Marina N Nikiforova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2383462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer. Journal of Molecular Diagnostics, 2017, 19, 4-23.	1.2	1,267
2	Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma. JAMA Oncology, 2016, 2, 1023.	3.4	1,192
3	High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Research, 2003, 63, 1454-7.	0.4	1,132
4	BRAF Mutations in Thyroid Tumors Are Restricted to Papillary Carcinomas and Anaplastic or Poorly Differentiated Carcinomas Arising from Papillary Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5399-5404.	1.8	950
5	Molecular genetics and diagnosis of thyroid cancer. Nature Reviews Endocrinology, 2011, 7, 569-580.	4.3	798
6	Impact of Mutational Testing on the Diagnosis and Management of Patients with Cytologically Indeterminate Thyroid Nodules: A Prospective Analysis of 1056 FNA Samples. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3390-3397.	1.8	712
7	Molecular Testing for Mutations in Improving the Fine-Needle Aspiration Diagnosis of Thyroid Nodules. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2092-2098.	1.8	674
8	RASPoint Mutations and PAX8-PPARÎ ³ Rearrangement in Thyroid Tumors: Evidence for Distinct Molecular Pathways in Thyroid Follicular Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2318-2326.	1.8	664
9	MicroRNA Expression Profiling of Thyroid Tumors: Biological Significance and Diagnostic Utility. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1600-1608.	1.8	552
10	Guidelines for Validation of Next-Generation Sequencing–Based Oncology Panels. Journal of Molecular Diagnostics, 2017, 19, 341-365.	1.2	524
11	Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 nextâ€generation sequencing assay. Cancer, 2014, 120, 3627-3634.	2.0	445
12	Targeted Next-Generation Sequencing Panel (ThyroSeq) for Detection of Mutations in Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1852-E1860.	1.8	412
13	Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. Journal of Clinical Investigation, 2005, 115, 94-101.	3.9	371
14	Molecular Profile and Clinical-Pathologic Features of the Follicular Variant of Papillary Thyroid Carcinoma. American Journal of Clinical Pathology, 2003, 120, 71-77.	0.4	370
15	PAX8-PPARÎ ³ Rearrangement in Thyroid Tumors. American Journal of Surgical Pathology, 2002, 26, 1016-1023.	2.1	346
16	Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid, 2015, 25, 1217-1223.	2.4	344
17	Performance of a Multigene Genomic Classifier in Thyroid Nodules With Indeterminate Cytology. JAMA Oncology, 2019, 5, 204.	3.4	317
18	Molecular Diagnostics and Predictors in Thyroid Cancer. Thyroid, 2009, 19, 1351-1361.	2.4	296

MARINA N NIKIFOROVA

#	Article	IF	CITATIONS
19	Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer, 2018, 124, 1682-1690.	2.0	274
20	Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Review of Molecular Diagnostics, 2008, 8, 83-95.	1.5	259
21	Identification of the transforming <i>STRN-ALK</i> fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4233-4238.	3.3	230
22	MicroRNA Signature Distinguishes the Degree of Aggressiveness of Papillary Thyroid Carcinoma. Annals of Surgical Oncology, 2011, 18, 2035-2041.	0.7	216
23	Prevalence ofRET/PTCRearrangements in Thyroid Papillary Carcinomas: Effects of the Detection Methods and Genetic Heterogeneity. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3603-3610.	1.8	202
24	<i>NTRK</i> fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer, 2016, 122, 1097-1107.	2.0	195
25	Sensitive Detection of Mono- and Polyclonal ESR1 Mutations in Primary Tumors, Metastatic Lesions, and Cell-Free DNA of Breast Cancer Patients. Clinical Cancer Research, 2016, 22, 1130-1137.	3.2	166
26	Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Letters, 2004, 209, 1-6.	3.2	152
27	Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery, 2009, 146, 1215-1223.	1.0	149
28	American Castroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data. Gastrointestinal Endoscopy, 2016, 83, 1107-1117.e2.	0.5	148
29	miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Modern Pathology, 2010, 23, 1577-1582.	2.9	129
30	Prevalence of RET/PTC Rearrangements in Hashimoto's Thyroiditis and Papillary Thyroid Carcinomas. International Journal of Surgical Pathology, 2002, 10, 15-22.	0.4	126
31	Comprehensive MicroRNA Expression Profiling Identifies Novel Markers in Follicular Variant of Papillary Thyroid Carcinoma. Thyroid, 2013, 23, 1383-1389.	2.4	117
32	MicroRNA Expression Profiles in Thyroid Tumors. Endocrine Pathology, 2009, 20, 85-91.	5.2	110
33	Recurrent Rearrangements in PRKACA and PRKACB in Intraductal Oncocytic Papillary Neoplasms of the Pancreas andÂBile Duct. Gastroenterology, 2020, 158, 573-582.e2.	0.6	110
34	Integrating next-generation sequencing to endoscopic retrograde cholangiopancreatography (ERCP)-obtained biliary specimens improves the detection and management of patients with malignant bile duct strictures. Gut, 2020, 69, 52-61.	6.1	108
35	Molecular Characterization of Apocrine Salivary Duct Carcinoma. American Journal of Surgical Pathology, 2015, 39, 744-752.	2.1	102
36	Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors. Neuro-Oncology, 2016, 18, 379-387.	0.6	101

#	Article	IF	CITATIONS
37	MicroRNA Expression Array Identifies Novel Diagnostic Markers for Conventional and Oncocytic Follicular Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1-E7.	1.8	99
38	MicroRNA profile of poorly differentiated thyroid carcinomas: new diagnostic and prognostic insights. Journal of Molecular Endocrinology, 2014, 52, 181-189.	1.1	86
39	Histopathologic and Clinical Characterization of Thyroid Tumors Carrying the <i>BRAF^{K601E}</i> Mutation. Thyroid, 2016, 26, 242-247.	2.4	83
40	Identification of Targetable <i>ALK</i> Rearrangements in Pancreatic Ductal Adenocarcinoma. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 555-562.	2.3	79
41	LOH in the HLA Class I Region at 6p21 Is Associated with Shorter Survival in Newly Diagnosed Adult Glioblastoma. Clinical Cancer Research, 2013, 19, 1816-1826.	3.2	70
42	Next-Generation Sequencing Informatics: Challenges and Strategies for Implementation in a Clinical Environment. Archives of Pathology and Laboratory Medicine, 2016, 140, 958-975.	1.2	70
43	Loss of Chromatin-Remodeling Proteins and/or CDKN2A Associates With Metastasis of Pancreatic Neuroendocrine Tumors and Reduced Patient Survival Times. Gastroenterology, 2018, 154, 2060-2063.e8.	0.6	69
44	GLIS Rearrangement is a Genomic Hallmark of Hyalinizing Trabecular Tumor of the Thyroid Gland. Thyroid, 2019, 29, 161-173.	2.4	69
45	<i>ALK</i> FISH patterns and the detection of <i>ALK</i> fusions by next generation sequencing in lung adenocarcinoma. Oncotarget, 2016, 7, 82943-82952.	0.8	69
46	Molecular Diagnostics of Gliomas. Archives of Pathology and Laboratory Medicine, 2011, 135, 558-568.	1.2	67
47	A Multiplexed Amplicon Approach for Detecting Gene Fusions by Next-Generation Sequencing. Journal of Molecular Diagnostics, 2016, 18, 165-175.	1.2	66
48	Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. Neuro-Oncology, 2014, 16, 1478-1483.	0.6	64
49	Molecular Characterization of Sporadic Pediatric Thyroid Carcinoma with the DNA/RNA ThyroSeq v2 Next-Generation Sequencing Assay. Pediatric and Developmental Pathology, 2016, 19, 115-122.	0.5	63
50	Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut, 2022, 71, 961-973.	6.1	60
51	<i>THADA</i> fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2307-2312.	3.3	58
52	Consistency and reproducibility of nextâ€generation sequencing and other multigene mutational assays: A worldwide ring trial study on quantitative cytological molecular reference specimens. Cancer Cytopathology, 2017, 125, 615-626.	1.4	58
53	Spectrum of <i>TERT</i> promoter mutations and mechanisms of activation in thyroid cancer. Cancer Medicine, 2019, 8, 5831-5839.	1.3	57
54	Preoperative detection of RAS mutation may guide extent of thyroidectomy. Surgery, 2017, 161, 168-175.	1.0	56

#	Article	IF	CITATIONS
55	Serrated lesions of the appendix frequently harbor KRAS mutations and not BRAF mutations indicating a distinctly different serrated neoplastic pathway in the appendix. Human Pathology, 2014, 45, 227-235.	1.1	55
56	Clinicopathological comparison of colorectal and endometrial carcinomas in patients with Lynch-like syndrome versus patients with Lynch syndrome. Human Pathology, 2015, 46, 1616-1625.	1.1	55
57	Investigation of the Relationship Between Radiation Dose and Gene Mutations and Fusions in Post-Chernobyl Thyroid Cancer. Journal of the National Cancer Institute, 2018, 110, 371-378.	3.0	52
58	Benign call rate and molecular test result distribution of ThyroSeq v3. Cancer Cytopathology, 2019, 127, 161-168.	1.4	50
59	Colorectal poorly differentiated neuroendocrine carcinomas frequently exhibit BRAF mutations and are associated with poor overall survival. Human Pathology, 2016, 49, 124-134.	1.1	48
60	Next-generation sequencing-based molecular characterization of primary urinary bladder adenocarcinoma. Modern Pathology, 2017, 30, 1133-1143.	2.9	44
61	MicroRNA Dysregulation in Human Thyroid Cells Following Exposure to Ionizing Radiation. Thyroid, 2011, 21, 261-266.	2.4	39
62	Consistency and reproducibility of nextâ€generation sequencing in cytopathology: A second worldwide ring trial study on improved cytological molecular reference specimens. Cancer Cytopathology, 2019, 127, 285-296.	1.4	39
63	Risk assessment for distant metastasis in differentiated thyroid cancer using molecular profiling: A matched caseâ€control study. Cancer, 2021, 127, 1779-1787.	2.0	38
64	Characterization of thyroid cancer driven by known and novel ALK fusions. Endocrine-Related Cancer, 2019, 26, 803-814.	1.6	38
65	Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroidâ€stimulating hormone receptor gene mutations. Diagnostic Cytopathology, 2018, 46, 369-377.	0.5	30
66	Thyroid cytology smear slides: An untapped resource for ThyroSeq testing. Cancer Cytopathology, 2021, 129, 33-42.	1.4	30
67	The clinical importance of parathyroid atypia: Is long-term surveillance necessary?. Surgery, 2015, 158, 929-936.	1.0	28
68	Targeted mutation detection in breast cancer using MammaSeqâ,,¢. Breast Cancer Research, 2019, 21, 22.	2.2	28
69	SeqReporter. Journal of Molecular Diagnostics, 2014, 16, 11-22.	1.2	26
70	Prevalence and Spectrum of <i>DICER1</i> Mutations in Adult-onset Thyroid Nodules with Indeterminate Cytology. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e968-e977.	1.8	26
71	DNA testing of pancreatic cyst fluid: is it ready for prime time?. The Lancet Gastroenterology and Hepatology, 2017, 2, 63-72.	3.7	24
72	Molecular alterations in Hürthle cell nodules and preoperative cancer risk. Endocrine-Related Cancer, 2021, 28, 301-309.	1.6	23

MARINA N NIKIFOROVA

#	Article	IF	CITATIONS
73	<i>GLIS</i> rearrangements in thyroid nodules: A key to preoperative diagnosis of hyalinizing trabecular tumor. Cancer Cytopathology, 2019, 127, 560-566.	1.4	21
74	Evaluation of the Molecular Landscape of Pediatric Thyroid Nodules and Use of a Multigene Genomic Classifier in Children. JAMA Oncology, 2022, 8, 1323.	3.4	21
75	Limitations of Detecting Genetic Variants from the RNA Sequencing Data in Tissue and Fine-Needle Aspiration Samples. Thyroid, 2021, 31, 589-595.	2.4	19
76	Targeted Next-Generation Sequencing Analysis of a Pendred Syndrome-Associated Thyroid Carcinoma. Endocrine Pathology, 2016, 27, 70-75.	5.2	18
77	KRAS amplification in metastatic colon cancer is associated with a history of inflammatory bowel disease and may confer resistance to anti-EGFR therapy. Modern Pathology, 2020, 33, 1832-1843.	2.9	18
78	Clinicopathologic Characteristics of Thyroid Nodules Positive for the <i>THADA-IGF2BP3</i> Fusion on Preoperative Molecular Analysis. Thyroid, 2021, 31, 1212-1218.	2.4	16
79	Detection of Clonal <i>IGH</i> Gene Rearrangements: Summary of Molecular Oncology Surveys of the College of American Pathologists. Archives of Pathology and Laboratory Medicine, 2007, 131, 185-189.	1.2	16
80	Mutations of TSHR and TP53 Genes in an Aggressive Clear Cell Follicular Carcinoma of the Thyroid. Endocrine Pathology, 2015, 26, 315-319.	5.2	13
81	MiRNAs Are Involved in Tall Cell Morphology in Papillary Thyroid Carcinoma. Cancers, 2019, 11, 885.	1.7	10
82	Detection of SYT-SSX Rearrangements in Synovial Sarcomas by Real-Time One-Step RT-PCR. Pediatric and Developmental Pathology, 2005, 8, 162-167.	0.5	9
83	Clinical Implementation and Validation of Automated Human Genome Variation Society (HGVS) Nomenclature System for Next-Generation Sequencing–Based Assays for Cancer. Journal of Molecular Diagnostics, 2018, 20, 628-634.	1.2	9
84	Targeted next-generation sequencing supports serrated epithelial change as an early precursor to inflammatory bowel disease–associated colorectal neoplasia. Human Pathology, 2021, 112, 9-19.	1.1	8
85	Characterization of Activating Mutations of the MEK1 Gene in Papillary Thyroid Carcinomas. Thyroid, 2019, 29, 1279-1285.	2.4	7
86	Interactive Browser-Based Genomics Data Visualization Tools for Translational and Clinical Laboratory Applications. Journal of Molecular Diagnostics, 2019, 21, 985-993.	1.2	7
87	The histopathology of SPINK1-associated chronic pancreatitis. Pancreatology, 2020, 20, 1648-1655.	0.5	7
88	ls Next-Generation Sequencing Alone Sufficient to Reliably Diagnose Gliomas?. Journal of Neuropathology and Experimental Neurology, 2020, 79, 763-766.	0.9	6
89	Can TP53-mutant follicular adenoma be a precursor of anaplastic thyroid carcinoma?. Endocrine-Related Cancer, 2021, 28, 621-630.	1.6	6
90	Clinicopathological features and outcomes of thyroid nodules with EIF1AX mutations. Endocrine-Related Cancer, 2022, 29, 467-473.	1.6	6

#	Article	IF	CITATIONS
91	Response of relapsed central nervous system hairy cell leukemia to vemurafenib. Leukemia and Lymphoma, 2016, 57, 2952-2954.	0.6	5
92	Clinical Utility of GlioSeq Next-Generation Sequencing Test in Pediatric and Young Adult Patients With Brain Tumors. Journal of Neuropathology and Experimental Neurology, 2019, 78, 694-702.	0.9	3
93	Incidental Diagnosis of Parathyroid Lesions by Preoperative Use of Nextâ€Generation Molecular Testing. World Journal of Surgery, 2018, 42, 2840-2845.	0.8	2
94	Clinicopathologic features of thyroid nodules with PTEN mutations on preoperative testing. Endocrine-Related Cancer, 2022, 29, 513-520.	1.6	2
95	Authors' Reply. Journal of Molecular Diagnostics, 2018, 20, 125-126.	1.2	1
96	Examination of Chromosome 1p Alterations in Glioblastomas. FASEB Journal, 2007, 21, A393.	0.2	0
97	Molecular profiling of papillary thyroid carcinomas in healthcare workers exposed to low dose radiation at the workplace. Endocrine, 2022, 76, 95.	1.1	Ο