Gerhard Bohrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2383253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature, 1997, 389, 929-935.	27.8	547
2	Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth and Planetary Science Letters, 1999, 170, 1-15.	4.4	386
3	Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology, 1998, 26, 647.	4.4	376
4	Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 1996, 127, 125-139.	3.3	366
5	Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth and Planetary Science Letters, 2004, 222, 845-862.	4.4	278
6	Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth and Planetary Science Letters, 2004, 226, 225-241.	4.4	264
7	Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea. Marine Geology, 2008, 249, 243-256.	2.1	196
8	U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations. Geochimica Et Cosmochimica Acta, 2003, 67, 3845-3857.	3.9	174
9	Chemoherms on Hydrate Ridge — Unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 67-85.	2.3	154
10	Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites. Earth and Planetary Science Letters, 2002, 203, 165-180.	4.4	150
11	Quantifying fluid flow, solute mixing, and biogeochemical turnover at cold vents of the eastern Aleutian subduction zone. Geochimica Et Cosmochimica Acta, 1997, 61, 5209-5219.	3.9	143
12	Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins. Geology, 2003, 31, 897.	4.4	135
13	Asphalt Volcanism and Chemosynthetic Life in the Campeche Knolls, Gulf of Mexico. Science, 2004, 304, 999-1002.	12.6	135
14	Similar glacial and interglacial export bioproductivity in the Atlantic Sector of the Southern Ocean: Multiproxy evidence and implications for glacial atmospheric CO2. Paleoceanography, 2000, 15, 642-658.	3.0	129
15	Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chemical Geology, 2010, 277, 126-136.	3.3	129
16	Fluid venting in the eastern Aleutian Subduction Zone. Journal of Geophysical Research, 1998, 103, 2597-2614.	3.3	123
17	Oxygen isotopes of marine diatoms and relations to opal-A maturation. Geochimica Et Cosmochimica Acta, 2001, 65, 201-211.	3.9	118
18	Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Marine Letters, 2003, 23, 239-249.	1.1	118

#	Article	IF	CITATIONS
19	Barium accumulation in the Atlantic sector of the Southern Ocean: Results From 190,000-year records. Paleoceanography, 1997, 12, 594-603.	3.0	117
20	Temporal and spatial evolution of a gas hydrate–bearing accretionary ridge on the Oregon continental margin. Geology, 1999, 27, 939.	4.4	111
21	Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism. Marine and Petroleum Geology, 2010, 27, 748-756.	3.3	108
22	Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Research, 2012, 117, .	3.3	108
23	Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience, 2013, 6, 647-651.	12.9	105
24	Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site. Chemical Geology, 2010, 269, 350-363.	3.3	102
25	Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	101
26	The effect of dissolved barium on biogeochemical processes at cold seeps. Geochimica Et Cosmochimica Acta, 2004, 68, 1735-1748.	3.9	100
27	Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan. Marine Geology, 2010, 268, 129-136.	2.1	100
28	Gas Hydrate-Associated Carbonates and Methane-Venting at Hydrate Ridge: Classification, Distribution, and Origin of Authigenic Lithologies. Geophysical Monograph Series, 0, , 99-113.	0.1	100
29	Widespread methane seepage along the continental margin off Svalbard - from BjÃ,rnÃ,ya to Kongsfjorden. Scientific Reports, 2017, 7, 42997.	3.3	100
30	Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone. Earth and Planetary Science Letters, 1996, 144, 469-481.	4.4	97
31	Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nature Communications, 2018, 9, 83.	12.8	97
32	Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow. Marine Geology, 2008, 249, 206-225.	2.1	95
33	Vodyanitskii mud volcano, Sorokin trough, Black Sea: Geological characterization and quantification of gas bubble streams. Marine and Petroleum Geology, 2009, 26, 1799-1811.	3.3	93
34	Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes. Earth and Planetary Science Letters, 2006, 248, 545-560.	4.4	92
35	Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea—the Kerch seep area. Marine Geology, 2012, 319-322, 57-74.	2.1	92
36	Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova, 2002, 14, 69-79.	2.1	91

#	Article	IF	CITATIONS
37	Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution. Journal of Geophysical Research: Solid Earth, 2014, 119, 2679-2694.	3.4	91
38	Stromatolitic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4,850Âm water depth. International Journal of Earth Sciences, 2002, 91, 698-711.	1.8	87
39	Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling. Biogeosciences, 2012, 9, 2013-2031.	3.3	87
40	Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea. Marine Geology, 2006, 231, 51-67.	2.1	84
41	Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chemical Geology, 2015, 415, 102-117.	3.3	84
42	Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature Microbiology, 2017, 2, 17093.	13.3	80
43	Pure siliceous ooze, a diagenetic environment for early chert formation. Geology, 1994, 22, 207.	4.4	78
44	Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean. Geo-Marine Letters, 2013, 33, 369-379.	1.1	77
45	Development and application of pressure-core-sampling systems for the investigation of gas- and gas-hydrate-bearing sediments. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 1590-1599.	1.4	75
46	Gas emissions at the continental margin west of Svalbard: mapping, sampling, and quantification. Biogeosciences, 2014, 11, 6029-6046.	3.3	73
47	Active tectonics of the Calabrian subduction revealed by new multi-beam bathymetric data and high-resolution seismic profiles in the Ionian Sea (Central Mediterranean). Earth and Planetary Science Letters, 2017, 461, 61-72.	4.4	73
48	Clathrites: Archives of near-seafloor pore-fluid evolution (δ44/40Ca, δ13C, δ18O) in gas hydrate environments. Geology, 2005, 33, 213.	4.4	69
49	Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry. Earth and Planetary Science Letters, 2005, 239, 106-121.	4.4	68
50	Fluid expulsion from the Dvurechenskii mud volcano (Black Sea)Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles. Earth and Planetary Science Letters, 2004, 225, 347-363.	4.4	66
51	Sea Floor Methane Hydrates at Hydrate Ridge, Cascadia Margin. Geophysical Monograph Series, 2013, , 87-98.	0.1	65
52	Methane fluxes and carbonate deposits at a cold seep area of the Central Nile Deep Sea Fan, Eastern Mediterranean Sea. Marine Geology, 2014, 347, 27-42.	2.1	65
53	Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea. Geo-Marine Letters, 2003, 23, 230-238.	1.1	63
54	Anaerobic Degradation of Non-Methane Alkanes by " <i>Candidatus</i> Methanoliparia―in Hydrocarbon Seeps of the Gulf of Mexico. MBio, 2019, 10, .	4.1	63

#	Article	IF	CITATIONS
55	U/Th dating of cold-seep carbonates: An initial comparison. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 2055-2060.	1.4	61
56	Oxygen isotopes in marine diatoms: A comparative study of analytical techniques and new results on the isotope composition of recent marine diatoms. Geochimica Et Cosmochimica Acta, 1997, 61, 2275-2280.	3.9	60
57	Natural oil seepage at Kobuleti Ridge, eastern Black Sea. Marine and Petroleum Geology, 2014, 50, 68-82.	3.3	60
58	A 160,000-year-old history of tectonically controlled methane seepage in the Arctic. Science Advances, 2019, 5, eaaw1450.	10.3	60
59	Hydrocarbon gases in deposits from mud volcanoes in the Sorokin Trough, north-eastern Black Sea. Geo-Marine Letters, 2003, 23, 250-257.	1.1	58
60	Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica. Biogeosciences, 2009, 6, 2383-2395.	3.3	58
61	Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, Northeastern Mediterranean Sea. Geo-Marine Letters, 2010, 30, 187-206.	1.1	56
62	Microstructures of structure I and II gas hydrates from the Gulf of Mexico. Marine and Petroleum Geology, 2010, 27, 116-125.	3.3	56
63	Flammable Ice. Scientific American, 1999, 281, 76-83.	1.0	55
64	Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico. Earth and Planetary Science Letters, 2010, 299, 207-217.	4.4	54
65	Complex plumbing systems in the near subsurface: Geometries of authigenic carbonates from Dolgovskoy Mound (Black Sea) constrained by analogue experiments. Marine and Petroleum Geology, 2008, 25, 457-472.	3.3	53
66	Biogeochemical controls on authigenic carbonate formation at the Chapopote "asphalt volcanoâ€ , Bay of Campeche. Chemical Geology, 2009, 266, 390-402.	3.3	52
67	Gas hydrate distributions in sediments of pockmarks from the Nigerian margin – Results and interpretation from shallow drilling. Marine and Petroleum Geology, 2015, 59, 359-370.	3.3	52
68	Hydrocarbon seepage and its sources at mud volcanoes of the Kumano forearc basin, Nankai Trough subduction zone. Geochemistry, Geophysics, Geosystems, 2014, 15, 2180-2194.	2.5	51
69	Origin, distribution, and alteration of asphalts at Chapopote Knoll, Southern Gulf of Mexico. Marine and Petroleum Geology, 2010, 27, 1093-1106.	3.3	50
70	High-intensity gas seepage causes rafting of shallow gas hydrates in the southeastern Black Sea. Earth and Planetary Science Letters, 2011, 307, 35-46.	4.4	50
71	Fluid flow regimes and growth of a giant pockmark. Geology, 2014, 42, 63-66.	4.4	50
72	Appearance and preservation of natural gas hydrate from Hydrate Ridge sampled during ODP Leg 204 drilling. Marine Geology, 2007, 244, 1-14.	2.1	48

#	Article	IF	CITATIONS
73	The silicon isotope record of early silica diagenesis. Earth and Planetary Science Letters, 2015, 428, 293-303.	4.4	48
74	Fabric of gas hydrate in sediments from Hydrate Ridge—results from ODP Leg 204 samples. Geo-Marine Letters, 2007, 27, 269-277.	1.1	47
75	Natural gas hydrate investigations by synchrotron radiation Xâ€ray cryoâ€tomographic microscopy (SRXCTM). Geophysical Research Letters, 2008, 35, .	4.0	46
76	Gas Hydrates in Marine Sediments. , 2006, , 481-512.		44
77	Mineralization of vestimentiferan tubes at methane seeps on the Congo deep-sea fan. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 283-293.	1.4	43
78	Corrosion patterns of seepâ€carbonates from the eastern Mediterranean Sea. Terra Nova, 2011, 23, 206-212.	2.1	43
79	Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir. , 0, , .		43
80	Authigenic carbonate precipitates from the NE Black Sea: a mineralogical, geochemical, and lipid biomarker study. International Journal of Earth Sciences, 2009, 98, 677-695.	1.8	42
81	Assessing marine gas emission activity and contribution to the atmospheric methane inventory: A multidisciplinary approach from the <scp>D</scp> utch <scp>D</scp> ogger <scp>B</scp> ank seep area (<scp>N</scp> orth <scp>S</scp> ea). Geochemistry, Geophysics, Geosystems, 2017, 18, 2617-2633.	2.5	42
82	Evidence for the submarine weathering of silicate minerals in Black Sea sediments: Possible implications for the marine Li and B cycles. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	41
83	Petroleum degradation and associated microbial signatures at the Chapopote asphalt volcano, Southern Gulf of Mexico. Geochimica Et Cosmochimica Acta, 2011, 75, 4377-4398.	3.9	41
84	First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth and Planetary Science Letters, 2014, 403, 166-177.	4.4	40
85	Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico. Biogeosciences, 2016, 13, 4491-4512.	3.3	40
86	Quantum rotations in natural methane-clathrates from the Pacific sea-floor. Europhysics Letters, 1999, 48, 269-275.	2.0	38
87	In situ hydrocarbon concentrations from pressurized cores in surface sediments, Northern Gulf of Mexico. Marine Chemistry, 2007, 107, 498-515.	2.3	38
88	Low-temperature opal-CT precipitation in Antarctic deep-sea sediments: evidence from oxygen isotopes. Earth and Planetary Science Letters, 1991, 107, 612-617.	4.4	37
89	Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites. Journal of Asian Earth Sciences, 2013, 65, 27-33.	2.3	36
90	Oil seepage and carbonate formation: A case study from the southern Gulf of Mexico. Sedimentology, 2019, 66, 2318-2353.	3.1	36

Gerhard Bohrmann

#	Article	IF	CITATIONS
91	Establishing criteria to distinguish oil-seep from methane-seep carbonates. Geology, 2016, 44, 667-670.	4.4	35
92	Hot vents in an ice-cold ocean: Indications for phase separation at the southernmost area of hydrothermal activity, Bransfield Strait, Antarctica. Earth and Planetary Science Letters, 2001, 193, 381-394.	4.4	34
93	Distribution and temporal variation of megaâ€fauna at the <scp>R</scp> egab pockmark (<scp>N</scp> orthern <scp>C</scp> ongo <scp>F</scp> an), based on a comparison of videomosaics and geographic information systems analyses. Marine Ecology, 2014, 35, 77-95.	1.1	34
94	Miocene to Quaternary Paleoceanography in the Northern North Atlantic: Variability in Carbonate and Biogenic Opal Accumulation. , 1990, , 647-675.		34
95	Megafaunal distribution and assessment of total methane and sulfide consumption by mussel beds at Menez Gwen hydrothermal vent, based on geo-referenced photomosaics. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 75, 93-109.	1.4	33
96	Stromatolites below the photic zone in the northern Arabian Sea formed by calcifying chemotrophic microbial mats. Geology, 2018, 46, 339-342.	4.4	33
97	The effect of meter-scale lateral oxygen gradients at the sediment-water interface on selected organic matter based alteration, productivity and temperature proxies. Biogeosciences, 2012, 9, 1553-1570.	3.3	32
98	Major advance of South Georgia glaciers during the Antarctic Cold Reversal following extensive sub-Antarctic glaciation. Nature Communications, 2017, 8, 14798.	12.8	32
99	Hydrothermal activity at Hook Ridge in the Central Bransfield Basin, Antarctica. Geo-Marine Letters, 1998, 18, 277-284.	1.1	31
100	Seafloor sealing, doming, and collapse associated with gas seeps and authigenic carbonate structures at Venere mud volcano, Central Mediterranean. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 137, 76-96.	1.4	31
101	A conceptual model for hydrocarbon accumulation and seepage processes around Chapopote asphalt site, southern Gulf of Mexico: From high resolution seismic point of view. Journal of Geophysical Research, 2008, 113, .	3.3	30
102	Automatic Estimation of Oil Seep Locations in Synthetic Aperture Radar Images. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 4218-4230.	6.3	30
103	Distribution and abundance of gas hydrates in near-surface deposits of the HÃ¥kon Mosby Mud Volcano, SW Barents Sea. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	29
104	Microstructure characteristics during hydrate formation and dissociation revealed by X-ray tomographic microscopy. Geo-Marine Letters, 2012, 32, 555-562.	1.1	29
105	Amount and Fate of Gas and Oil Discharged at 3400 m Water Depth From a Natural Seep Site in the Southern Gulf of Mexico. Frontiers in Marine Science, 2019, 6, .	2.5	29
106	Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments. ISME Journal, 2021, 15, 3587-3604.	9.8	29
107	Mapping deep-water gas emissions with sidescan sonar. Eos, 2005, 86, 341.	0.1	28
108	Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics – Results from the combination of CT imaging with mineralogical and stable isotope analyses. Marine and Petroleum Geology, 2010, 27, 1819-1829.	3.3	27

#	Article	IF	CITATIONS
109	Bathymetry and geological setting of the South Sandwich Islands volcanic arc. Antarctic Science, 2016, 28, 293-303.	0.9	27
110	The thermal structure of the Dvurechenskii mud volcano and its implications for gas hydrate stability and eruption dynamics. Marine and Petroleum Geology, 2009, 26, 1812-1823.	3.3	25
111	Physical properties and core-log seismic integration from drilling at the Danube deep-sea fan, Black Sea. Marine and Petroleum Geology, 2020, 114, 104192.	3.3	25
112	Deformation and submarine landsliding caused by seamount subduction beneath the Costa Rica continental margin — new insights from high-resolution sidescan sonar data. Geological Society Special Publication, 2005, 244, 195-205.	1.3	24
113	Grain size measurements of natural gas hydrates. Marine Geology, 2010, 274, 85-94.	2.1	24
114	Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, subâ€Antarctic. Geochemistry, Geophysics, Geosystems, 2016, 17, 1401-1418.	2.5	23
115	Interaction between accretionary thrust faulting and slope sedimentation at the frontal Makran accretionary prism and its implications for hydrocarbon fluid seepage. Journal of Geophysical Research, 2010, 115, .	3.3	22
116	Shallow sediment deformation styles in north-western Campeche Knolls, Gulf of Mexico and their controls on the occurrence of hydrocarbon seepage. Marine and Petroleum Geology, 2010, 27, 959-972.	3.3	21
117	Quantifying in-situ gas hydrates at active seep sites in the eastern Black Sea using pressure coring technique. Biogeosciences, 2011, 8, 3555-3565.	3.3	21
118	A young porcellanite occurrence from the Southwest Indian Ridge. Marine Geology, 1990, 92, 155-163.	2.1	20
119	Origin and Transformation of Light Hydrocarbons Ascending at an Active Pockmark on Vestnesa Ridge, Arctic Ocean. Journal of Geophysical Research: Solid Earth, 2020, 125, e2018JB016679.	3.4	20
120	Chapopote Asphalt Volcano may have been generated by supercritical water. Eos, 2005, 86, 397.	0.1	19
121	Automated gas bubble imaging at sea floor – a new method of in situ gas flux quantification. Ocean Science, 2010, 6, 549-562.	3.4	19
122	Focused hydrocarbonâ€migration in shallow sediments of a pockmark cluster in the Niger Delta (Off) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
123	In Situ Temperature Measurements at the Svalbard Continental Margin: Implications for Gas Hydrate Dynamics. Geochemistry, Geophysics, Geosystems, 2018, 19, 1165-1177.	2.5	18
124	Mud extrusion and ring-fault gas seepage – upward branching fluid discharge at a deep-sea mud volcano. Scientific Reports, 2018, 8, 6275.	3.3	18
125	Authigenic zeolites and their relation to silica diagenesis in ODP Site 661 sediments (Leg 108, Eastern) Tj ETQq1	1 0.78431 1.3	4 rgBT /Over
126	Seep-carbonate lamination controlled by cyclic particle flux. Scientific Reports, 2016, 6, 37439.	3.3	17

#	Article	IF	CITATIONS
127	Reflector "Pc―a prominent feature in the Maud Rise sediment sequence (eastern Weddell Sea): Occurrence, regional distribution and implications to silica diagenesis. Marine Geology, 1992, 106, 69-87.	2.1	16
128	Leg 204 synthesis: gas hydrate distribution and dynamics in the central Cascadia accretionary complex. , 0, , .		16
129	Design and deployment of autoclave pressure vessels for the portable deep-sea drill rig MeBo (<i>Meeresboden-BohrgerÃt</i>). Scientific Drilling, 0, 23, 29-37.	0.6	15
130	Oxygen isotopic composition of low-temperature authigenic clinoptilolite. Earth and Planetary Science Letters, 1998, 160, 369-381.	4.4	14
131	Authigenic Carbonate and Barite Mineralization in Sediments of the Deryugin Basin (Sea of Okhotsk). Lithology and Mineral Resources, 2000, 35, 504-508.	0.6	14
132	Formation pathways of light hydrocarbons in deep sediments of the Danube deep-sea fan, Western Black Sea. Marine and Petroleum Geology, 2020, 122, 104627.	3.3	14
133	Trace element distribution in methane-seep carbonates: The role of mineralogy and dissolved sulfide. Chemical Geology, 2021, 580, 120357.	3.3	14
134	Clumped methane isotopologue-based temperature estimates for sources of methane in marine gas hydrates and associated vent gases. Geochimica Et Cosmochimica Acta, 2022, 327, 276-297.	3.9	14
135	Barium-rich authigenic clinoptilolite in sediments from the Japan Sea—a sink for dissolved barium?. Chemical Geology, 1999, 158, 227-244.	3.3	13
136	Title is missing!. Earth and Planetary Science Letters, 2004, 225, 347-363.	4.4	13
137	Threeâ€dimensional seismic investigations of the Sevastopol mud volcano in correlation to gas/fluid migration pathways and indications for gas hydrate occurrences in the Sorokin Trough (Black Sea). Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	13
138	Methane gas emissions of the Black Sea—mapping from the Crimean continental margin to the Kerch Peninsula slope. Geo-Marine Letters, 2020, 40, 467-480.	1.1	13
139	New insights into geology and geochemistry of the Kerch seep area in the Black Sea. Marine and Petroleum Geology, 2020, 113, 104162.	3.3	13
140	Reply to comment on: "Gas hydrate growth, methane transport and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia Margin off Oregon― Earth and Planetary Science Letters, 2005, 239, 168-175.	4.4	12
141	Mud Volcanism in a Canyon: Morphodynamic Evolution of the Active Venere Mud Volcano and Its Interplay With Squillace Canyon, Central Mediterranean. Geochemistry, Geophysics, Geosystems, 2018, 19, 356-378.	2.5	12
142	Methane Seeps and Independent Methane Plumes in the South China Sea Offshore Taiwan. Frontiers in Marine Science, 2020, 7, .	2.5	12
143	In-situ borehole temperature measurements confirm dynamics of the gas hydrate stability zone at the upper Danube deep sea fan, Black Sea. Earth and Planetary Science Letters, 2021, 563, 116869.	4.4	12
144	Electron Acceptor Availability Shapes Anaerobically Methane Oxidizing Archaea (ANME) Communities in South Georgia Sediments. Frontiers in Microbiology, 2021, 12, 617280.	3.5	11

#	Article	IF	CITATIONS
145	Long-term in situ observations at the Athina mud volcano, Eastern Mediterranean: Taking the pulse of mud volcanism. Tectonophysics, 2017, 721, 12-27.	2.2	10
146	Slow Volcanoes: The Intriguing Similarities Between Marine Asphalt and Basalt Lavas. Oceanography, 2018, 31, .	1.0	10
147	Shallow Gas Hydrate Accumulations at a Nigerian Deepwater Pockmark—Quantities and Dynamics. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018283.	3.4	10
148	Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?. Geo-Marine Letters, 2018, 38, 121-129.	1.1	9
149	Interactions between deep formation fluid and gas hydrate dynamics inferred from pore fluid geochemistry at active pockmarks of the Vestnesa Ridge, west Svalbard margin. Marine and Petroleum Geology, 2021, 127, 104957.	3.3	9
150	Heat Flow Measurements at the Danube Deep-Sea Fan, Western Black Sea. Geosciences (Switzerland), 2021, 11, 240.	2.2	9
151	LAPM: a tool for underwater large-area photo-mosaicking. Geoscientific Instrumentation, Methods and Data Systems, 2013, 2, 189-198.	1.6	9
152	An automatic detection system for natural oil seep origin estimation in SAR images. , 2013, , .		8
153	Natural oil Seep Location Estimation in SAR images using direct and contextual information. , 2014, , .		8
154	Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea. Marine and Petroleum Geology, 2019, 107, 20-31.	3.3	8
155	Morphology and activity of the Helgoland Mud Volcano in the Sorokin Trough, northern Black Sea. Marine and Petroleum Geology, 2019, 99, 227-236.	3.3	8
156	Controls on Gas Emission Distribution on the Continental Slope of the Western Black Sea. Frontiers in Earth Science, 2021, 8, .	1.8	8
157	Oil and gas seepage offshore Georgia (Black Sea) – Geochemical evidences for a paleogene-neogene hydrocarbon source rock. Marine and Petroleum Geology, 2021, 128, 104995.	3.3	8
158	Accumulation of biogenie silica and opal dissolution in upper quaternary skagerrak sediments. Geo-Marine Letters, 1986, 6, 165-172.	1.1	7
159	Cold Seeps. , 2014, , 1-8.		7
160	Increased petrogenic and biospheric organic carbon burial in subâ€Antarctic fjord sediments in response to recent glacier retreat. Limnology and Oceanography, 2021, 66, 4347-4362.	3.1	7
161	Brennendes Eis: Methanhydrat — Energiequelle der Zukunft oder Gefahr fürs Klima?. Physik Journal, 2001, 57, 49-54.	0.1	6
162	Marine Methane Biogeochemistry of the Black Sea: A Review. Modern Approaches in Solid Earth Sciences, 2008, , 281-311.	0.3	6

#	Article	IF	CITATIONS
163	A Rotary Sonar for Long-Term Acoustic Monitoring of Deep-Sea Gas Emissions. , 2019, , .		6
164	Contributions from the 9th International Conference on Gas in Marine Sediments, University of Bremen, 15–19 September 2008. Geo-Marine Letters, 2010, 30, 151-155.	1.1	5
165	Deep-Sourced Fluids From a Convergent Margin Host Distinct Subseafloor Microbial Communities That Change Upon Mud Flow Expulsion. Frontiers in Microbiology, 2019, 10, 1436.	3.5	5
166	Molecular and isotopic signatures of oil-driven bacterial sulfate reduction at seeps in the southern Gulf of Mexico. Chemical Geology, 2022, 595, 120797.	3.3	5
167	Physical properties of a porcellanite layer (Southwest Indian Ridge) constrained by geophysical logging. Marine Geology, 1997, 140, 415-426.	2.1	4
168	Characteristics and hydrocarbon seepage at the Challenger Knoll in the Sigsbee Basin, Gulf of Mexico. Geo-Marine Letters, 2019, 39, 391-399.	1.1	4
169	Variability of Natural Methane Bubble Release at Southern Hydrate Ridge. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009894.	2.5	4
170	Data Report: Shapes and Structures of Gas Hydrates Imaged by Computed Tomographic Analyses, ODP Leg 204, Hydrate Ridge. , 0, , .		4
171	Drilling Gashydrates on Hydrate Ridge, Cascadia Continental Margin. Energy Exploration and Exploitation, 2003, 21, 333-334.	2.3	3
172	Heterogeneous hydrocarbon seepage at Mictlan asphalt knoll of the southern Gulf of Mexico. Marine and Petroleum Geology, 2021, 132, 105185.	3.3	3
173	Data Report: Composition of Authigenic Carbonates in Sediments of the Cascadia Accretionary Prism, ODP Leg 204. , 0, , .		2
174	Marine Gas Hydrates. , 2014, , 1-7.		2
175	Benthic Deep-Sea Life Associated with Asphaltic Hydrocarbon Emissions in the Southern Gulf of Mexico. Springer Oceanography, 2020, , 101-123.	0.3	2
176	Megabenthos habitats influenced by nearby hydrothermal activity on the Sandwich Plate, Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 198, 105075.	1.4	2
177	Sulfur formation associated with coexisting sulfide minerals in the Kemp Caldera hydrothermal system, Scotia Sea. Chemical Geology, 2022, 606, 120927.	3.3	2
178	Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins: Comment and Reply. Geology, 2004, 32, e64-e65.	4.4	1
179	Application of the automatic seep location estimator (ASLE) with the use of contextual information for estimating offshore oil seeps. Remote Sensing Applications: Society and Environment, 2017, 5, 16-26.	1.5	1
180	Eualus amandae (Decapoda: Caridea: Thoridae) is an indicator of active venting sites in the Southern Ocean. Marine Biodiversity, 2019, 49, 2937-2942.	1.0	1

#	Article	IF	CITATIONS
181	Thermal Characterization of Pockmarks Across Vestnesa and Svyatogor Ridges, Offshore Svalbard. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019468.	3.4	1
182	Cold Seeps. Encyclopedia of Earth Sciences Series, 2016, , 117-122.	0.1	1
183	Geochemistry of Hydrothermal Fluids From the E2-Segment of the East Scotia Ridge: Magmatic Input, Reaction Zone Processes, Fluid Mixing Regimes and Bioenergetic Landscapes. Frontiers in Marine Science, 0, 9, .	2.5	1
184	Methane in Marine Sediments. , 2014, , 1-7.		0