
Dario Campana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2385034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase I study of expanded natural killer cells in combination with cetuximab for recurrent/metastatic nasopharyngeal carcinoma. Cancer Immunology, Immunotherapy, 2022, 71, 2277-2286.	4.2	11
2	Clinical Significance of Novel Subtypes of Acute Lymphoblastic Leukemia in the Context of Minimal Residual Disease–Directed Therapy. Blood Cancer Discovery, 2021, 2, 326-337.	5.0	71
3	Clofarabine-Based Chemotherapy for KMT2Ar Infantile Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3406-3406.	1.4	1
4	NK cells for cancer immunotherapy. Nature Reviews Drug Discovery, 2020, 19, 200-218.	46.4	709
5	Reduced–dose intensity therapy for pediatric lymphoblastic leukemia: long-term results of the Recife RELLA05 pilot study. Blood, 2020, 135, 1458-1466.	1.4	39
6	Phase I Trial of Expanded, Activated Autologous NK-cell Infusions with Trastuzumab in Patients with HER2-positive Cancers. Clinical Cancer Research, 2020, 26, 4494-4502.	7.0	38
7	Specific stimulation of T lymphocytes with erythropoietin for adoptive immunotherapy. Blood, 2020, 135, 668-679.	1.4	7
8	Chimeric antigen receptor–T cells with cytokine neutralizing capacity. Blood Advances, 2020, 4, 1419-1431.	5.2	27
9	Engineering of Natural Killer Cells for Clinical Application. Methods in Molecular Biology, 2020, 2097, 91-105.	0.9	6
10	Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. Journal of Clinical Investigation, 2019, 129, 2094-2106.	8.2	225
11	Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight, 2018, 3, .	5.0	60
12	A novel λ integrase-mediated seamless vector transgenesis platform for therapeutic protein expression. Nucleic Acids Research, 2018, 46, e99-e99.	14.5	7
13	A novel method to generate T-cell receptor–deficient chimeric antigen receptor T cells. Blood Advances, 2018, 2, 517-528.	5.2	56
14	Minimal residual disease–guided therapy in childhood acute lymphoblastic leukemia. Blood, 2017, 129, 1913-1918.	1.4	106
15	Concordance of two approaches in monitoring of minimal residual disease in B-precursor acute lymphoblastic leukemia: Fusion transcripts and leukemia-associated immunophenotypes. Journal of the Formosan Medical Association, 2017, 116, 774-781.	1.7	17
16	Improved outcomes for myeloid leukemia of Down syndrome: a report from the Children's Oncology Group AAML0431 trial. Blood, 2017, 129, 3304-3313.	1.4	71
17	Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Advances, 2017, 1, 2348-2360.	5.2	117
18	Minimal residual disease in pediatric ALL. Oncotarget, 2017, 8, 78251-78252.	1.8	5

#	Article	IF	CITATIONS
19	Expanded and armed natural killer cells for cancer treatment. Cytotherapy, 2016, 18, 1422-1434.	0.7	63
20	Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion. Cancer Immunology, Immunotherapy, 2016, 65, 1047-1059.	4.2	20
21	Expanded and Activated Natural Killer Cells for Immunotherapy of Hepatocellular Carcinoma. Cancer Immunology Research, 2016, 4, 574-581.	3.4	76
22	Outcome of children with hypodiploid ALL treated with risk-directed therapy based on MRD levels. Blood, 2015, 126, 2896-2899.	1.4	76
23	Ex Vivo–expanded Natural Killer Cells Demonstrate Robust Proliferation In Vivo in High-risk Relapsed Multiple Myeloma Patients. Journal of Immunotherapy, 2015, 38, 24-36.	2.4	154
24	Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncology, The, 2015, 16, 465-474.	10.7	177
25	A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing. Oncotarget, 2015, 6, 24884-24894.	1.8	61
26	Autologous Activated and Expanded Natural Killer Cells Are Safe and Clinically Actives in Multiple Myeloma. Blood, 2015, 126, 1856-1856.	1.4	0
27	4-1BB Chimeric Antigen Receptors. Cancer Journal (Sudbury, Mass), 2014, 20, 134-140.	2.0	48
28	Therapeutic potential of highly cytotoxic natural killer cells for gastric cancer. International Journal of Cancer, 2014, 135, 1390-1398.	5.1	44
29	Autonomous growth and increased cytotoxicity of natural killer cells expressing membrane-bound interleukin-15. Blood, 2014, 124, 1081-1088.	1.4	128
30	T Lymphocytes Expressing a CD16 Signaling Receptor Exert Antibody-Dependent Cancer Cell Killing. Cancer Research, 2014, 74, 93-103.	0.9	171
31	Gemtuzumab ozogamicin can reduce minimal residual disease in patients with childhood acute myeloid leukemia. Cancer, 2013, 119, 4036-4043.	4.1	41
32	A Chimeric Receptor with NKG2D Specificity Enhances Natural Killer Cell Activation and Killing of Tumor Cells. Cancer Research, 2013, 73, 1777-1786.	0.9	262
33	Natural Killer Cell Reprogramming with Chimeric Immune Receptors. Methods in Molecular Biology, 2013, 969, 203-220.	0.9	23
34	Clinical significance of minimal residual disease in patients with acute leukaemia undergoing haematopoietic stem cell transplantation. British Journal of Haematology, 2013, 162, 147-161.	2.5	80
35	Increasing the antineoplastic potential of natural killer cells with a chimeric receptor activated by NKG2D ligands. Oncolmmunology, 2013, 2, e24899.	4.6	0
36	Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Current Opinion in Hematology, 2012, 19, 313-318.	2.5	84

#	Article	IF	CITATIONS
37	Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica, 2012, 97, 1348-1356.	3.5	97
38	Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood, 2012, 120, 5173-5180.	1.4	368
39	Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood, 2012, 120, 468-472.	1.4	176
40	Comparative Analysis of Different Approaches to Measure Treatment Response in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2012, 30, 3625-3632.	1.6	188
41	Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy, 2012, 14, 1131-1143.	0.7	163
42	A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy, 2012, 14, 830-840.	0.7	149
43	Measurements of treatment response in childhood acute leukemia. The Korean Journal of Hematology, 2012, 47, 245.	0.7	19
44	Should Minimal Residual Disease Monitoring in Acute Lymphoblastic Leukemia be Standard of Care?. Current Hematologic Malignancy Reports, 2012, 7, 170-177.	2.3	20
45	Combination chemotherapy with clofarabine, cyclophosphamide, and etoposide in children with refractory or relapsed haematological malignancies. British Journal of Haematology, 2012, 156, 275-279.	2.5	16
46	Genome-Wide Association Study Identifies Germline Polymorphisms Associated with Relapse of Childhood Acute Lymphoblastic Leukemia. Blood, 2012, 120, 878-878.	1.4	0
47	New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood, 2011, 117, 6267-6276.	1.4	273
48	High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood, 2011, 118, 223-230.	1.4	157
49	Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nature Genetics, 2011, 43, 237-241.	21.4	239
50	Phase I Pharmacokinetic and Pharmacodynamic Study of the Multikinase Inhibitor Sorafenib in Combination With Clofarabine and Cytarabine in Pediatric Relapsed/Refractory Leukemia. Journal of Clinical Oncology, 2011, 29, 3293-3300.	1.6	142
51	Highly Sensitive Detection of Minimal Residual Disease in Acute Lymphoblastic Leukemia Using Next-Generation Sequencing of Immunoglobulin Heavy Chain Variable Region. Blood, 2011, 118, 2540-2540.	1.4	4
52	Autologous Expanded Natural Killer Cells As a New Therapeutic Option for High-Risk Myeloma. Blood, 2011, 118, 2918-2918.	1.4	8
53	Systemic Exposure to Dexamethasone and Asparaginase Affects Risk of Relapse in Children with Acute Lymphoblastic Leukemia. Blood, 2011, 118, 2550-2550.	1.4	0
54	Discovery of Novel Recurrent Mutations in Childhood Early T-Cell Precursor Acute Lymphoblastic Leukemia by Whole Genome Sequencing - a Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 68-68.	1.4	0

#	Article	IF	CITATIONS
55	Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood, 2010, 115, 4657-4663.	1.4	132
56	Progress of Minimal Residual Disease Studies in Childhood Acute Leukemia. Current Hematologic Malignancy Reports, 2010, 5, 169-176.	2.3	46
57	Cytotoxicity of Activated Natural Killer Cells against Pediatric Solid Tumors. Clinical Cancer Research, 2010, 16, 3901-3909.	7.0	204
58	Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncology, The, 2010, 11, 543-552.	10.7	514
59	Minimal Residual Disease in Acute Lymphoblastic Leukemia. Hematology American Society of Hematology Education Program, 2010, 2010, 7-12.	2.5	152
60	Acquisition, Preparation, and Functional Assessment of Human NK Cells for Adoptive Immunotherapy. Methods in Molecular Biology, 2010, 651, 61-77.	0.9	18
61	Clinical Activity, Pharmacokinetics, and Pharmacodynamics of Sorafenib In Pediatric Acute Myeloid Leukemia Blood, 2010, 116, 1073-1073.	1.4	3
62	Improved Prognosis for Older Adolescents with Acute Lymphoblastic Leukemia. Blood, 2010, 116, 498-498.	1.4	0
63	Targeting the Leukemia-Associated Hypoxic Microenvironment with Hypoxia-Activated Prodrug PR-104. Blood, 2010, 116, 868-868.	1.4	0
64	Excellent Outcome for ETV6/RUNX1-Positive Childhood Acute Lymphoblastic Leukemia (ALL) with Contemporary Therapy. Blood, 2010, 116, 495-495.	1.4	1
65	Genome-wide Interrogation of Germline Genetic Variation Associated With Treatment Response in Childhood Acute Lymphoblastic Leukemia. JAMA - Journal of the American Medical Association, 2009, 301, 393.	7.4	193
66	2B4 (CD244) Signaling by Recombinant Antigen-specific Chimeric Receptors Costimulates Natural Killer Cell Activation to Leukemia and Neuroblastoma Cells. Clinical Cancer Research, 2009, 15, 4857-4866.	7.0	171
67	Replicative potential of human natural killer cells. British Journal of Haematology, 2009, 145, 606-613.	2.5	83
68	Deletion of <i>IKZF1</i> and Prognosis in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2009, 360, 470-480.	27.0	1,260
69	Minimal Residual Disease in Acute Lymphoblastic Leukemia. Seminars in Hematology, 2009, 46, 100-106.	3.4	87
70	Minimal Residual Disease Quantitation in Acute Myeloid Leukemia. Clinical Lymphoma and Myeloma, 2009, 9, S281-S285.	1.4	42
71	Treating Childhood Acute Lymphoblastic Leukemia without Cranial Irradiation. New England Journal of Medicine, 2009, 360, 2730-2741.	27.0	1,059
72	Expansion of Highly Cytotoxic Human Natural Killer Cells for Cancer Cell Therapy. Cancer Research, 2009, 69, 4010-4017.	0.9	526

#	Article	IF	CITATIONS
73	Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncology, The, 2009, 10, 147-156.	10.7	850
74	Role of Minimal Residual Disease Monitoring in Adult and Pediatric Acute Lymphoblastic Leukemia. Hematology/Oncology Clinics of North America, 2009, 23, 1083-1098.	2.2	94
75	Therapeutic Targeting of the Hypoxic Microenvironment in Acute Lymphocytic Leukemia Blood, 2009, 114, 2040-2040.	1.4	4
76	Overcoming Chemotherapy Resistance in Childhood Acute Lymphoblastic Leukemia by Targeting Ion Channels Blood, 2009, 114, 3085-3085.	1.4	1
77	Acute Megakaryoblastic Leukemia (AMKL) in Children without Down Syndrome Blood, 2009, 114, 482-482.	1.4	3
78	Gene Expression Patterns Associated with Cytarabine Pharmacology and Outcome in Pediatric Acute Myeloid Leukemia Blood, 2009, 114, 114-114.	1.4	3
79	Inhibition of Class I PI3K Isoforms Restores the Sensitivity of Acute Myelogenous Leukemia Cells to Multi-Tyrosine Kinase Inhibitors in the Bone Marrow Microenvironment Blood, 2009, 114, 1734-1734.	1.4	0
80	Minimal Residual Disease–Directed Therapy for Childhood Acute Myeloid Leukemia: Results of the AML02 Multicenter Trial Blood, 2009, 114, 16-16.	1.4	0
81	Adoptively Transferred Expanded Natural Killer Cells Inhibit Myeloma Tumor Growth In Vivo Blood, 2009, 114, 953-953.	1.4	1
82	Role of minimal residual disease evaluation in leukemia therapy. Current Hematologic Malignancy Reports, 2008, 3, 155-160.	2.3	3
83	Status of minimal residual disease testing in childhood haematological malignancies. British Journal of Haematology, 2008, 143, 481-489.	2.5	60
84	Molecular Determinants of Treatment Response in Acute Lymphoblastic Leukemia. Hematology American Society of Hematology Education Program, 2008, 2008, 366-373.	2.5	33
85	A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood, 2007, 110, 1271-1277.	1.4	104
86	Monitoring minimal residual disease in pediatric hematologic malignancies. Clinical Advances in Hematology and Oncology, 2007, 5, 876-7, 915.	0.3	1
87	Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood, 2006, 108, 1050-1057.	1.4	98
88	A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood, 2006, 108, 97-102.	1.4	114
89	Minimal residual disease. , 2006, , 679-706.		1
90	Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood, 2005, 106, 376-383.	1.4	569

#	Article	IF	CITATIONS
91	Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. British Journal of Haematology, 2005, 128, 774-782.	2.5	116
92	ZAP-70 tyrosine kinase is constitutively expressed and phosphorylated in B-lineage acute lymphoblastic leukemia cells. Haematologica, 2005, 90, 867.	3.5	0
93	Minimal Residual Disease Studies by Flow Cytometry in Acute Leukemia. Acta Haematologica, 2004, 112, 8-15.	1.4	77
94	Minimal Residual Disease Studies in Acute Leukemia. Pathology Patterns Reviews, 2004, 122, S47-S57.	0.4	12
95	Determination of minimal residual disease in leukaemia patients. British Journal of Haematology, 2003, 121, 823-838.	2.5	133
96	Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. British Journal of Haematology, 2003, 123, 243-252.	2.5	122
97	Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood, 2002, 100, 52-58.	1.4	240
98	Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Practice and Research in Clinical Haematology, 2002, 15, 1-19.	1.7	76
99	Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood, 2002, 100, 2399-2402.	1.4	171
100	Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood, 2000, 96, 2691-2696.	1.4	406
101	Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry, 1999, 38, 139-152.	1.8	214
102	Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet, The, 1998, 351, 550-554.	13.7	402
103	Fas activates NF-κB and induces apoptosis in T-cell lines by signaling pathways distinct from those induced by TNF-α. Cell Death and Differentiation, 1997, 4, 130-139.	11.2	24
104	Growth Requirements of Normal and Leukemic Human B Cell Progenitors. Leukemia and Lymphoma, 1994, 13, 359-371.	1.3	11
105	Detection of Residual Leukemia with Immunologic Methods: Technical Developments and Clinical Implications. Leukemia and Lymphoma, 1994, 13, 31-34.	1.3	16
106	Monitoring minimal residual disease in acute leukemia: expectations, possibilities and initial clinical results. International Journal of Clinical and Laboratory Research, 1994, 24, 132-138.	1.0	11
107	Karyotype and T-cell receptor expression in t-lineage acute lymphoblastic leukemia. Genes Chromosomes and Cancer, 1992, 4, 41-45.	2.8	14