Sang Il Seok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2383331/publications.pdf

Version: 2024-02-01

3323 10986 53,778 189 71 184 citations h-index g-index papers 194 194 194 27544 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rethinking the A cation in halide perovskites. Science, 2022, 375, eabj1186.	12.6	207
2	Polymethyl Methacrylate as an Interlayer Between the Halide Perovskite and Copper Phthalocyanine Layers for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	30
3	SnO ₂ –TiO ₂ Hybrid Electron Transport Layer for Efficient and Flexible Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1864-1870.	17.4	32
4	Strain Tuning via Larger Cation and Anion Codoping for Efficient and Stable Antimonyâ€Based Solar Cells. Advanced Science, 2021, 8, 2002391.	11.2	13
5	Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells. Joule, 2021, 5, 183-196.	24.0	308
6	Efficient and Stable Antimony Selenoiodide Solar Cells. Advanced Science, 2021, 8, 2003172.	11.2	36
7	Stabilization of formamidinium lead triiodide $\hat{l}\pm$ -phase with isopropylammonium chloride for perovskite solar cells. Nature Energy, 2021, 6, 419-428.	39.5	157
8	Dimethylformamide-free synthesis and fabrication of lead halide perovskite solar cells from electrodeposited PbS precursor films. Chemical Engineering Journal, 2021, 411, 128460.	12.7	15
9	NiFeOx decorated Ge-hematite/perovskite for an efficient water splitting system. Nature Communications, 2021, 12, 4309.	12.8	71
10	Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule, 2021, 5, 2420-2436.	24.0	85
11	Towards environmental friendly multi-step processing of efficient mixed-cation mixed halide perovskite solar cells from chemically bath deposited lead sulphide. Scientific Reports, 2021, 11, 18561.	3.3	7
12	Regulating the Surface Passivation and Residual Strain in Pure Tin Perovskite Films. ACS Energy Letters, 2021, 6, 3555-3562.	17.4	45
13	Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598, 444-450.	27.8	2,065
14	Enhanced Moisture Stability by Butyldimethylsulfonium Cation in Perovskite Solar Cells. Advanced Science, 2020, 7, 1901840.	11.2	42
15	Efficient Antimonyâ€Based Solar Cells by Enhanced Charge Transfer. Small Methods, 2020, 4, 1900698.	8.6	30
16	TiO ₂ Colloidâ€Spray Coated Electronâ€Transporting Layers for Efficient Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2001799.	19.5	45
17	Heteroleptic Tin-Antimony Sulfoiodide for Stable and Lead-free Solar Cells. Matter, 2020, 3, 1701-1713.	10.0	29
18	Carbazole-Based Spiro[fluorene-9,9′-xanthene] as an Efficient Hole-Transporting Material for Perovskite Solar Cells. ACS Applied Materials & Solar Cells.	8.0	43

#	Article	IF	CITATIONS
19	Lead-free perovskite solar cells enabled by hetero-valent substitutes. Energy and Environmental Science, 2020, 13, 2363-2385.	30.8	109
20	Halide perovskite materials and devices. MRS Bulletin, 2020, 45, 427-430.	3 . 5	21
21	Unveiling the Relationship between the Perovskite Precursor Solution and the Resulting Device Performance. Journal of the American Chemical Society, 2020, 142, 6251-6260.	13.7	103
22	Molecular aspects of organic cations affecting the humidity stability of perovskites. Energy and Environmental Science, 2020, 13, 805-820.	30.8	104
23	Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science, 2020, 370, 108-112.	12.6	932
24	Efficient Nanostructured TiO ₂ /SnS Heterojunction Solar Cells. Advanced Energy Materials, 2019, 9, 1901343.	19.5	86
25	Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion. Advanced Materials, 2019, 31, e1807376.	21.0	91
26	Long-Term Chemical Aging of Hybrid Halide Perovskites. Nano Letters, 2019, 19, 5604-5611.	9.1	13
27	Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902740.	19.5	209
28	Efficient, stable solar cells by using inherent bandgap of \hat{l}_{\pm} -phase formamidinium lead iodide. Science, 2019, 366, 749-753.	12.6	936
29	Two-terminal mechanical perovskite/silicon tandem solar cells with transparent conductive adhesives. Nano Energy, 2019, 65, 104044.	16.0	36
30	Multifaceted Role of a Dibutylhydroxytoluene Processing Additive in Enhancing the Efficiency and Stability of Planar Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38828-38837.	8.0	10
31	Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Society Reviews, 2019, 48, 2011-2038.	38.1	526
32	Metal Oxide Charge Transport Layers for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900455.	14.9	186
33	Stabilization of Precursor Solution and Perovskite Layer by Addition of Sulfur. Advanced Energy Materials, 2019, 9, 1803476.	19.5	81
34	Efficient Solar Cells Employing Lightâ€Harvesting Sb _{0.67} Bi _{0.33} SI. Advanced Materials, 2019, 31, e1808344.	21.0	40
35	Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials. Advanced Materials, 2019, 31, e1805337.	21.0	278
36	Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy and Environmental Science, 2019, 12, 958-964.	30.8	116

#	Article	IF	Citations
37	EcoMat: Join us in the pursuit of functional materials for green energy and environment. EcoMat, 2019, 1, e12009.	11.9	O
38	Perovskite Solar Cells: Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells (Adv. Energy Mater. 47/2019). Advanced Energy Materials, 2019, 9, 1970187.	19.5	4
39	Exploring wide bandgap metal oxides for perovskite solar cells. APL Materials, 2019, 7, .	5.1	54
40	Methodologies toward Highly Efficient Perovskite Solar Cells. Small, 2018, 14, e1704177.	10.0	315
41	A Lowâ€Temperature Thinâ€Film Encapsulation for Enhanced Stability of a Highly Efficient Perovskite Solar Cell. Advanced Energy Materials, 2018, 8, 1701928.	19.5	136
42	Mixed Sulfur and Iodide-Based Lead-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2018, 140, 872-875.	13.7	126
43	Efficient Solar Cells Based on Lightâ€Harvesting Antimony Sulfoiodide. Advanced Energy Materials, 2018, 8, 1701901.	19.5	76
44	Reducing Carrier Density in Formamidinium Tin Perovskites and Its Beneficial Effects on Stability and Efficiency of Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 46-53.	17.4	158
45	Stabilization of Lead–Tin-Alloyed Inorganic–Organic Halide Perovskite Quantum Dots. ACS Nano, 2018, 12, 12129-12139.	14.6	31
46	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	12.6	1,327
47	Nanostructured Heterojunction Solar Cells Based on Pb ₂ SbS ₂ I ₃ : Linking Lead Halide Perovskites and Metal Chalcogenides. ACS Energy Letters, 2018, 3, 2376-2382.	17.4	20
48	Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells. Energy and Environmental Science, 2018, 11, 2188-2197.	30.8	162
49	Nanochannel-Assisted Perovskite Nanowires: From Growth Mechanisms to Photodetector Applications. ACS Nano, 2018, 12, 8406-8414.	14.6	56
50	A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689.	39.5	1,856
51	Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nature Communications, 2018, 9, 3301.	12.8	271
52	Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite.	8.0	62
53	New pyrazole based single precursor for the surfactantless synthesis of visible light responsive PbS nanocrystals: Synthesis, X-ray crystallography of ligand and photocatalytic activity. Nano Structures Nano Objects, 2017, 10, 91-99.	3.5	7
54	Colloidally prepared La-doped BaSnO ₃ electrodes for efficient, photostable perovskite solar cells. Science, 2017, 356, 167-171.	12.6	1,045

#	Article	IF	CITATIONS
55	Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells. Energy and Environmental Science, 2017, 10, 2109-2116.	30.8	169
56	Analysis of crystalline phases and integration modelling of charge quenching yields in hybrid lead halide perovskite solar cell materials. Nano Energy, 2017, 40, 596-606.	16.0	17
57	lodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356, 1376-1379.	12.6	4,721
58	Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 79-86.	10.3	45
59	Indolo[3,2-b]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells. Chemical Science, 2017, 8, 734-741.	7.4	102
60	Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600330.	19.5	360
61	Beneficial Effects of Pbl ₂ Incorporated in Organoâ€Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1502104.	19.5	387
62	Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 1845-1851.	4.6	93
63	Physical chemistry of hybrid perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 27024-27025.	2.8	7
64	Thermal Stability of CuSCN Hole Conductorâ€Based Perovskite Solar Cells. ChemSusChem, 2016, 9, 2592-2596.	6.8	154
65	A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(l) sulfide nanocrystals: synthesis, optical and photocatalytic activity. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	9
66	Rational Strategies for Efficient Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 562-572.	15.6	311
67	Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF ₂ –Pyrazine Complex. Journal of the American Chemical Society, 2016, 138, 3974-3977.	13.7	658
68	Steps toward efficient inorganic–organic hybrid perovskite solar cells. MRS Bulletin, 2015, 40, 648-653.	3.5	33
69	Efficient CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells Employing Nanostructured pâ€Type NiO Electrode Formed by a Pulsed Laser Deposition. Advanced Materials, 2015, 27, 4013-4019.	21.0	485
70	Efficient Sb ₂ S ₃ â€Sensitized Solar Cells Via Singleâ€Step Deposition of Sb ₂ S ₃ Using S/Sbâ€Ratioâ€Controlled SbCl ₃ â€Thiourea Complex Solution. Advanced Functional Materials, 2015, 25, 2892-2898.	14.9	145
71	Effective Electron Blocking of CuPCâ€Doped Spiroâ€OMeTAD for Highly Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501320.	19.5	84
72	High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, 1234-1237.	12.6	5,529

#	Article	IF	CITATIONS
73	Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517, 476-480.	27.8	5,478
74	CuSbS ₂ â€Sensitized Inorganicâ€"Organic Heterojunction Solar Cells Fabricated Using a Metalâ€"Thiourea Complex Solution. Angewandte Chemie - International Edition, 2015, 54, 4005-4009.	13.8	72
75	Fabrication of metal-oxide-free CH ₃ NH ₃ Pbl ₃ perovskite solar cells processed at low temperature. Journal of Materials Chemistry A, 2015, 3, 3271-3275.	10.3	162
76	High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nature Communications, 2015, 6, 7410.	12.8	417
77	Efficient room temperature aqueous Sb ₂ S ₃ synthesis for inorganic–organic sensitized solar cells with 5.1% efficiencies. Chemical Communications, 2015, 51, 8640-8643.	4.1	78
78	Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nature Communications, 2015, 6, 8834.	12.8	122
79	Sb ₂ Se ₃ â€6ensitized Inorganic–Organic Heterojunction Solar Cells Fabricated Using a Singleâ€6ource Precursor. Angewandte Chemie - International Edition, 2014, 53, 1329-1333.	13.8	145
80	PbS Colloidal Quantumâ€Dotâ€Sensitized Inorganic–Organic Hybrid Solar Cells with Radialâ€Directional Charge Transport. ChemPhysChem, 2014, 15, 1024-1027.	2.1	17
81	<i>>o</i> -Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. Journal of the American Chemical Society, 2014, 136, 7837-7840.	13.7	702
82	Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy and Environmental Science, 2014, 7, 2614-2618.	30.8	692
83	Enhancing the Performance of Sensitized Solar Cells with PbS/CH ₃ NH ₃ PbI ₃ Core/Shell Quantum Dots. Journal of Physical Chemistry Letters, 2014, 5, 2015-2020.	4.6	59
84	Efficient Inorganicâ€Organic Heterojunction Solar Cells Employing Sb ₂ (S _{<i>x</i>} /Se _{1â€<i>x</i>}) ₃ Gradedâ€Composition Sensitizers. Advanced Energy Materials, 2014, 4, 1301680.	19.5	123
85	Power from the sun: Perovskite solar cells. , 2014, , .		4
86	Precursor-driven selective synthesis of hexagonal chalcocite (Cu ₂ S) nanocrystals: structural, optical, electrical and photocatalytic properties. New Journal of Chemistry, 2014, 38, 4774-4782.	2.8	38
87	Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chemistry of Materials, 2014, 26, 6160-6164.	6.7	502
88	Highly Improved Sb ₂ S ₃ Sensitizedâ€Inorganic–Organic Heterojunction Solar Cells and Quantification of Traps by Deepâ€Level Transient Spectroscopy. Advanced Functional Materials, 2014, 24, 3587-3592.	14.9	454
89	Well-Organized Mesoporous TiO ₂ Photoelectrodes by Block Copolymer-Induced Sol–Gel Assembly for Inorganic–Organic Hybrid Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16688-16693.	3.1	49
90	Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014, 13, 897-903.	27.5	5,796

#	Article	IF	Citations
91	Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy and Environmental Science, 2014, 7, 2642-2646.	30.8	622
92	Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. Journal of Materials Chemistry A, 2013, 1, 11842.	10.3	301
93	Improvement of nonlinear response for the power conversion efficiency with light intensities in cobalt complex electrolyte system. Chemical Physics Letters, 2013, 573, 63-69.	2.6	11
94	Efficient Inorganic–Organic Hybrid Perovskite Solar Cells Based on Pyrene Arylamine Derivatives as Hole-Transporting Materials. Journal of the American Chemical Society, 2013, 135, 19087-19090.	13.7	512
95	Quaternary semiconductor Cu2FeSnS4 nanoparticles as an alternative to Pt catalysts. RSC Advances, 2013, 3, 24918.	3.6	29
96	Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 2013, 13, 1764-1769.	9.1	4,144
97	Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7, 486-491.	31.4	2,423
98	Fabrication of CulnTe ₂ and CulnTe _{2–<i>x</i>} Se _{<i>x</i>} Ternary Gradient Quantum Dots and Their Application to Solar Cells. ACS Nano, 2013, 7, 4756-4763.	14.6	86
99	Defect states in hybrid solar cells consisting of Sb2S3 quantum dots and TiO2 nanoparticles. Applied Physics Letters, 2013, 103, 023901.	3.3	20
100	Hole-conducting mediator for stable Sb ₂ S ₃ -sensitized photoelectrochemical solar cells. Journal of Materials Chemistry, 2012, 22, 1107-1111.	6.7	49
101	Urchinlike Nanostructure of Single-Crystalline Nanorods of Sb ₂ S ₃ Formed at Mild Reaction Condition. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4787-4791.	8.0	13
102	Synthesis of uniform PS-b-P2VP nanoparticles via reprecipitation and their use as sacrificial templates for inorganic hollow nanoparticles. Journal of Materials Chemistry, 2012, 22, 8772.	6.7	16
103	Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells. Nanoscale, 2012, 4, 429-432.	5.6	7
104	From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells. ACS Nano, 2012, 6, 873-880.	14.6	170
105	Nanocrystalline copper sulfide of varying morphologies and stoichiometries in a low temperature solvothermal process using a new single-source molecular precursor. Solid State Sciences, 2012, 14, 1126-1132.	3.2	17
106	Efficient HgTe colloidal quantum dot-sensitized near-infrared photovoltaic cells. Nanoscale, 2012, 4, 1581.	5.6	47
107	Improved air stability of PbS-sensitized solar cell by incorporating ethanedithiol during spin-assisted successive ionic layer adsorption and reaction. Organic Electronics, 2012, 13, 2352-2357.	2.6	28
108	Air-stable and efficient inorganic–organic heterojunction solar cells using PbS colloidal quantum dots co-capped by 1-dodecanethiol and oleic acid. Physical Chemistry Chemical Physics, 2012, 14, 14999.	2.8	36

#	Article	IF	CITATIONS
109	Sb ₂ S ₃ -Sensitized Photoelectrochemical Cells: Open Circuit Voltage Enhancement through the Introduction of Poly-3-hexylthiophene Interlayer. Journal of Physical Chemistry C, 2012, 116, 20717-20721.	3.1	45
110	Enhancing the device performance of Sb2S3-sensitized heterojunction solar cells by embedding Au nanoparticles in the hole-conducting polymer layer. Physical Chemistry Chemical Physics, 2012, 14, 3622.	2.8	22
111	Panchromatic Photon-Harvesting by Hole-Conducting Materials in Inorganic–Organic Heterojunction Sensitized-Solar Cell through the Formation of Nanostructured Electron Channels. Nano Letters, 2012, 12, 1863-1867.	9.1	221
112	A chemical precursor for depositing Sb2S3 onto mesoporous TiO2 layers in nonaqueous media and its application to solar cells. Dalton Transactions, 2012, 41, 11569.	3.3	68
113	CdSe-sensitized inorganic–organic heterojunction solar cells: The effect of molecular dipole interface modification and surface passivation. Organic Electronics, 2012, 13, 975-979.	2.6	33
114	All solid state multiply layered PbS colloidal quantum-dot-sensitized photovoltaic cells. Energy and Environmental Science, 2011, 4, 4181.	30.8	93
115	Solvent-assisted growth of Sb2Se3 nanocompounds from a single-source precursor under mild reaction conditions. CrystEngComm, 2011, 13, 3767.	2.6	21
116	Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte. Energy and Environmental Science, 2011, 4, 2799.	30.8	54
117	Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method. Nanotechnology, 2011, 22, 395502.	2.6	22
118	Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells. Nano Letters, 2011, 11, 4789-4793.	9.1	243
119	Bandgap engineered monodisperse and stable mercury telluride quantum dots and their application for near-infrared photodetection. Journal of Materials Chemistry, 2011, 21, 15232.	6.7	29
120	Facile-chelating amine-assisted synthesis of \hat{l}^2 -In2S3 nanostructures from a new single-source precursor derived from S-methyl dithiocarbazate. Journal of Nanoparticle Research, 2011, 13, 1889-1896.	1.9	9
121	Porous CdS-sensitized electrochemical solar cells. Electrochimica Acta, 2011, 56, 2087-2091.	5.2	24
122	High-Performance Nanostructured Inorganicâ-'Organic Heterojunction Solar Cells. Nano Letters, 2010, 10, 2609-2612.	9.1	520
123	High-yield synthesis of quantum-confined CdS nanorods using a new dimeric cadmium(II) complex of S-benzyldithiocarbazate as single-source molecular precursor. Solid State Sciences, 2010, 12, 532-535.	3.2	35
124	Synthesis of nanocrystalline CdS from cadmium(II) complex of S-benzyl dithiocarbazate as a precursor. Solid State Sciences, 2010, 12, 1741-1747.	3.2	21
125	Colloidal TiO2 nanocrystals prepared from peroxotitanium complex solutions: Phase evolution from different precursors. Journal of Colloid and Interface Science, 2010, 346, 66-71.	9.4	24
126	Near-infrared photodetection based on PbS colloidal quantum dots/organic hole conductor. Organic Electronics, 2010, 11, 696-699.	2.6	28

#	Article	IF	Citations
127	Facile synthesis of nanocrystalline wurtzite Cu–In–S by amine-assisted decomposition of precursors. Journal of Solid State Chemistry, 2010, 183, 1872-1877.	2.9	24
128	Photoelectrochemical solar cells fabricated from porous CdSe and CdS layers. Electrochimica Acta, 2010, 55, 5665-5669.	5.2	44
129	Peptide-templating dye-sensitized solar cells. Nanotechnology, 2010, 21, 185601.	2.6	36
130	Low temperature preparation of NaTi _{2(PO_{4)_{3 by sol-gel method. International Journal of Nanotechnology, 2010, 7, 1077.}}}	0.2	12
131	Evolution of Phase and Morphology of Titanium Dioxide Induced from Peroxo Titanate Complex Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2010, 10, 163-169.	0.9	2
132	Quantum-Dot-Sensitized Solar Cells Fabricated by the Combined Process of the Direct Attachment of Colloidal CdSe Quantum Dots Having a ZnS Glue Layer and Spray Pyrolysis Deposition. Langmuir, 2010, 26, 18576-18580.	3.5	50
133	Performance enhancement through post-treatments of CdS-sensitized solar cells fabricated by spray pyrolysis deposition. ACS Applied Materials & https://www.amp.com/applied/spray/sp	8.0	51
134	CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chemical Communications, 2010, 46, 2385.	4.1	124
135	Improved Photovoltaic Response of Nanocrystalline CdS-Sensitized Solar Cells through Interface Control. ACS Applied Materials & Interfaces, 2010, 2, 1343-1348.	8.0	49
136	Nanocomposites of Ferroelectric Polymers with TiO ₂ Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density. Advanced Materials, 2009, 21, 217-221.	21.0	471
137	Synthesis, spectroscopy and thermal behavior of new lead(II) complexes derived from S-methyl/benzyldithiocarbazates (SMDTC/SBDTC): X-ray crystal structure of [Pb(SMDTC)(NO3)2]. Inorganica Chimica Acta, 2009, 362, 2603-2608.	2.4	19
138	Morphological and phase evolution of TiO2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid. Journal of Solid State Chemistry, 2009, 182, 749-756.	2.9	59
139	Cu2S-deposited mesoporous NiO photocathode for a solar cell. Chemical Physics Letters, 2009, 477, 345-348.	2.6	32
140	Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell. Electrochemistry Communications, 2009, 11, 909-912.	4.7	73
141	Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator. Langmuir, 2009, 25, 7602-7608.	3.5	270
142	Synthesis and spectroscopic characterization of new iron(III) complexes of S-Alkyl/Aryl dithiocarbazates of 5-methyl-3-formylpyrazole and 5-methyl-3-formylpyrazolyl-thiosemicarbazones. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2009, 35, 526-533.	1.0	3
143	ZnSe colloidal nanoparticles synthesized by solvothermal method in the presence of ZrCl4. Journal of Colloid and Interface Science, 2008, 322, 473-477.	9.4	19
144	Synthesis, spectroscopic characterization and thermal behavior of cadmium(II) complexes of S-methyldithiocarbazate (SMDTC) and S-benzyldithiocarbazate (SBDTC): X-ray crystal structure of [Cd(SMDTC)3] \hat{A} · 2NO3. Polyhedron, 2008, 27, 3433-3438.	2.2	34

#	Article	IF	Citations
145	Near infrared luminescence behavior of organic–inorganic nanohybrid films containing Er3+ doped YbPO4 nanoparticles. Thin Solid Films, 2008, 516, 4208-4212.	1.8	2
146	Sol–gel microencapsulation of hydrophilic active compounds from the modified silicon alkoxides: The control of pore and particle size. Materials Science and Engineering C, 2008, 28, 1183-1188.	7.3	16
147	Near infrared luminescence properties of nanohybrid film prepared from LaPO4:Er3+/LaPO4 core/shell nanoparticles and silica-based resin. Optical Materials, 2008, 31, 201-205.	3.6	17
148	CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity. Journal of Physical Chemistry C, 2008, 112 , 11600 - 11608 .	3.1	339
149	Non-hydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins. Materials Chemistry and Physics, 2008, 112, 1008-1014.	4.0	25
150	Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized BaTiO ₃ Nanoparticles. Chemistry of Materials, 2008, 20, 6304-6306.	6.7	339
151	Wet chemical synthesis of redispersible crystalline BaTiO3 in organic medium. Journal of Alloys and Compounds, 2008, 449, 77-81.	5.5	5
152	High-Dielectric Constant Inorganic–Organic Hybrid Materials Prepared with Sol–Gel-Derived Crystalline BaTiO3. Japanese Journal of Applied Physics, 2008, 47, 531-537.	1.5	8
153	Luminescent Properties in NIR Region of LaPO ₄ :Er/LaPO ₄ Core/Shell Nanoparticles. Solid State Phenomena, 2007, 124-126, 471-474.	0.3	0
154	Synthesis and Characterization of Fluoroâ€and Chloroâ€bimetallic Alkoxides as Precursors for Luminescent Metal Oxide Materials via Solâ€Gel Technique. Chinese Journal of Chemistry, 2007, 25, 998-1004.	4.9	7
155	Ligand-dependent particle size control of PbSe quantum dots. Journal of Colloid and Interface Science, 2007, 310, 163-166.	9.4	45
156	Photoluminescence Characteristics of Sol?Gel Materials Prepared from Bimetallic Erbium Alkoxides Coordinated by Al or Ti. Journal of the American Ceramic Society, 2007, 90, 116-119.	3.8	3
157	Effects of reactant concentration and OHâ^ ions on the formation of nanocrystalline BaTiO3 in solution. Materials Research Bulletin, 2007, 42, 497-504.	5.2	16
158	Core/shell silica-based in-situ microencapsulation: A self-templating method. Chemical Communications, 2006, , 189-190.	4.1	24
159	Annealing effect on photoluminescence properties of Er doped Al2O3–SiO2 sol–gel films. Journal of Non-Crystalline Solids, 2006, 352, 2841-2845.	3.1	7
160	Preparation of inorganic-organic hybrid titania sol-gel nanocomposite films, and their dielectric properties. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1962-1970.	1.8	6
161	Preparation of Nanosized Rutile TiO2 from an Aqueous Peroxotitanate Solution. Journal of the American Ceramic Society, 2006, 89, 1147-1149.	3.8	23
162	Optical properties of organic/inorganic nanocomposite sol-gel films containing LaPO4:Er,Yb nanocrystals. Optical Materials, 2006, 28, 374-379.	3.6	29

#	Article	IF	CITATIONS
163	Wet-chemical synthesis of crystalline BaTiO3 from stable chelated titanium complex: Formation mechanism and dispersibility in organic solvents. Journal of Colloid and Interface Science, 2006, 300, 569-576.	9.4	19
164	Preparation of corrosion protective coatings on galvanized iron from aqueous inorganic–organic hybrid sols by sol–gel method. Surface and Coatings Technology, 2006, 200, 3468-3472.	4.8	35
165	PLuminescence properties of Er3+ doped SiO2-ZrO2 prepared using Er–Zr double alkoxide. Journal of Materials Science, 2006, 41, 1285.	3.7	7
166	Near infrared luminescence of Er ions in sol–gel ZnO/zirconium-oxo-alkylsiloxane nanocomposite films. Thin Solid Films, 2006, 515, 2423-2427.	1.8	8
167	Redispersible rutile TiO2 nanocrystals in organic media by surface chemical modification with an inorganic barium hydroxide. Journal of Colloid and Interface Science, 2006, 297, 138-142.	9.4	5
168	One-step synthesis of TOP capped PbSe pyramidal nanocrystals. Materials Chemistry and Physics, 2006, 96, 154-157.	4.0	15
169	The effect of heat treatment temperature on the microstructure and magnetic properties of Ba2Co2Fe12O22 (Co2Y) prepared by sol–gel method. Materials Letters, 2006, 60, 2718-2722.	2.6	23
170	Preparation of multicomponent oxides via non-hydrolytic sol–gel routes from novel bimetallic alkoxides. Journal of Solid State Chemistry, 2005, 178, 1464-1470.	2.9	6
171	Preparation and luminescence properties of LaPO4:Er,Yb nanoparticles. Journal of Luminescence, 2005, 114, 307-313.	3.1	40
172	Stable heterometallic fluorinated \hat{l}^2 -diketonato/alkoxo complexes as precursors for Er-doped luminescence materials. Inorganica Chimica Acta, 2005, 358, 4541-4547.	2.4	5
173	Optical Properties of Er-Doped Al2O3-SiO2 Films Prepared by a Modified Sol-Gel Process. Journal of the American Ceramic Society, 2005, 88, 2380-2384.	3.8	8
174	Synthesis and characterization of cerium substituted hematite by sol–gel method. Materials Letters, 2005, 59, 3783-3787.	2.6	20
175	Synthesis and physico-chemical studies of double alkoxides and their allied compounds. Applied Organometallic Chemistry, 2005, 19, 964-970.	3.5	5
176	PbSe quantum dots/polymer nanocomposite materials for optical communications. , 2005, , .		2
177	TiO2 nanoparticles formed in silica sol–gel matrix. Materials Chemistry and Physics, 2004, 86, 176-179.	4.0	42
178	Effect of molecular weight on the mechanical properties of MSSQ films. Materials Chemistry and Physics, 2004, 84, 259-262.	4.0	8
179	Porous polyimide films prepared by thermolysis of porogens with hyperbranched structure. Journal of Applied Polymer Science, 2004, 93, 1711-1718.	2.6	4
180	Encapsulation of Water-Soluble Dye in Spherical Sol-Gel Silica Matrices. Journal of Sol-Gel Science and Technology, 2003, 27, 355-361.	2.4	17

#	Article	IF	CITATIONS
181	A novel synthesis of indium phosphide nanoparticles. Materials Letters, 2003, 57, 4617-4621.	2.6	10
182	Photoluminescence Probing of the Formation of Titanium Dioxide Sols from a Titanium Peroxide Solution. Journal of the American Ceramic Society, 2002, 85, 1888-1890.	3.8	11
183	Photoluminescence intensity enhancement of ZnGa2O4(Mn) powders by surface leaching. Journal of Materials Science Letters, 2001, 20, 1723-1724.	0.5	0
184	Electrical characterization of Co-doped La2CuO4+ \hat{l} at elevated temperature. Materials Research Bulletin, 1999, 34, 315-325.	5.2	11
185	The effect of Cu-sites doping on electrical properties of La2CuO4 as thermoelectric material. Journal of Materials Science: Materials in Electronics, 1995, 6, 140.	2.2	8
186	High temperature electrical properties of La1.9Sr0.1Cu0.9M0.1O4 (M = Li, Ni, Co) solid solutions. Materials Letters, 1995, 22, 55-57.	2.6	0
187	Optical and structual characterization of InP nanorods. , 0, , .		0
188	Semiconductor quantum dot sensitized TiO2 mesoporous solar cells. , 0, , 292-309.		0
189	Enhancement of Piezoelectricity in Dimensionally Engineered Metalâ€Halide Perovskites Induced by Deep Level Defects. Advanced Energy Materials, 0, , 2200181.	19.5	4