential expression of TCR Vα regions in CD4/CD8 subsets: class discrimination or co-receptor recognition?. Trends in Immunology, 1998, 19, 276-282.	7.5	47
114	Natural killer cells: Influence of the home environment. Current Biology, 1997, 7, R624-R626.	3.9	0
115	Selection of phage-displayed superantigen by binding to cell-surface MHC class II. Journal of Immunological Methods, 1997, 204, 33-41.	1.4	2
116	Corrigendum to ``Selection of phage-displayed superantigen by binding to cell-surface MHC class II'' [J. Immunol. Methods 204 (1997) 33–41]. Journal of Immunological Methods, 1997, 210, 251.	1.4	0
117	T-cell-receptor affinity and thymocyte positive selection. Nature, 1996, 381, 616-620.	27.8	584
118	Selection of TCR Vα by MHC class II predicts superantigen reactivity. International Immunology, 1995, 7, 1311-1318.	4.0	7
119	Allelic exclusion of mouse T cell receptor α chains occurs at the time of thymocyte TCR up-regulation. Immunity, 1995, 3, 449-458.	14.3	39
120	T-cell activation by superantigens. Current Opinion in Immunology, 1994, 6, 467-475.	5.5	74
121	T-Cell Receptor beta-Chain Binding to Enterotoxin Superantigens. Immunological Reviews, 1993, 131, 61-78.	6.0	41
122	Interaction of the T cell receptor with bacterial superantigens. Seminars in Immunology, 1993, 5, 13-21.	5.6	27
123	Interplay between superantigens and the immune system. Journal of Leukocyte Biology, 1993, 54, 495-503.	3.3	29
124	Chromosome 14 in B10.A(18R) mice is recombinant and includes Tcra-V a alleles. Immunogenetics, 1992, 35, 190-198.	2.4	4
125	Enterotoxin residues determining T-cell receptor V \hat{I}^2 binding specificity. Nature, 1992, 359, 841-843.	27.8	87
126	Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature, 1989, 341, 746-749.	27.8	609

#	Article	IF	CITATIONS
127	T-cell receptor gene structure and function. Cellular Immunology, 1986, 99, 24-28.	3.0	3
128	Variability and repertoire size of T-cell receptor VÎ \pm gene segments. Nature, 1985, 317, 430-434.	27.8	145
129	T helper cell lines that augment in vivo cytotoxic T-cell responses to minor alloantigens. Cellular Immunology, 1984, 83, 302-312.	3.0	9
130	Somatic recombination in a murine T-cell receptor gene. Nature, 1984, 309, 322-326.	27.8	448
131	Genomic organization and sequence of T-cell receptor β-chain constant- and joining-region genes. Nature, 1984, 310, 387-391.	27.8	386
132	A Murine T Cell Receptor Gene Complex: Isolation, Structure and Rearrangement. Immunological Reviews, 1984, 81, 235-258.	6.0	87
133	Suppression of the cytotoxic T cell response to minor alloantigensin vivo Linked recognition by suppressor T cells. European Journal of Immunology, 1984, 14, 210-215.	2.9	19
134	Suppression of the cytotoxic T cell response to minor alloantigensin vivo II. Fine specificity of suppressor T cells and lack of restriction by immunoglobulin heavy chain-linked gene products. European Journal of Immunology, 1984, 14, 677-680.	2.9	5