List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2382813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions. Journal of Cleaner Production, 2016, 112, 1330-1349.	9.3	235
2	Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001. Atmospheric Environment, 2003, 37, 4097-4108.	4.1	190
3	Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. International Journal of Coal Geology, 2002, 51, 237-250.	5.0	186
4	Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Science Advances, 2017, 3, e1601749.	10.3	182
5	Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. Journal of Geophysical Research, 2009, 114, .	3.3	148
6	Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low-temperature hydrothermal fluid. Applied Geochemistry, 2004, 19, 1315-1330.	3.0	146
7	Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, southern China. International Journal of Coal Geology, 2003, 55, 1-26.	5.0	130
8	Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. Journal of Geophysical Research, 2005, 110, .	3.3	126
9	Airborne fiber particles: Types, size and concentration observed in Beijing. Science of the Total Environment, 2020, 705, 135967.	8.0	126
10	Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. International Journal of Coal Geology, 2003, 55, 117-138.	5.0	119
11	Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles. Science of the Total Environment, 2006, 368, 916-925.	8.0	110
12	A comparison study on airborne particles during haze days and non-haze days in Beijing. Science of the Total Environment, 2013, 456-457, 1-8.	8.0	102
13	A conceptual framework for mixing structures in individual aerosol particles. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,784.	3.3	98
14	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	4.9	95
15	The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science, 2015, 6, 756.	3.6	83
16	Source Apportionment of Elemental Carbon in Beijing, China: Insights from Radiocarbon and Organic Marker Measurements. Environmental Science & Technology, 2015, 49, 8408-8415.	10.0	83
17	Air quality improvement in response to intensified control strategies in Beijing during 2013–2019. Science of the Total Environment, 2020, 744, 140776.	8.0	78
18	Sedimentology and sequence stratigraphy of the Lopingian (Late Permian) coal measures in southwestern China. International Journal of Coal Geology, 2011, 85, 168-183.	5.0	75

#	Article	IF	CITATIONS
19	Paleoenvironments and paleogeography of the Lower and lower Middle Jurassic coal measures in the Turpan-Hami oil-prone coal basin, northwestern China. AAPG Bulletin, 2003, 87, 335-355.	1.5	74
20	A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere, 2022, 286, 131513.	8.2	70
21	Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1044-1059.	3.3	67
22	Nanogeosciences: Research History, Current Status, and Development Trends. Journal of Nanoscience and Nanotechnology, 2017, 17, 5930-5965.	0.9	67
23	Morphology, composition, and mixing state of primary particles from combustion sources — crop residue, wood, and solid waste. Scientific Reports, 2017, 7, 5047.	3.3	66
24	Silicaâ^'Volatile Interaction and the Geological Cause of the Xuan Wei Lung Cancer Epidemic. Environmental Science & Technology, 2009, 43, 9016-9021.	10.0	64
25	Direct Observations of Fine Primary Particles From Residential Coal Burning: Insights Into Their Morphology, Composition, and Hygroscopicity. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,964.	3.3	61
26	Size, composition, and mixing state of individual aerosol particles in a South China coastal city. Journal of Environmental Sciences, 2010, 22, 561-569.	6.1	57
27	Linked sequence stratigraphy and tectonics in the Sichuan continental foreland basin, Upper Triassic Xujiahe Formation, southwest China. Journal of Asian Earth Sciences, 2014, 88, 116-136.	2.3	55
28	Mineralogical characteristics of airborne particles collected in Beijing during a severe Asian dust storm period in spring 2002. Science in China Series D: Earth Sciences, 2007, 50, 953-959.	0.9	52
29	Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
30	Influence of coal petrology on methane adsorption capacity of the Middle Jurassic coal in the Yuqia Coalfield, northern Qaidam Basin, China. Journal of Petroleum Science and Engineering, 2017, 149, 218-227.	4.2	48
31	Bioreactivity of particulate matter in Beijing air: Results from plasmid DNA assay. Science of the Total Environment, 2006, 367, 261-272.	8.0	47
32	Seasonal variation of particle-induced oxidative potential of airborne particulate matter in Beijing. Science of the Total Environment, 2017, 579, 1152-1160.	8.0	47
33	Airborne microplastics: A review of current perspectives and environmental implications. Journal of Cleaner Production, 2022, 347, 131048.	9.3	46
34	Late Permian coal-bearing carbonate successions in southern China: coal accumulation on carbonate platforms. International Journal of Coal Geology, 1998, 37, 235-256.	5.0	45
35	Sequence stratigraphy and paleogeography of the Middle Jurassic coal measures in the Yuqia coalfield, northern Qaidam Basin, northwestern China. AAPG Bulletin, 2014, 98, 2531-2550.	1.5	45
36	The mineralogy and possible sources of spring dust particles over Beijing. Advances in Atmospheric Sciences, 2008, 25, 395-403.	4.3	44

LONGYI SHAO

#	Article	IF	CITATIONS
37	Individual particles emitted from gasoline engines: Impact of engine types, engine loads and fuel components. Journal of Cleaner Production, 2017, 149, 461-471.	9.3	44
38	Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event. International Journal of Coal Geology, 2019, 207, 75-83.	5.0	43
39	Associations between particle physicochemical characteristics and oxidative capacity: An indoor PM10 study in Beijing, China. Atmospheric Environment, 2007, 41, 5316-5326.	4.1	42
40	Particle-induced oxidative damage of indoor PM10 from coal burning homes in the lung cancer area of Xuan Wei, China. Atmospheric Environment, 2013, 77, 959-967.	4.1	42
41	Measures of scale based on the wavelet scalogram with applications to seismic attenuation. Geophysics, 2006, 71, V111-V118.	2.6	41
42	Internally Mixed Sea Salt, Soot, and Sulfates at Macao, a Coastal City in South China. Journal of the Air and Waste Management Association, 2011, 61, 1166-1173.	1.9	41
43	Coal in a carbonate sequence stratigraphic framework: the Upper Permian Heshan Formation in central Guangxi, southern China. Journal of the Geological Society, 2003, 160, 285-298.	2.1	39
44	Evolution of a plume-influenced source-to-sink system: An example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian, SW China. Earth-Science Reviews, 2020, 207, 103224.	9.1	39
45	Multiple relationships between aerosol and COVID-19: A framework for global studies. Gondwana Research, 2021, 93, 243-251.	6.0	39
46	Evaluation and genetic analysis of coal structures in deep Jiaozuo Coalfield, northern China: Investigation by geophysical logging data. Fuel, 2017, 209, 552-566.	6.4	38
47	Mixing and waterâ€soluble characteristics of particulate organic compounds in individual urban aerosol particles. Journal of Geophysical Research, 2010, 115, .	3.3	37
48	Sequence stratigraphy, paleogeography, and coal accumulation regularity of major coal-accumulating periods in China. International Journal of Coal Science and Technology, 2020, 7, 240-262.	6.0	37
49	Iron solubility in fine particles associated with secondary acidic aerosols in east China. Environmental Pollution, 2020, 264, 114769.	7.5	37
50	Pollution of organic compounds and heavy metals in a coal gangue dump of the Gequan Coal Mine, China. Diqiu Huaxue, 2013, 32, 241-247.	0.5	36
51	Mineralogical and geochemical composition of particulate matter (PM10) in coal and non-coal industrial cities of Henan Province, North China. Atmospheric Research, 2014, 143, 462-472.	4.1	34
52	The oxidative potential of PM 10 from coal, briquettes and wood charcoal burnt in an experimental domestic stove. Atmospheric Environment, 2016, 127, 372-381.	4.1	34
53	The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2. Geoscience Frontiers, 2021, 12, 101189.	8.4	33
54	Effect of paleoclimate and paleoenvironment on organic matter accumulation in lacustrine shale: Constraints from lithofacies and element geochemistry in the northern Qaidam Basin, NW China. Journal of Petroleum Science and Engineering, 2022, 208, 109350.	4.2	32

#	Article	IF	CITATIONS
55	The anatomically preserved stem <i>Zhongmingella</i> gen. nov. from the Upper Permian of China: evaluating the early evolution and phylogeny of the Osmundales. Journal of Systematic Palaeontology, 2014, 12, 1-22.	1.5	31
56	Carbon isotope compositions of the Late Permian carbonate rocks in southern China: their variations between the Wujiaping and Changxing formations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161, 179-192.	2.3	30
57	Permo-Carboniferous coal measures in the Qinshui basin: Lithofacies paleogeography and its control on coal accumulation. Frontiers of Earth Science, 2007, 1, 106-115.	0.5	30
58	Continental records of organic carbon isotopic composition (δ13Corg), weathering, paleoclimate and wildfire linked to the End-Permian Mass Extinction. Chemical Geology, 2020, 558, 119764.	3.3	30
59	Microscopic morphology and size distribution of particles in PM2.5 of Guangzhou City. Journal of Atmospheric Chemistry, 2009, 64, 37-51.	3.2	29
60	Selection of strategic replacement areas for CBM exploration and development in China. Natural Gas Industry B, 2015, 2, 211-221.	3.4	29
61	Characteristics and sources of PM in seasonal perspective – A case study from one year continuously sampling in Beijing. Atmospheric Pollution Research, 2016, 7, 235-248.	3.8	29
62	Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield, western Guizhou, China. International Journal of Coal Geology, 2021, 247, 103855.	5.0	29
63	Particle-induced oxidative damage by indoor size-segregated particulate matter from coal-burning homes in the Xuanwei lung cancer epidemic area, Yunnan Province, China. Chemosphere, 2020, 256, 127058.	8.2	29
64	Paleoâ€ f ires and Atmospheric Oxygen Levels in the Latest Permian: Evidence from Maceral Compositions of Coals in Eastern Yunnan, Southern China. Acta Geologica Sinica, 2012, 86, 949-962.	1.4	28
65	Quantitative characterization of low-rank coal reservoirs in the southern Junggar Basin, NW China: Implications for pore structure evolution around the first coalification jump. Marine and Petroleum Geology, 2020, 113, 104165.	3.3	28
66	Distribution, sources, risks, and vitro DNA oxidative damage of PM2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China. Science of the Total Environment, 2020, 739, 139518.	8.0	27
67	PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Science of the Total Environment, 2016, 571, 1155-1163.	8.0	26
68	Chemical characteristics of PM2.5 during haze episodes in spring 2013 in Beijing. Urban Climate, 2017, 22, 51-63.	5.7	26
69	Sequence stratigraphy, palaeogeography, and coal accumulation of the fluvio-lacustrine Middle Jurassic Xishanyao Formation in central segment of southern Junggar Basin, NW China. International Journal of Coal Geology, 2018, 192, 14-38.	5.0	26
70	Anatomically preserved "strobili―and leaves from the Permian of China (Dorsalistachyaceae, fam.) Tj ETQq American Journal of Botany, 2017, 104, 127-149.	0 0 0 rgBT 1.7	/Overlock 10 25
71	Characteristics and aging of traffic-derived particles in a highway tunnel at a coastal city in southern China. Science of the Total Environment, 2018, 619-620, 1385-1393.	8.0	25
72	Aged status of soot particles during the passage of a weak cyclone in Beijing. Atmospheric Environment, 2011, 45, 2699-2703.	4.1	24

#	Article	IF	CITATIONS
73	Characterization of mineral particles in winter fog of Beijing analyzed by TEM and SEM. Environmental Monitoring and Assessment, 2010, 161, 565-573.	2.7	23
74	Influence of depositional environment on coalbed methane accumulation in the Carboniferous-Permian coal of the Qinshui Basin, northern China. Frontiers of Earth Science, 2019, 13, 535-550.	2.1	23
75	Coalbed methane enrichment model of low-rank coals in multi-coals superimposed regions: a case study in the middle section of southern Junggar Basin. Frontiers of Earth Science, 2021, 15, 256-271.	2.1	23
76	Chemical Modification of Dust Particles during Different Dust Storm Episodes. Aerosol and Air Quality Research, 2012, 12, 1095-1104.	2.1	23
77	COVID-19 mortality and exposure to airborne PM2.5: A lag time correlation. Science of the Total Environment, 2022, 806, 151286.	8.0	23
78	A review of atmospheric individual particle analyses: Methodologies and applications in environmental research. Gondwana Research, 2022, 110, 347-369.	6.0	23
79	Morphology and composition of particles emitted from a port fuel injection gasoline vehicle under real-world driving test cycles. Journal of Environmental Sciences, 2019, 76, 339-348.	6.1	22
80	Transâ€Regional Transport of Haze Particles From the North China Plain to Yangtze River Delta During Winter. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033778.	3.3	22
81	Sources and processes of iron aerosols in a megacity in Eastern China. Atmospheric Chemistry and Physics, 2022, 22, 2191-2202.	4.9	22
82	A unique trunk of Psaroniaceae (Marattiales)—Psaronius xuii sp. nov., and subdivision of the genus Psaronius Cotta. Review of Palaeobotany and Palynology, 2013, 197, 1-14.	1.5	21
83	Sequence stratigraphic interpretation of peatland evolution in thick coal seams: Examples from Yimin Formation (Early Cretaceous), Hailaer Basin, China. International Journal of Coal Geology, 2018, 196, 211-231.	5.0	21
84	Records of organic carbon isotopic composition (l̃`13Corg) and volcanism linked to changes in atmospheric pCO2 and climate during the Late Paleozoic Icehouse. Global and Planetary Change, 2021, 207, 103654.	3.5	21
85	Constraints on carbon accumulation rate and net primary production in the Lopingian (Late Permian) tropical peatland in SW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300, 152-157.	2.3	20
86	Soot particles at an elevated site in eastern China during the passage of a strong cyclone. Science of the Total Environment, 2012, 430, 217-222.	8.0	20
87	Geochemistry, reservoir characterization and hydrocarbon generation potential of lacustrine shales: A case of YQ-1 well in the Yuqia Coalfield, northern Qaidam Basin, NW China. Marine and Petroleum Geology, 2017, 88, 458-471.	3.3	19
88	The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China. Frontiers of Earth Science, 2018, 12, 148-159.	2.1	18
89	Morphology and size of the particles emitted from a gasoline-direct-injection-engine vehicle and their ageing in an environmental chamber. Atmospheric Chemistry and Physics, 2020, 20, 2781-2794.	4.9	18
90	Heavy Metal Compositions and Bioreactivity of Airborne PM10 in a Valley-Shaped City in Northwestern China. Aerosol and Air Quality Research, 2013, 13, 1116-1125.	2.1	18

#	Article	IF	CITATIONS
91	Depositional model for peat swamp and coal facies evolution using sedimentology, coal macerals, geochemistry and sequence stratigraphy. Journal of Earth Science (Wuhan, China), 2017, 28, 1163-1177.	3.2	17
92	Sequence stratigraphy and coal accumulation of Lower Cretaceous coal-bearing series in Erlian Basin, northeastern China. AAPG Bulletin, 2019, 103, 1653-1690.	1.5	17
93	Terrestrial organic carbon isotopic composition (δ13Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China. Global and Planetary Change, 2020, 195, 103331.	3.5	17
94	Mineralogical similarities and differences of dust storm particles at Beijing from deserts in the north and northwest. Science of the Total Environment, 2022, 803, 149980.	8.0	17
95	Mineralogy of Inhalable Particulate Matter (PM10) in the Atmosphere of Beijing, China. Water, Air, and Soil Pollution, 2007, 186, 129-137.	2.4	16
96	Oxidative capacities of size-segregated haze particles in a residential area of Beijing. Journal of Environmental Sciences, 2014, 26, 167-174.	6.1	16
97	A toxicological study of inhalable particulates in an industrial region of Lanzhou City, northwestern China: Results from plasmid scission assay. Aeolian Research, 2014, 14, 25-34.	2.7	16
98	Classification and chemical compositions of individual particles at an eastern marginal site of Tibetan Plateau. Atmospheric Pollution Research, 2016, 7, 833-842.	3.8	16
99	Hydrocarbon Generation Potential and Depositional Setting of Eocene Oil-Prone Coaly Source Rocks in the Xihu Sag, East China Sea Shelf Basin. ACS Omega, 2020, 5, 32267-32285.	3.5	16
100	Physicochemical Properties of Individual Airborne Particles in Beijing during Pollution Periods. Aerosol and Air Quality Research, 2017, 17, 3209-3219.	2.1	16
101	Characteristics of Individual Particles Emitted from an Experimental Burning Chamber with Coal from the Lung Cancer Area of Xuanwei, China. Aerosol and Air Quality Research, 2019, 19, 355-363.	2.1	16
102	Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols. Communications Earth & Environment, 2022, 3, .	6.8	16
103	Oxidative stress on plasmid DNA induced by inhalable particles in the urban atmosphere. Science Bulletin, 2004, 49, 692-697.	1.7	15
104	Correlation between plasmid DNA damage induced by PM10 and trace metals in inhalable particulate matters in Beijing air. Science in China Series D: Earth Sciences, 2006, 49, 1323-1331.	0.9	15
105	Sequence stratigraphic analysis of thick coal seams in paralic environments – A case study from the Early Permian Shanxi Formation in the Anhe coalfield, Henan Province, North China. International Journal of Coal Geology, 2020, 222, 103451.	5.0	15
106	Morphology, composition and mixing state of individual airborne particles: Effects of the 2017 Action Plan in Beijing, China. Journal of Cleaner Production, 2021, 329, 129748.	9.3	15
107	Oxidative potential and water-soluble heavy metals of size-segregated airborne particles in haze and non-haze episodes: Impact of the "Comprehensive Action Plan―in China. Science of the Total Environment, 2022, 814, 152774.	8.0	15
108	Seasonal variability and source distribution of haze particles from a continuous one-year study in Beijing. Atmospheric Pollution Research, 2018, 9, 627-633.	3.8	14

#	Article	IF	CITATIONS
109	Controls on accumulation of anomalously thick coals: Implications for sequence stratigraphic analysis. Sedimentology, 2020, 67, 991-1013.	3.1	14
110	Hemolysis of PM10 on RBCs in vitro: An indoor air study in a coal-burning lung cancer epidemic area. Geoscience Frontiers, 2022, 13, 101176.	8.4	14
111	The geochemistry and bioreactivity of fly-ash from coal-burning power stations. Biomarkers, 2009, 14, 45-48.	1.9	13
112	Xuanweioxylon scalariforme gen. et sp. nov.: Novel Permian coniferophyte stems with scalariform bordered pitting on secondary xylem tracheids. Review of Palaeobotany and Palynology, 2013, 197, 152-165.	1.5	13
113	Characterization of coal burning-derived individual particles emitted from an experimental domestic stove. Journal of Environmental Sciences, 2018, 71, 45-55.	6.1	13
114	Jurassic continental coal accumulation linked to changes in palaeoclimate and tectonics in a faultâ€depression superimposed basin, Qaidam Basin, <scp>NW</scp> China. Geological Journal, 2020, 55, 7998-8016.	1.3	13
115	Oil generation model of the liptinite-rich coals: Palaeogene in the Xihu Sag, East China Sea Shelf Basin. Journal of Petroleum Science and Engineering, 2022, 209, 109844.	4.2	13
116	Widespread wildfires linked to early Albian Ocean Anoxic Event 1b: Evidence from the Fuxin lacustrine basin, NE China. Global and Planetary Change, 2022, 215, 103858.	3.5	13
117	Ramp facies in an intracratonic basin: A case study from the Upper Devonian and Lower Carboniferous in central Hunan, southern China. Geoscience Frontiers, 2011, 2, 409-419.	8.4	12
118	Sequence palaeogeography, lacustrine basin evolution, and coal accumulation in the Lower Cretaceous Fuxin continental faulted basin, China. Geological Journal, 2020, 55, 1195-1215.	1.3	12
119	Diachronous end-Permian terrestrial ecosystem collapse with its origin in wildfires. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 594, 110960.	2.3	12
120	Characterization of crystalline secondary particles and elemental composition in PM10 of North China. Environmental Earth Sciences, 2015, 74, 5717-5727.	2.7	11
121	Physicochemical Characteristics and Possible Sources of Individual Mineral Particles in a Dust Storm Episode in Beijing, China. Atmosphere, 2018, 9, 269.	2.3	11
122	Petrology and hydrocarbon significance of the coaly source rocks from the Pinghu Formation in the Xihu Sag, East China Sea Shelf Basin. Energy Exploration and Exploitation, 2020, 38, 1295-1319.	2.3	11
123	Coal petrology of the Yimin Formation (Albian) in the Hailar Basin, NE China: Paleoenvironments and wildfires during peat formation. Cretaceous Research, 2021, 124, 104815.	1.4	11
124	Methane adsorption characteristics and its influencing factors of the medium-to-high rank coals in the Anyang-Hebi coalfield, northern China. Energy Exploration and Exploitation, 2019, 37, 60-82.	2.3	10
125	Sequence stratigraphy, paleogeography, and coal accumulation in a lowland alluvial plain, coastal plain, and shallow-marine setting: Upper Carboniferous–Permian of the Anyang–Hebi coalfield, Henan Province, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567, 110287.	2.3	10
126	Pm2.5 and ash residue from combustion of moxa floss. Acupuncture in Medicine, 2016, 34, 101-106.	1.0	9

#	Article	IF	CITATIONS
127	Local emissions and secondary pollutants cause severe PM2.5 elevation in urban air at the south edge of the North China Plain: Results from winter haze of 2017–2018 at a mega city. Science of the Total Environment, 2022, 802, 149630.	8.0	9
128	Evolution in physicochemical properties of fine particles emitted from residential coal combustion based on chamber experiment. Gondwana Research, 2022, 110, 252-263.	6.0	9
129	A toxicological study of inhalable particulates by plasmid DNA assay: A case study from Macao. Science China Earth Sciences, 2013, 56, 1037-1043.	5.2	8
130	Physicochemical Characteristics of Aerosol Particles in the Tibetan Plateau: Insights from TEM-EDX Analysis. Journal of Nanoscience and Nanotechnology, 2017, 17, 6899-6908.	0.9	8
131	Inorganic ion chemistry of local particulate matter in a populated city of North China at light, medium, and severe pollution levels. Science of the Total Environment, 2019, 650, 566-574.	8.0	8
132	Measurement report: Comparison of wintertime individual particles at ground level and above the mixed layer in urban Beijing. Atmospheric Chemistry and Physics, 2021, 21, 5301-5314.	4.9	8
133	Micro-Morphological Characteristics and Size Distribution of PM2.5 in the Kuitun-Dushanzi Region of Xinjiang, China. Aerosol and Air Quality Research, 2015, 15, 2258-2269.	2.1	8
134	Repeated Wildfires in the Middle Jurassic Xishanyao Formation (Aalenian and Bajocian Ages) in Northwestern China. Acta Geologica Sinica, 2022, 96, 1752-1763.	1.4	8
135	Characteristics and Dolomitization of Upper Cambrian to Lower Ordovician Dolomite from Outcrop in Keping Uplift, Western Tarim Basin, Northwest China. Acta Geologica Sinica, 2013, 87, 1005-1018.	1.4	7
136	Physicochemical Characteristics of Individual Aerosol Particles during the 2015 China Victory Day Parade in Beijing. Atmosphere, 2018, 9, 40.	2.3	7
137	Application of channel-belt scaling relationships to early Middle Jurassic source-to-sink system evolution in the southern Junggar Basin. Marine and Petroleum Geology, 2020, 117, 104356.	3.3	7
138	Records of terrestrial sulfur deposition from the latest Permian coals in SW China. Chemical Geology, 2012, 292-293, 18-24.	3.3	6
139	Dual Control of Depositional Facies on Uranium Mineralization in Coalâ€bearing Series: Examples from the Tuanyushan Area of the Northern Qaidam Basin, NW China. Acta Geologica Sinica, 2018, 92, 733-754.	1.4	6
140	Distribution of rare earth elements in PM10 emitted from burning coals and soil-mixed coal briquettes. Journal of Environmental Sciences, 2020, 97, 96-101.	6.1	6
141	Atmospheric iron particles in PM2.5 from a subway station, Beijing, China. Atmospheric Environment, 2022, 283, 119175.	4.1	6
142	Contrasts in spatial and temporal variability of oxidative capacity and elemental composition in moxibustion, indoor and outdoor environments in Beijing. Environmental Pollution, 2015, 202, 78-84.	7.5	5
143	Net primary productivity and its control of the Middle Jurassic peatlands: An example from the southern Junggar coalfield. Science China Earth Sciences, 2018, 61, 1633-1643.	5.2	5
144	Volcanically-Induced Environmental and Floral Changes Across the Triassic-Jurassic (T-J) Transition. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	5

LONGYI SHAO

#	Article	IF	CITATIONS
145	Microplastic atmospheric dustfall pollution in urban environment: Evidence from the types, distribution, and probable sources in Beijing, China. Science of the Total Environment, 2022, 838, 155989.	8.0	5
146	Study on geological controls and enrichment models of coalbed methane in the Wuwei Basin in eastern North Qilian, northwestern China. Energy Exploration and Exploitation, 2019, 37, 429-452.	2.3	4
147	A study of sequence stratigraphy of the Early Cretaceous coal-bearing series in the southeastern Songliao Basin, NE China. International Journal of Coal Science and Technology, 2020, 7, 263-272.	6.0	4
148	Study on the Applicability of Reservoir Fractal Characterization in Middle–High Rank Coals with NMR: Implications for Pore-Fracture Structure Evolution within the Coalification Process. ACS Omega, 2021, 6, 32495-32507.	3.5	4
149	Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS. Gondwana Research, 2022, , .	6.0	4
150	Sequence stratigraphy, palaeogeography, and coal accumulation in a gently sloping paralic basin: A case study from the Carboniferous-Early Permian Wuwei Basin, northwestern China. Geological Journal, 2018, 53, 2386-2412.	1.3	3
151	Elemental geochemistry of the Middle Jurassic shales in the northern Qaidam Basin, northwestern China: Constraints for tectonics and paleoclimate. Open Geosciences, 2021, 13, 1448-1462.	1.7	3
152	Compositions, Sources, and Aging Processes of Aerosol Particles during Winter Hazes in an Inland Megacity of NW China. Atmosphere, 2022, 13, 521.	2.3	2
153	Coal Macrolithotype Distribution and Its Genetic Analyses in the Deep Jiaozuo Coalfield Using Geophysical Logging Data. ACS Omega, 2021, 6, 35523-35537.	3.5	2
154	Characteristics and Aging of Traffic-Emitted Particles with Sulfate and Organic Compound Formation in Urban Air. Atmosphere, 2022, 13, 608.	2.3	2
155	Identification of Milankovitch Cycles and Calculation of Net Primary Productivity of Paleoâ€peatlands using Geophysical Logs of Coal Seams. Acta Geologica Sinica, 2022, 96, 1830-1841.	1.4	2
156	Fractal characterization of pore structure and its influence on CH4 adsorption and seepage capacity of low-rank coals. Frontiers of Earth Science, 2022, 16, 916-933.	2.1	2
157	A mineralogical study of the inhalable particulate matter (PM10) in Beijing urban air. Diqiu Huaxue, 2006, 25, 2-2.	0.5	1
158	SHRIMP dating of volcanic rock in the Zhangwu-Heishan area, West Liaoning province, China: Its relationship with coal-bearing strata. Mining Science and Technology, 2011, 21, 701-708.	0.3	1
159	Sequence paleogeography and coal accumulation in epicontinental basin. International Journal of Mining Science and Technology, 2013, 23, 943-952.	10.3	1
160	Physical properties of coalbed methane reservoirs and favourable exploration areas in the northern Qaidam Basin, NW China. International Journal of Oil, Gas and Coal Technology, 2018, 19, 357.	0.2	1
161	Variation of Particle-Induced Oxidative Potential of PM2.5 in Xinjiang, NW-China. Atmosphere, 2021, 12, 1028.	2.3	0