
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2382020/publications.pdf Version: 2024-02-01

SHUL-RIN YANG

#	Article	IF	CITATIONS
1	Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Advanced Materials, 2013, 25, 2452-2456.	21.0	2,227
2	3D Nitrogen-Doped Graphene Aerogel-Supported Fe ₃ O ₄ Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 9082-9085.	13.7	1,967
3	Efficient Synthesis of Heteroatom (N or S)â€Doped Graphene Based on Ultrathin Graphene Oxideâ€Porous Silica Sheets for Oxygen Reduction Reactions. Advanced Functional Materials, 2012, 22, 3634-3640.	14.9	1,180
4	Grapheneâ€Based Carbon Nitride Nanosheets as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reactions. Angewandte Chemie - International Edition, 2011, 50, 5339-5343.	13.8	1,024
5	Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. Journal of the American Chemical Society, 2012, 134, 19532-19535.	13.7	1,024
6	Fabrication of Grapheneâ€Encapsulated Oxide Nanoparticles: Towards Highâ€Performance Anode Materials for Lithium Storage. Angewandte Chemie - International Edition, 2010, 49, 8408-8411.	13.8	1,005
7	3D Graphene Foams Crossâ€linked with Preâ€encapsulated Fe ₃ O ₄ Nanospheres for Enhanced Lithium Storage. Advanced Materials, 2013, 25, 2909-2914.	21.0	727
8	Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Nano, 2012, 6, 9541-9550.	14.6	640
9	2D Sandwichâ€like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors. Advanced Materials, 2011, 23, 5574-5580.	21.0	526
10	Sandwichâ€Like, Grapheneâ€Based Titania Nanosheets with High Surface Area for Fast Lithium Storage. Advanced Materials, 2011, 23, 3575-3579.	21.0	503
11	Ultrafast Zn ²⁺ Intercalation and Deintercalation in Vanadium Dioxide. Advanced Materials, 2018, 30, e1800762.	21.0	485
12	Nanographene onstructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage. Advanced Materials, 2010, 22, 838-842.	21.0	473
13	Grapheneâ€Based Nanosheets with a Sandwich Structure. Angewandte Chemie - International Edition, 2010, 49, 4795-4799.	13.8	457
14	Direct Laserâ€Patterned Microâ€Supercapacitors from Paintable MoS ₂ Films. Small, 2013, 9, 2905-2910.	10.0	455
15	Ultrastable Inâ€Plane 1T–2H MoS ₂ Heterostructures for Enhanced Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1801345.	19.5	409
16	Pyridinicâ€Nitrogenâ€Dominated Graphene Aerogels with Fe–N–C Coordination for Highly Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2016, 26, 5708-5717.	14.9	360
17	Ptâ€Decorated 3D Architectures Built from Graphene and Graphitic Carbon Nitride Nanosheets as Efficient Methanol Oxidation Catalysts. Advanced Materials, 2014, 26, 5160-5165.	21.0	354
18	Building 3D Structures of Vanadium Pentoxide Nanosheets and Application as Electrodes in Supercapacitors. Nano Letters, 2013, 13, 5408-5413.	9.1	343

#	Article	IF	CITATIONS
19	Fabrication of Cobalt and Cobalt Oxide/Graphene Composites: Towards Highâ€Performance Anode Materials for Lithium Ion Batteries. ChemSusChem, 2010, 3, 236-239.	6.8	290
20	Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochemistry Communications, 2006, 8, 137-142.	4.7	279
21	3D Printing Quasiâ€Solidâ€State Asymmetric Microâ€Supercapacitors with Ultrahigh Areal Energy Density. Advanced Energy Materials, 2018, 8, 1800408.	19.5	268
22	Bottom-up Approach toward Single-Crystalline VO ₂ -Graphene Ribbons as Cathodes for Ultrafast Lithium Storage. Nano Letters, 2013, 13, 1596-1601.	9.1	263
23	Grapheneâ€Networkâ€Backboned Architectures for Highâ€Performance Lithium Storage. Advanced Materials, 2013, 25, 3979-3984.	21.0	253
24	A Bottomâ€Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage. Advanced Functional Materials, 2014, 24, 125-130.	14.9	247
25	Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nature Communications, 2014, 5, 4284.	12.8	228
26	Ultrafast Zinc–Ion–Conductor Interface toward Highâ€Rate and Stable Zinc Metal Batteries. Advanced Energy Materials, 2021, 11, 2100186.	19.5	223
27	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 1181-1186.	6.7	219
28	Three-Dimensional Metal–Graphene–Nanotube Multifunctional Hybrid Materials. ACS Nano, 2013, 7, 58-64.	14.6	202
29	Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nature Communications, 2014, 5, 3193.	12.8	198
30	3D Printing Sulfur Copolymerâ€Graphene Architectures for Liâ€S Batteries. Advanced Energy Materials, 2018, 8, 1701527.	19.5	196
31	Vertically Aligned Sulfur–Graphene Nanowalls on Substrates for Ultrafast Lithium–Sulfur Batteries. Nano Letters, 2015, 15, 3073-3079.	9.1	183
32	Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendriteâ€Free Metallic Lithium Anodes. Advanced Materials, 2019, 31, e1901820.	21.0	174
33	Single Zinc Atoms Immobilized on MXene (Ti ₃ C ₂ Cl _{<i>x</i>}) Layers toward Dendrite-Free Lithium Metal Anodes. ACS Nano, 2020, 14, 891-898.	14.6	174
34	Liquidâ€Phase Exfoliated Metallic Antimony Nanosheets toward High Volumetric Sodium Storage. Advanced Energy Materials, 2017, 7, 1700447.	19.5	172
35	Partially Single rystalline Mesoporous Nb ₂ O ₅ Nanosheets in between Graphene for Ultrafast Sodium Storage. Advanced Materials, 2016, 28, 7672-7679.	21.0	171
36	Unlocking the Potential of Disordered Rocksalts for Aqueous Zincâ€lon Batteries. Advanced Materials, 2019, 31, e1904369.	21.0	171

#	Article	IF	CITATIONS
37	Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 2017, 39, 654-661.	16.0	163
38	Use of Organic Precursors and Graphenes in the Controlled Synthesis of Carbon-Containing Nanomaterials for Energy Storage and Conversion. Accounts of Chemical Research, 2013, 46, 116-128.	15.6	158
39	Catalytic Conversion of Polysulfides on Single Atom Zinc Implanted MXene toward Highâ€Rate Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2002471.	14.9	158
40	Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature, 2020, 577, 492-496.	27.8	145
41	Dendriteâ€Free Metallic Lithium in Lithiophilic Carbonized Metal–Organic Frameworks. Advanced Energy Materials, 2018, 8, 1703505.	19.5	144
42	Carbon-Encapsulated Metal Oxide Hollow Nanoparticles and Metal Oxide Hollow Nanoparticles: A General Synthesis Strategy and Its Application to Lithium-Ion Batteries. Chemistry of Materials, 2009, 21, 2935-2940.	6.7	143
43	A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochimica Acta, 2008, 53, 2238-2244.	5.2	141
44	Grapheneâ€Based Porous Silica Sheets Impregnated with Polyethyleneimine for Superior CO ₂ Capture. Advanced Materials, 2013, 25, 2130-2134.	21.0	140
45	Selective Etching Quaternary MAX Phase toward Single Atom Copper Immobilized MXene (Ti ₃ C ₂ Cl _{<i>x</i>}) for Efficient CO ₂ Electroreduction to Methanol. ACS Nano, 2021, 15, 4927-4936.	14.6	139
46	Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Science Advances, 2019, 5, eaau6264.	10.3	130
47	Tricycloquinazolineâ€Based 2D Conductive Metal–Organic Frameworks as Promising Electrocatalysts for CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 14473-14479.	13.8	130
48	Tin Intercalated Ultrathin MoO ₃ Nanoribbons for Advanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1803137.	19.5	126
49	CoMoO ₄ Nanoparticles Anchored on Reduced Graphene Oxide Nanocomposites as Anodes for Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 20414-20422.	8.0	125
50	Highâ€Entropy Atomic Layers of Transitionâ€Metal Carbides (MXenes). Advanced Materials, 2021, 33, e2101473.	21.0	122
51	Porous Iron Oxide Ribbons Grown on Graphene for High-Performance Lithium Storage. Scientific Reports, 2012, 2, 427.	3.3	119
52	Pyridinic Nitrogenâ€Enriched Carbon Nanogears with Thin Teeth for Superior Lithium Storage. Advanced Energy Materials, 2016, 6, 1600917.	19.5	116
53	From Commercial Sponge Toward 3D Graphene–Silicon Networks for Superior Lithium Storage. Advanced Energy Materials, 2015, 5, 1500289.	19.5	114
54	Dendriteâ€Free Lithium Anodes with Ultraâ€Deep Stripping and Plating Properties Based on Vertically Oriented Lithium–Copper–Lithium Arrays. Advanced Materials, 2019, 31, e1901310.	21.0	112

#	Article	IF	CITATIONS
55	Chargeâ€Enriched Strategy Based on MXeneâ€Based PolypyrroleÂLayers Toward Dendriteâ€Free Zinc Metal Anodes. Advanced Energy Materials, 2022, 12, .	19.5	108
56	3D Nanostructured Molybdenum Diselenide/Graphene Foam as Anodes for Long-Cycle Life Lithium-ion Batteries. Electrochimica Acta, 2015, 176, 103-111.	5.2	107
57	In Situ Generation of Artificial Solidâ€Electrolyte Interphases on 3D Conducting Scaffolds for Highâ€Performance Lithiumâ€Metal Anodes. Advanced Energy Materials, 2020, 10, 1903339.	19.5	107
58	Synergistic electrocatalysis of polysulfides by a nanostructured VS ₄ -carbon nanofiber functional separator for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 16812-16820.	10.3	105
59	A new configured lithiated silicon–sulfur battery built on 3D graphene with superior electrochemical performances. Energy and Environmental Science, 2016, 9, 2025-2030.	30.8	98
60	MXeneâ€Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors. Advanced Energy Materials, 2020, 10, 1903534.	19.5	97
61	A Material Perspective of Rechargeable Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1702296.	19.5	95
62	Gradientâ€Distributed Nucleation Seeds on Conductive Host for a Dendriteâ€Free and Highâ€Rate Lithium Metal Anode. Small, 2019, 15, e1903520.	10.0	83
63	3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Materials, 2020, 24, 670-675.	18.0	82
64	Conversion of Intercalated MoO ₃ to Multiâ€Heteroatomsâ€Doped MoS ₂ with High Hydrogen Evolution Activity. Advanced Materials, 2020, 32, e2001167.	21.0	82
65	Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries. Electrochimica Acta, 2007, 52, 5286-5293.	5.2	79
66	Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horizons, 2019, 4, 77-98.	8.0	79
67	Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage. Journal of Materials Chemistry A, 2014, 2, 13136-13142.	10.3	78
68	Copper(<scp>ii</scp>) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting. Nanoscale, 2016, 8, 5892-5901.	5.6	78
69	Hybrid 2D–0D Graphene–VN Quantum Dots for Superior Lithium and Sodium Storage. Advanced Energy Materials, 2016, 6, 1502067.	19.5	76
70	Single-Atom Pt Anchored on Oxygen Vacancy of Monolayer Ti ₃ C ₂ T _{<i>x</i>} for Superior Hydrogen Evolution. Nano Letters, 2022, 22, 1398-1405.	9.1	76
71	Formation of Superâ€Assembled TiO _{<i>x</i>} /Zn/Nâ€Doped Carbon Inverse Opal Towards Dendriteâ€Free Zn Anodes. Angewandte Chemie - International Edition, 2022, 61, e202115649.	13.8	76
72	Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries. Electrochimica Acta, 2008, 53, 6351-6355.	5.2	73

#	Article	IF	CITATIONS
73	Ultrathin two-dimensional metallic nanomaterials. Materials Chemistry Frontiers, 2018, 2, 456-467.	5.9	73
74	Highâ€Entropy Carbonitride MAX Phases and Their Derivative MXenes. Advanced Energy Materials, 2022, 12, .	19.5	69
75	Perpendicular MXene Arrays with Periodic Interspaces toward Dendriteâ€Free Lithium Metal Anodes with Highâ€Rate Capabilities. Advanced Functional Materials, 2020, 30, 1908075.	14.9	68
76	Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes. ACS Applied Materials & Interfaces, 2017, 9, 40265-40272.	8.0	67
77	3D-Printed Hierarchical Porous Frameworks for Sodium Storage. ACS Applied Materials & Interfaces, 2017, 9, 41871-41877.	8.0	67
78	Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Materials, 2021, 43, 212-220.	18.0	65
79	Efficient polysulfide barrier of a graphene aerogel–carbon nanofibers–Ni network for high-energy-density lithium–sulfur batteries with ultrahigh sulfur content. Journal of Materials Chemistry A, 2018, 6, 20926-20938.	10.3	63
80	Vertically Aligned MXene Nanosheet Arrays for Highâ€Rate Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	19.5	61
81	Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. Journal of Materials Chemistry A, 2015, 3, 19696-19701.	10.3	60
82	Carbon nanotube capsules encapsulating SnO2 nanoparticles as an anode material for lithium ion batteries. Electrochimica Acta, 2009, 55, 521-527.	5.2	58
83	Stressâ€Release Functional Liquid Metalâ€MXene Layers toward Dendriteâ€Free Zinc Metal Anodes. Advanced Energy Materials, 2022, 12, .	19.5	58
84	Hollow carbon spheres with encapsulation of Co3O4 nanoparticles as anode material for lithium ion batteries. Electrochimica Acta, 2012, 78, 440-445.	5.2	54
85	Two-Dimensional Porous Sandwich-Like C/Si–Graphene–Si/C Nanosheets for Superior Lithium Storage. ACS Applied Materials & Interfaces, 2017, 9, 39371-39379.	8.0	53
86	Fabrication of Fully Fluorinated Graphene Nanosheets Towards Highâ€Performance Lithium Storage. Advanced Materials Interfaces, 2014, 1, 1300149.	3.7	51
87	Multiâ€Atomic Layers of Metallic Aluminum for Ultralong Life Lithium Storage with High Volumetric Capacity. Advanced Functional Materials, 2017, 27, 1700840.	14.9	50
88	3D Reduced Graphene Oxide Coated V ₂ O ₅ Nanoribbon Scaffolds for High-Capacity Supercapacitor Electrodes. Particle and Particle Systems Characterization, 2015, 32, 817-821.	2.3	49
89	Continuously 3D printed quantum dot-based electrodes for lithium storage with ultrahigh capacities. Journal of Materials Chemistry A, 2018, 6, 19960-19966.	10.3	49
90	Singleâ€Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes. Advanced Energy Materials, 2022, 12, .	19.5	49

#	Article	IF	CITATIONS
91	Singleâ€Atom Sites on MXenes for Energy Conversion and Storage. Small Science, 2021, 1, 2100017.	9.9	48
92	Tortuosity Modulation toward Highâ€Energy and Highâ€Power Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003663.	19.5	46
93	Nanosized tin and tin oxides loaded expanded mesocarbon microbeads as negative electrode material for lithium-ion batteries. Journal of Power Sources, 2007, 173, 487-494.	7.8	44
94	An artificial TiO ₂ /lithium <i>n</i> -butoxide hybrid SEI layer with facilitated lithium-ion transportation ability for stable lithium anodes. Nanoscale, 2019, 11, 2194-2201.	5.6	43
95	Ultrathin bismuth nanosheets as an efficient polysulfide catalyst for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 149-157.	10.3	43
96	Mesoporous Hybrid Electrolyte for Simultaneously Inhibiting Lithium Dendrites and Polysulfide Shuttle in Li–S Batteries. Advanced Energy Materials, 2018, 8, 1703124.	19.5	42
97	Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium–sulfur batteries. Rare Metals, 2022, 41, 311-318.	7.1	40
98	Vertically oriented growth of MoO ₃ nanosheets on graphene for superior lithium storage. Journal of Materials Chemistry A, 2018, 6, 672-679.	10.3	35
99	Vanadium carbide with periodic anionic vacancies for effective electrocatalytic nitrogen reduction. Materials Today, 2020, 40, 18-25.	14.2	34
100	Harnessing the Unique Features of 2D Materials toward Dendriteâ€free Metal Anodes. Energy and Environmental Materials, 2022, 5, 45-67.	12.8	33
101	V2O3 nanoparticles anchored onto the reduced graphene oxide for superior lithium storage. Electrochimica Acta, 2017, 231, 732-738.	5.2	32
102	High-Throughput Production of 1T MoS ₂ Monolayers Based on Controllable Conversion of Mo-Based MXenes. ACS Nano, 2021, 15, 19275-19283.	14.6	32
103	A linear molecule sulfur-rich organic cathode material for high performance lithium–sulfur batteries. Journal of Power Sources, 2019, 430, 210-217.	7.8	31
104	A liquid metal-based self-adaptive sulfur–gallium composite for long-cycling lithium–sulfur batteries. Nanoscale, 2019, 11, 412-417.	5.6	29
105	Pre-planted nucleation seeds for rechargeable metallic lithium anodes. Journal of Materials Chemistry A, 2017, 5, 18862-18869.	10.3	28
106	W-doped VO2(B) nanosheets-built 3D networks for fast lithium storage at high temperatures. Electrochimica Acta, 2019, 295, 393-400.	5.2	26
107	Zinc anode with artificial solid electrolyte interface for dendrite-free Ni-Zn secondary battery. Journal of Colloid and Interface Science, 2019, 555, 174-179.	9.4	25
108	Harnessing the unique features of MXenes for sulfur cathodes. Tungsten, 2020, 2, 162-175.	4.8	25

SHU-BIN YANG

#	Article	IF	CITATIONS
109	Coplanar Asymmetrical Reduced Graphene Oxide–Titanium Electrodes for Polymer Photodetectors. Advanced Materials, 2012, 24, 1566-1570.	21.0	24
110	Endowing the Lithium Metal Surface with Self-Healing Property via an in Situ Gas–Solid Reaction for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28878-28884.	8.0	24
111	Two-dimensional nanosheets as building blocks to construct three-dimensional structures for lithium storage. Journal of Energy Chemistry, 2018, 27, 128-145.	12.9	23
112	Interlamellar Lithiumâ€lon Conductor Reformed Interface for High Performance Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2102336.	14.9	23
113	Atomic Layers of MoO ₂ with Exposed Highâ€Energy (010) Facets for Efficient Oxygen Reduction. Small, 2018, 14, e1703960.	10.0	22
114	Synergic antimony–niobium pentoxide nanomeshes for high-rate sodium storage. Journal of Materials Chemistry A, 2018, 6, 6225-6232.	10.3	22
115	A Highly Durable Rubberâ€Derived Lithium onducting Elastomer for Lithium Metal Batteries. Advanced Science, 2022, 9, e2200553.	11.2	22
116	Effect of heat treatment on the morphology and electrochemical performance of TiO2 nanotubes as anode materials for lithium-ion batteries. Materials Chemistry and Physics, 2009, 118, 367-370.	4.0	21
117	Nitrogen-doped holey graphene foams for high-performance lithium storage. RSC Advances, 2015, 5, 91114-91119.	3.6	21
118	3D Printing Lithium Salt towards Dendrite-free Lithium Anodes. Energy Storage Materials, 2021, 35, 108-113.	18.0	21
119	3D organic Na ₄ C ₆ O ₆ /graphene architecture for fast sodium storage with ultralong cycle life. Chemical Communications, 2017, 53, 12642-12645.	4.1	19
120	Recent Advances in Synthesis and Applications of 2D Junctions. Small, 2018, 14, e1801606.	10.0	19
121	Creating New Battery Configuration Associated with the Functions of Primary and Rechargeable Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003746.	19.5	19
122	A perspective on highâ€entropy twoâ€dimensional materials. SusMat, 2022, 2, 65-75.	14.9	19
123	Graphene-supported mesoporous titania nanosheets for efficient photodegradation. Journal of Colloid and Interface Science, 2017, 505, 711-718.	9.4	18
124	Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth. Journal of Energy Chemistry, 2021, 56, 463-469.	12.9	18
125	Rapid and Lowâ€Temperature Saltâ€Templated Production of 2D Metal Oxide/Oxychloride/Hydroxide. Small, 2019, 15, e1904587.	10.0	17
126	Facile fabrication of 2D stanene nanosheets <i>via</i> a dealloying strategy for potassium storage. Chemical Communications, 2019, 55, 3983-3986.	4.1	17

SHU-BIN YANG

#	Article	IF	CITATIONS
127	Expansion of mesocarbon microbeads. Carbon, 2006, 44, 730-733.	10.3	14
128	Lowâ€Tortuous MXene (TiNbC) Accordion Arrays Enabled Fast Ion Diffusion and Charge Transfer in Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	19.5	14
129	Controllable synthesis of sandwich-like graphene-supported structures for energy storage and conversion. New Carbon Materials, 2017, 32, 1-14.	6.1	13
130	Defect-rich, boron-nitrogen bonds-free and dual-doped graphenes for highly efficient oxygen reduction reaction. Journal of Colloid and Interface Science, 2018, 521, 11-16.	9.4	13
131	Ultrafine SnO ₂ nanoparticles decorated onto graphene for high performance lithium storage. RSC Advances, 2015, 5, 43798-43804.	3.6	12
132	Tricycloquinazolineâ€Based 2D Conductive Metal–Organic Frameworks as Promising Electrocatalysts for CO 2 Reduction. Angewandte Chemie, 2021, 133, 14594-14600.	2.0	12
133	Vertically aligned cobalt oxide nanowires on graphene networks for high-performance lithium storage. Nanotechnology, 2014, 25, 445704.	2.6	10
134	Few-layer tin–antimony nanosheets: a novel 2D alloy for superior lithium storage. Chemical Communications, 2019, 55, 3975-3978.	4.1	8
135	2D Nonâ€Van Der Waals Transitionâ€Metal Chalcogenide Layers Derived from Vanadiumâ€Based MAX Phase for Ultrafast Zinc Storage. Advanced Energy Materials, 2022, 12, .	19.5	8
136	Fast Cryomediated Dynamic Equilibrium Hydrolysates towards Grain Boundary-Enriched Platinum Scaffolds for Efficient Methanol Oxidation. Research, 2019, 2019, 8174314.	5.7	5
137	Nitrogenâ€Doped Porous Carbon Nanosheets with Ultrahigh Capacity and Quasicapacitive Energy Storage Performance for Lithium and Sodium Storage Applications. Energy Technology, 2021, 9, 2100309.	3.8	4
138	Formation of Superâ€Assembled TiO _{<i>x</i>} /Zn/Nâ€Doped Carbon Inverse Opal Towards Dendriteâ€Free Zn Anodes. Angewandte Chemie, 2022, 134, .	2.0	4
139	Room-temperature sodium thermal reaction towards electrochemically active metals for lithium storage. Journal of Colloid and Interface Science, 2019, 551, 10-15.	9.4	3
140	Editorial for rare metals, special issue on solid state batteries. Rare Metals, 2018, 37, 447-448.	7.1	2
141	Rücktitelbild: Tricycloquinazolineâ€Based 2D Conductive Metal–Organic Frameworks as Promising Electrocatalysts for CO ₂ Reduction (Angew. Chem. 26/2021). Angewandte Chemie, 2021, 133, 14840-14840	2.0	Ο