Songfang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238154/publications.pdf

Version: 2024-02-01

48 papers

1,912 citations

304743

22

h-index

254184 43 g-index

48 all docs 48 docs citations

48 times ranked 2924 citing authors

#	Article	IF	CITATIONS
1	Sensing for hydrazine of a pyrene chalcone derivative with acryloyl terminal group. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120272.	3.9	8
2	Rational design of high-performance wearable tactile sensors utilizing bioinspired structures/functions, natural biopolymers, and biomimetic strategies. Materials Science and Engineering Reports, 2022, 148, 100672.	31.8	30
3	Biomimetic metal–organic framework-derived porous carbon welded carbon nanotube networks for strain sensors with high sensitivity and wide sensing range. Applied Surface Science, 2022, 593, 153417.	6.1	8
4	2D Materials for Skinâ€Mountable Electronic Devices. Advanced Materials, 2021, 33, e2005858.	21.0	51
5	Polypyrrole-coated copper nanowire-threaded silver nanoflowers for wearable strain sensors with high sensing performance. Chemical Engineering Journal, 2021, 417, 127966.	12.7	20
6	Corncob-Derived Hierarchical Porous Activated Carbon for High-Performance Lithium-Ion Capacitors. Energy & Ener	5.1	15
7	Structurally regular arrangement induced fluorescence enhancement and specific recognition for glutathione of a pyrene chalcone derivative. Analytica Chimica Acta, 2019, 1082, 146-151.	5.4	8
8	Two-photon fluorescence probes for mitochondria imaging and detection of sulfite/bisulfite in living cells. Sensors and Actuators B: Chemical, 2019, 295, 215-222.	7.8	37
9	Nacre-inspired highly stretchable piezoresistive Cu–Ag nanowire/graphene synergistic conductive networks for strain sensors and beyond. Journal of Materials Chemistry C, 2019, 7, 7061-7072.	5.5	24
10	A mitochondria-targeted ratiometric fluorescent probe for endogenous cyanide in biological samples. Sensors and Actuators B: Chemical, 2019, 294, 283-290.	7.8	38
11	Hydrophobic, blocky silica-reduced graphene oxide hybrid sponges as highly efficient and recyclable sorbents. Applied Surface Science, 2019, 486, 303-311.	6.1	13
12	Biomimetic, recyclable, highly stretchable and self-healing conductors enabled by dual reversible bonds. Chemical Engineering Journal, 2019, 371, 203-212.	12.7	53
13	Novel adamantane-based periodic mesoporous organosilica film with ultralow dielectric constant and high mechanical strength. Journal of Sol-Gel Science and Technology, 2018, 85, 703-711.	2.4	7
14	Three-Dimensional Graphene Structure for Healable Flexible Electronics Based on Diels–Alder Chemistry. ACS Applied Materials & Interfaces, 2018, 10, 9727-9735.	8.0	44
15	Two 3-hydroxyflavone derivatives as two-photon fluorescence turn-on chemosensors for cysteine and homocysteine in living cells. Talanta, 2018, 181, 118-124.	5 . 5	18
16	Efficient Solution―and Solidâ€State Fluorescence for a Series of 7â€Diethylaminocoumarin Amide Compounds. Asian Journal of Organic Chemistry, 2018, 7, 197-202.	2.7	12
17	Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications. Small, 2018, 14, e1800047.	10.0	83
18	An Omniâ∈Healable and Highly Sensitive Capacitive Pressure Sensor with Microarray Structure. Chemistry - A European Journal, 2018, 24, 16823-16832.	3.3	49

#	Article	IF	CITATIONS
19	Amorphizing of Ag Nanoparticles under Bioinspired Oneâ€step Assembly of Fe ₃ O ₄ â€Ag/rGO Hybrids via Selfâ€redox Process with Enhanced Activity. Applied Organometallic Chemistry, 2018, 32, e4428.	3.5	8
20	Cyanide and biothiols recognition properties of a coumarin chalcone compound as red fluorescent probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 514-519.	3.9	18
21	Fabrication of a flexible and stretchable three-dimensional conductor based on Au–Ni@graphene coated polyurethane sponge by electroless plating. Journal of Materials Chemistry C, 2018, 6, 8135-8143.	5.5	21
22	Photophysical and cyanide recognition properties of a pyridinium inner salt compound. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 83-88.	3.9	2
23	A novel fluorescence chemodosimeter for fluoride anions in aqueous solution based on siloxane-aurone moiety. Inorganic Chemistry Communication, 2017, 78, 52-55.	3.9	9
24	Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Applied Materials & Strategies, Materials, 2017, 9, 12147-12164.	8.0	359
25	Highly electrically conductive and stretchable copper nanowires-based composite for flexible and printable electronics. Composites Science and Technology, 2017, 146, 169-176.	7.8	62
26	Binary Synergistic Sensitivity Strengthening of Bioinspired Hierarchical Architectures based on Fragmentized Reduced Graphene Oxide Sponge and Silver Nanoparticles for Strain Sensors and Beyond. Small, 2017, 13, 1700944.	10.0	97
27	A novel silicon-oxygen aurone derivative assisted by graphene oxide as fluorescence chemosensor for fluoride anions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 182, 37-41.	3.9	8
28	A crack-based nickel@graphene-wrapped polyurethane sponge ternary hybrid obtained by electrodeposition for highly sensitive wearable strain sensors. Journal of Materials Chemistry C, 2017, 5, 10167-10175.	5.5	61
29	Stretchable conductors based on in-situ polymerizde poly(3,4-ethylenedioxythiophene) and three dimensional structure design. , 2016, , .		0
30	Synergistic enhancement of glass fiber and tetrapodâ€shaped ZnO whisker on the mechanical and thermal behavior of isotactic polypropylene. Journal of Applied Polymer Science, 2016, 133, .	2.6	4
31	Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18954-18961.	8.0	176
32	Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics. Journal of Materials Chemistry C, 2016, 4, 6666-6674.	5.5	58
33	Covalently bonded nitrogen-doped carbon-nanotube-supported Ag hybrid sponges: Synthesis, structure manipulation, and its application for flexible conductors and strain-gauge sensors. Carbon, 2015, 86, 225-234.	10.3	59
34	In situ synthesis of silver nanostructures on magnetic Fe ₃ O ₄ @organosilicon microparticles for rapid hydrogenation catalysis. RSC Advances, 2015, 5, 56974-56981.	3.6	10
35	A facile method to prepare highly compressible three-dimensional graphene-only sponge. Journal of Materials Chemistry A, 2015, 3, 15482-15488.	10.3	54
36	In situ assembly of dispersed Ag nanoparticles on hierarchically porous organosilica microspheres for controllable reduction of 4-nitrophenol. Journal of Materials Science, 2015, 50, 3399-3408.	3.7	20

#	Article	IF	CITATIONS
37	Thermally reversible and selfâ€healing novolac epoxy resins based on <scp>Diels</scp> – <scp>Alder</scp> chemistry. Journal of Applied Polymer Science, 2015, 132, .	2.6	47
38	Layer-by-Layer Assembly of Multifunctional Porous N-Doped Carbon Nanotube Hybrid Architectures for Flexible Conductors and Beyond. ACS Applied Materials & Interfaces, 2015, 7, 6716-6723.	8.0	21
39	Facile preparation of folded structured single-walled carbon nanotube hybrid paper: Toward applications as flexible conductor and temperature-driven switch. Carbon, 2015, 95, 987-994.	10.3	18
40	Multifunctionalization of novolac epoxy resin and its influence on dielectric, thermal properties, viscoelastic, and aging behavior. Journal of Applied Polymer Science, 2014, 131, .	2.6	5
41	Strain-Driven and Ultrasensitive Resistive Sensor/Switch Based on Conductive Alginate/Nitrogen-Doped Carbon-Nanotube-Supported Ag Hybrid Aerogels with Pyramid Design. ACS Applied Materials & Interfaces, 2014, 6, 22823-22829.	8.0	58
42	In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry. Journal of Materials Chemistry A, 2014, 2, 20642-20649.	10.3	137
43	Wetting behavior of polymer liquid in insulation process for through silicon via. , 2013, , .		2
44	Investigation on the properties and processability of polymeric insulation layers for through silicon via. , $2013, \dots$		7
45	PA6 and Kevlar fiber reinforced isotactic polypropylene: Structure, mechanical properties and crystallization and melting behavior. Materials & Design, 2012, 35, 749-753.	5.1	30
46	The application of response surface methodology on the synthesis of grafted polypropylene through the solvothermal route. Advances in Polymer Technology, 2012, 31, 109-117.	1.7	7
47	Synthesis and characterization of kaolin with polystyrene via in-situ polymerization and their application on polypropylene. Materials & Design, 2011, 32, 957-963.	5.1	29
48	Synthesis and reaction kinetics model of suspension phase grafting polypropylene with dual monomers. Polymer Bulletin, 2010, 64, 771-782.	3.3	7