
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2381521/publications.pdf Version: 2024-02-01

MODDIS | RIDNRALIM

#	Article	IF	CITATIONS
1	Addressing unmet needs for people with cancer cachexia: recommendations from a multistakeholder workshop. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1418-1425.	2.9	19
2	Metabolic drivers of non-alcoholic fatty liver disease. Molecular Metabolism, 2021, 50, 101143.	3.0	99
3	Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Molecular Metabolism, 2021, 48, 101196.	3.0	42
4	The aetiology and molecular landscape of insulin resistance. Nature Reviews Molecular Cell Biology, 2021, 22, 751-771.	16.1	221
5	Inhibition of ketohexokinase in adults with NAFLD reduces liver fat and inflammatory markers: A randomized phase 2 trial. Med, 2021, 2, 800-813.e3.	2.2	24
6	Molecular aspects of fructose metabolism and metabolic disease. Cell Metabolism, 2021, 33, 2329-2354.	7.2	100
7	GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metabolism, 2020, 32, 938-950.e6.	7.2	70
8	JUND regulates pancreatic β cell survival during metabolic stress. Molecular Metabolism, 2019, 25, 95-106.	3.0	28
9	Innate Immune Signaling in Drosophila Blocks Insulin Signaling by Uncoupling PI(3,4,5)P3 Production and Akt Activation. Cell Reports, 2018, 22, 2550-2556.	2.9	66
10	Activation of Liver AMPK with PF-06409577 Corrects NAFLD and Lowers Cholesterol in Rodent and Primate Preclinical Models. EBioMedicine, 2018, 31, 122-132.	2.7	99
11	The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metabolism, 2018, 27, 351-361.e3.	7.2	416
12	Targeting hepatic glutaminase activity to ameliorate hyperglycemia. Nature Medicine, 2018, 24, 518-524.	15.2	50
13	Hepatic Gi signaling regulates whole-body glucose homeostasis. Journal of Clinical Investigation, 2018, 128, 746-759.	3.9	34
14	Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends in Endocrinology and Metabolism, 2017, 28, 497-505.	3.1	278
15	Selective Activation of AMPK <i>β</i> 1-Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 303-311.	1.3	66
16	mTORC1 stimulates phosphatidylcholine synthesis to promote triglyceride secretion. Journal of Clinical Investigation, 2017, 127, 4207-4215.	3.9	71
17	Principles of Hormone Action. , 2016, , 18-48.		4
18	Aktâ€mediated foxo1 inhibition is required for liver regeneration. Hepatology, 2016, 63, 1660-1674.	3.6	55

2

#	Article	IF	CITATIONS
19	Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production. Cell Metabolism, 2016, 23, 1154-1166.	7.2	207
20	Glucagon: acute actions on hepatic metabolism. Diabetologia, 2016, 59, 1376-1381.	2.9	51
21	Insulin-Dependent Regulation of mTORC2-Akt-FoxO Suppresses TLR4 Signaling in Human Leukocytes: Relevance to Type 2 Diabetes. Diabetes, 2016, 65, 2224-2234.	0.3	23
22	Pharma and Academia: What We Have Here Is a Failure to Communicate. Cell Metabolism, 2016, 24, 365-367.	7.2	5
23	SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nature Communications, 2016, 7, 12180.	5.8	67
24	Lack of AKT in adipocytes causes severe lipodystrophy. Molecular Metabolism, 2016, 5, 472-479.	3.0	56
25	Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms. Cancer Cell, 2016, 29, 523-535.	7.7	89
26	Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein. Journal of Biological Chemistry, 2016, 291, 2371-2378.	1.6	27
27	Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2569-2574.	3.3	121
28	Hepatic Acetyl CoA Links Adipose Tissue Inflammation to Hepatic Insulin Resistance and Type 2 Diabetes. Cell, 2015, 160, 745-758.	13.5	547
29	Proteolytic Cleavage of AMPKα and Intracellular MMP9 Expression Are Both Required for TLR4-Mediated mTORC1 Activation and HIF-1α Expression in Leukocytes. Journal of Immunology, 2015, 195, 2452-2460.	0.4	35
30	The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin. Molecular and Cellular Biology, 2015, 35, 2752-2760.	1.1	73
31	Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition. Science Signaling, 2015, 8, ra44.	1.6	39
32	The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo. Diabetologia, 2015, 58, 1063-1070.	2.9	21
33	Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nature Communications, 2015, 6, 7078.	5.8	127
34	mTORC1 Down-Regulates Cyclin-Dependent Kinase 8 (CDK8) and Cyclin C (CycC). PLoS ONE, 2015, 10, e0126240.	1.1	20
35	The Polycomb protein, Bmi1, regulates insulin sensitivity. Molecular Metabolism, 2014, 3, 794-802.	3.0	10
36	Akt recruits Dab2 to albumin endocytosis in the proximal tubule. American Journal of Physiology - Renal Physiology, 2014, 307, F1380-F1389.	1.3	22

#	Article	IF	CITATIONS
37	The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nature Communications, 2014, 5, 4535.	5.8	131
38	Turning point: Morris Birnbaum. Nature, 2014, 515, 301-301.	13.7	0
39	Memory CD8+ T Cells Use Cell-Intrinsic Lipolysis to Support the Metabolic Programming Necessary for Development. Immunity, 2014, 41, 75-88.	6.6	650
40	Control of Gluconeogenesis by Metformin: Does Redox Trump Energy Charge?. Cell Metabolism, 2014, 20, 197-199.	7.2	57
41	A Noncanonical, GSK3-Independent Pathway Controls Postprandial Hepatic Glycogen Deposition. Cell Metabolism, 2013, 18, 99-105.	7.2	63
42	Construction of human activityâ€based phosphorylation networks. Molecular Systems Biology, 2013, 9, 655.	3.2	153
43	Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature, 2013, 494, 256-260.	13.7	707
44	Rapamycin Induces Mitogen-activated Protein (MAP) Kinase Phosphatase-1 (MKP-1) Expression through Activation of Protein Kinase B and Mitogen-activated Protein Kinase Kinase Pathways. Journal of Biological Chemistry, 2013, 288, 33966-33977.	1.6	47
45	Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nature Immunology, 2013, 14, 611-618.	7.0	72
46	Membrane depolarization is the trigger for PI3K/Akt activation and leads to the generation of ROS. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H105-H114.	1.5	122
47	TLR4-Mediated AKT Activation Is MyD88/TRIF Dependent and Critical for Induction of Oxidative Phosphorylation and Mitochondrial Transcription Factor A in Murine Macrophages. Journal of Immunology, 2012, 188, 2847-2857.	0.4	107
48	Loss of Akt1 in Mice Increases Energy Expenditure and Protects against Diet-Induced Obesity. Molecular and Cellular Biology, 2012, 32, 96-106.	1.1	56
49	The Combined Deletion of S6K1 and Akt2 Deteriorates Glycemic Control in a High-Fat Diet. Molecular and Cellular Biology, 2012, 32, 4001-4011.	1.1	24
50	Distinct mTORC1 pathways for transcription and cleavage of SREBP-1c. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15974-15975.	3.3	24
51	MICU1 Is an Essential Gatekeeper for MCU-Mediated Mitochondrial Ca2+ Uptake that Regulates Cell Survival. Cell, 2012, 151, 630-644.	13.5	543
52	Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila. Biochemical and Biophysical Research Communications, 2012, 426, 43-48.	1.0	36
53	Skeletal Muscle Metabolism. , 2012, , 841-853.		0
54	PPARÎ ³ contributes to PKM2 and HK2 expression in fatty liver. Nature Communications, 2012, 3, 672.	5.8	127

#	Article	IF	CITATIONS
55	De-Meaning of Metabolism. Science, 2012, 336, 1651-1652.	6.0	29
56	Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nature Medicine, 2012, 18, 388-395.	15.2	310
57	Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nature Medicine, 2012, 18, 934-942.	15.2	285
58	Akt1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus, 2012, 22, 230-240.	0.9	84
59	Akt and mTOR Pathways Differentially Regulate the Development of Natural and Inducible IL-17-Producing CD4+ T Cells. Blood, 2012, 120, 838-838.	0.6	Ο
60	Postprandial Hepatic Lipid Metabolism Requires Signaling through Akt2 Independent of the Transcription Factors FoxA2, FoxO1, and SREBP1c. Cell Metabolism, 2011, 14, 516-527.	7.2	116
61	Of Mice and Men: Not ExAKTly the Same?. Cell Metabolism, 2011, 14, 722-723.	7.2	3
62	Insulin signaling to hepatic lipid metabolism in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 200-215.	2.3	132
63	ADaPting to Energetic Stress. Science, 2011, 332, 1387-1388.	6.0	17
64	Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature Medicine, 2011, 17, 55-63.	15.2	751
65	Drugs, diabetes and cancer. Nature, 2011, 470, 338-339.	13.7	30
66	Novel Role for SGK3 in Glucose Homeostasis Revealed in SGK3/Akt2 Double-Null Mice. Molecular Endocrinology, 2011, 25, 2106-2118.	3.7	15
67	A novel Akt3 mutation associated with enhanced kinase activity and seizure susceptibility in mice. Human Molecular Genetics, 2011, 20, 988-999.	1.4	58
68	Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. Journal of Clinical Investigation, 2011, 121, 2518-2528.	3.9	147
69	AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood, 2010, 115, 4030-4038.	0.6	246
70	Akt1 and Akt2 promote peripheral B-cell maturation and survival. Blood, 2010, 115, 4043-4050.	0.6	74
71	Akt2/PKBβâ€sensitive regulation of renal phosphate transport. Acta Physiologica, 2010, 200, 75-85.	1.8	13
72	Activation of Akt Is Essential for the Propagation of Mitochondrial Respiratory Stress Signaling and Activation of the Transcriptional Coactivator Heterogeneous Ribonucleoprotein A2. Molecular Biology of the Cell, 2010, 21, 3578-3589.	0.9	63

#	Article	IF	CITATIONS
73	Regulation of Gastric Acid Secretion by PKB/Akt2. Cellular Physiology and Biochemistry, 2010, 25, 695-704.	1.1	14
74	Insulin Regulates Adipocyte Lipolysis via an Akt-Independent Signaling Pathway. Molecular and Cellular Biology, 2010, 30, 5009-5020.	1.1	169
75	Three-amino-acid-loop-extension homeodomain factor Meis3 regulates cell survival via PDK1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20494-20499.	3.3	21
76	Akt pathway is hypoactivated by synergistic actions of diabetes mellitus and hypercholesterolemia resulting in advanced coronary artery disease. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H699-H706.	1.5	37
77	Regulation of renal tubular glucose reabsorption by Akt2/PKBβ. American Journal of Physiology - Renal Physiology, 2010, 298, F1113-F1117.	1.3	12
78	Role of Insulin-Like Growth Factor-Binding Protein 5 (IGFBP5) in Organismal and Pancreatic β-Cell Growth. Molecular Endocrinology, 2010, 24, 178-192.	3.7	39
79	Akt is required for Stat5 activation and mammary differentiation. Breast Cancer Research, 2010, 12, R72.	2.2	57
80	Expansion of Hepatic Tumor Progenitor Cells in Pten-Null Mice Requires Liver Injury and Is Reversed by Loss of AKT2. Gastroenterology, 2010, 139, 2170-2182.	0.6	83
81	Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria. Cell, 2010, 142, 270-283.	13.5	888
82	AMPK supports growth in Drosophila by regulating muscle activity and nutrient uptake in the gut. Developmental Biology, 2010, 344, 293-303.	0.9	42
83	The Critical Role of AKT2 in Hepatic Steatosis Induced by PTEN Loss. American Journal of Pathology, 2010, 176, 2302-2308.	1.9	87
84	An energetic tale of AMPK-independent effects of metformin. Journal of Clinical Investigation, 2010, 120, 2267-2270.	3.9	135
85	Akt Deficiency Attenuates Muscle Size and Function but Not the Response to ActRIIB Inhibition. PLoS ONE, 2010, 5, e12707.	1.1	62
86	Akt/PKBâ€sensitive proximal tubular glucose and phosphate transport. FASEB Journal, 2010, 24, 606.5.	0.2	0
87	Akt2 and SCK3 are both determinants of postnatal hair follicle development. FASEB Journal, 2009, 23, 3193-3202.	0.2	20
88	The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20853-20858.	3.3	284
89	Regulation of Fat Cell Mass by Insulin in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 2009, 29, 6341-6352.	1.1	151
90	Contribution of Insulin and Akt1 Signaling to Endothelial Nitric Oxide Synthase in the Regulation of Endothelial Function and Blood Pressure. Circulation Research, 2009, 104, 1085-1094.	2.0	173

#	Article	IF	CITATIONS
91	Ciliary Neurotrophic Factor Stimulates Muscle Glucose Uptake by a PI3-Kinase–Dependent Pathway That Is Impaired With Obesity. Diabetes, 2009, 58, 829-839.	0.3	47
92	Differential regulation of Akt/protein kinase B isoforms during cell cycle progression. FEBS Letters, 2009, 583, 685-690.	1.3	28
93	The role of FOXO in the regulation of metabolism. Current Diabetes Reports, 2009, 9, 208-214.	1.7	184
94	Akt2 Is Required for Hepatic Lipid Accumulation in Models of Insulin Resistance. Cell Metabolism, 2009, 10, 405-418.	7.2	241
95	The physician's voice in the health care debate. Journal of Clinical Investigation, 2009, 119, 2846-2846.	3.9	3
96	Role of Insulin-Like Growth Factor-Binding Protein 5 (IGFBP5) in Organismal and Pancreatic β-Cell Growth. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 5183-5183.	1.8	0
97	The role of FoxO in the regulation of metabolism. Oncogene, 2008, 27, 2320-2336.	2.6	473
98	Linker region of Akt1/protein kinase Bα mediates platelet-derived growth factor-induced translocation and cell migration. Cellular Signalling, 2008, 20, 2030-2037.	1.7	28
99	Isoform-specific regulation of adipocyte differentiation by Akt/protein kinase Bα. Biochemical and Biophysical Research Communications, 2008, 371, 138-143.	1.0	69
100	Lysophosphatidic acid induces cell migration through the selective activation of Akt1. Experimental and Molecular Medicine, 2008, 40, 445.	3.2	42
101	Akt and CHIP coregulate tau degradation through coordinated interactions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3622-3627.	3.3	203
102	Sweet Conundrum. Science, 2008, 319, 1348-1349.	6.0	6
103	Role of PI3K/Akt signaling in TRAIL- and radiation-induced gastrointestinal apoptosis. Cancer Biology and Therapy, 2008, 7, 2047-2053.	1.5	24
104	Loss of PIP5KIγ, unlike other PIP5KI isoforms, impairs the integrity of the membrane cytoskeleton in murine megakaryocytes. Journal of Clinical Investigation, 2008, 118, 812-9.	3.9	61
105	Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation. Journal of Clinical Investigation, 2008, 118, 3629-3638.	3.9	60
106	Akt1 and Akt2 are required for αβ thymocyte survival and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12105-12110.	3.3	116
107	AKT-dependent HspB1 (Hsp27) Activity in Epidermal Differentiation. Journal of Biological Chemistry, 2007, 282, 17297-17305.	1.6	72
108	Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17358-17363.	3.3	188

#	Article	IF	CITATIONS
109	The Role of AMPK and mTOR in Nutrient Sensing in Pancreatic β-Cells. Journal of Biological Chemistry, 2007, 282, 10341-10351.	1.6	161
110	When the usual insulin is just not enough. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8681-8682.	3.3	7
111	Inhibition of Ceramide Synthesis Ameliorates Clucocorticoid-, Saturated-Fat-, and Obesity-Induced Insulin Resistance. Cell Metabolism, 2007, 5, 167-179.	7.2	1,048
112	A Conserved Role for Phosphatidylinositol 3-Kinase but Not Akt Signaling in Mitochondrial Adaptations that Accompany Physiological Cardiac Hypertrophy. Cell Metabolism, 2007, 6, 294-306.	7.2	121
113	Loss of Akt1 Leads to Severe Atherosclerosis and Occlusive Coronary Artery Disease. Cell Metabolism, 2007, 6, 446-457.	7.2	253
114	PI3K regulates pleckstrin-2 in T-cell cytoskeletal reorganization. Blood, 2007, 109, 1147-1155.	0.6	36
115	Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature, 2007, 447, 1012-1016.	13.7	420
116	Regulation of Glucose and Lipid Metabolism by Akt/PKB. FASEB Journal, 2007, 21, A44.	0.2	1
117	Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metabolism, 2006, 4, 475-490.	7.2	98
118	Quantitative Analysis of Anti-apoptotic Function of Akt in Akt1 and Akt2 Double Knock-out Mouse Embryonic Fibroblast Cells under Normal and Stressed Conditions. Journal of Biological Chemistry, 2006, 281, 31380-31388.	1.6	33
119	Protein Kinase B/Akt Is a Novel Cysteine String Protein Kinase That Regulates Exocytosis Release Kinetics and Quantal Size. Journal of Biological Chemistry, 2006, 281, 1564-1572.	1.6	25
120	Opposing Roles for Akt1 and Akt2 in Rac/Pak Signaling and Cell Migration. Journal of Biological Chemistry, 2006, 281, 36443-36453.	1.6	122
121	Quantitative Analysis of Anti-apoptotic Function of Akt in Akt1 and Akt2 Double Knock-out Mouse Embryonic Fibroblast Cells under Normal and Stressed Conditions. Journal of Biological Chemistry, 2006, 281, 31380-31388.	1.6	12
122	Loss of PIP5KIβ Causes a Defect in Lamellipodia Formation and Shear Resistant Adhesion Blood, 2006, 108, 141-141.	0.6	12
123	Selective Inhibition of Ras, Phosphoinositide 3 Kinase, and Akt Isoforms Increases the Radiosensitivity of Human Carcinoma Cell Lines. Cancer Research, 2005, 65, 7902-7910.	0.4	169
124	Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood, 2005, 105, 4477-4483.	0.6	188
125	Role for Akt3/Protein Kinase Bγ in Attainment of Normal Brain Size. Molecular and Cellular Biology, 2005, 25, 1869-1878.	1.1	504
126	PGCâ€1α gene expression is downâ€regulated by Aktâ€mediated phosphorylation and nuclear exclusion of FoxO1 in insulinâ€stimulated skeletal muscle. FASEB Journal, 2005, 19, 2072-2074.	0.2	65

#	Article	IF	CITATIONS
127	Rejoinder: Genetic Research into the Causes of Type 2 Diabetes Mellitus. Anthropology and Medicine, 2005, 12, 129-134.	0.6	3
128	Molecular and Genetic Studies Imply Akt-mediated Signaling Promotes Protein Kinase CβII Alternative Splicing via Phosphorylation of Serine/Arginine-rich Splicing Factor SRp40. Journal of Biological Chemistry, 2005, 280, 14302-14309.	1.6	107
129	Activation of SOCS-3 by Resistin. Molecular and Cellular Biology, 2005, 25, 1569-1575.	1.1	247
130	AMP-Activated Protein Kinase Induces a p53-Dependent Metabolic Checkpoint. Molecular Cell, 2005, 18, 283-293.	4.5	1,431
131	Activating AMP-Activated Protein Kinase without AMP. Molecular Cell, 2005, 19, 289-290.	4.5	77
132	SHIPing news: A new way to keep your weight down. Cell Metabolism, 2005, 1, 90-92.	7.2	1
133	Akt1/protein kinase BÂ is critical for ischemic and VEGF-mediated angiogenesis. Journal of Clinical Investigation, 2005, 115, 2119-2127.	3.9	341
134	AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E739-E743.	1.8	57
135	The PP2A-Associated Protein Â4 Is an Essential Inhibitor of Apoptosis. Science, 2004, 306, 695-698.	6.0	142
136	Protein Kinase C Î, Inhibits Insulin Signaling by Phosphorylating IRS1 at Ser1101. Journal of Biological Chemistry, 2004, 279, 45304-45307.	1.6	274
137	Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nature Genetics, 2004, 36, 131-137.	9.4	884
138	AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428, 569-574.	13.7	1,464
139	Akt2, phosphatidylinositol 3-kinase, and PTEN are in lipid rafts of intestinal cells: Role in absorption and differentiation. Gastroenterology, 2004, 126, 122-135.	0.6	69
140	On the InterAktion between Hexokinase and the Mitochondrion. Developmental Cell, 2004, 7, 781-782.	3.1	25
141	Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. Journal of Clinical Investigation, 2004, 113, 441-450.	3.9	186
142	AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. Journal of Clinical Investigation, 2004, 114, 495-503.	3.9	640
143	Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. Journal of Clinical Investigation, 2004, 113, 441-450.	3.9	101
144	ADP-ribosylation factor 6 regulates insulin secretion through plasma membrane phosphatidylinositol 4,5-bisphosphate. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13320-13325.	3.3	90

#	Article	IF	CITATIONS
145	Identification of a Proline-rich Akt Substrate as a 14-3-3 Binding Partner. Journal of Biological Chemistry, 2003, 278, 10189-10194.	1.6	322
146	Role of AMP-activated Protein Kinase in Cyclic AMP-dependent Lipolysis In 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2003, 278, 43074-43080.	1.6	254
147	Isoform-specific Regulation of Insulin-dependent Glucose Uptake by Akt/Protein Kinase B. Journal of Biological Chemistry, 2003, 278, 49530-49536.	1.6	268
148	Lipolysis. Journal of Cell Biology, 2003, 161, 1011-1012.	2.3	29
149	Platelet-Derived Growth Factor (PDGF) Stimulates Glucose Transport in 3T3-L1 Adipocytes Overexpressing PDGF Receptor by a Pathway Independent of Insulin Receptor Substrates. Endocrinology, 2003, 144, 3811-3820.	1.4	42
150	Assaying Tyrosine Phosphorylation of Insulin Receptor and Insulin Receptor Substrates. , 2003, 83, 119-126.		2
151	Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochemical Society Transactions, 2003, 31, 216-219.	1.6	215
152	Selective suppression of AMP-activated protein kinase in skeletal muscle: update on â€~lazy mice'. Biochemical Society Transactions, 2003, 31, 236-241.	1.6	93
153	The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. Journal of Clinical Investigation, 2003, 111, 91-98.	3.9	444
154	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	3.9	50
155	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	3.9	31
156	Regulation of Angiogenesis by Glycogen Synthase Kinase-3β. Journal of Biological Chemistry, 2002, 277, 41888-41896.	1.6	111
157	Transduction of Growth or Mitogenic Signals into Translational Activation of TOP mRNAs Is Fully Reliant on the Phosphatidylinositol 3-Kinase-Mediated Pathway but Requires neither S6K1 nor rpS6 Phosphorylation. Molecular and Cellular Biology, 2002, 22, 8101-8113.	1.1	210
158	AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15983-15987.	3.3	895
159	Akt1 Regulates a JNK Scaffold during Excitotoxic Apoptosis. Neuron, 2002, 35, 697-709.	3.8	191
160	RhoGAP. Developmental Cell, 2002, 2, 521-523.	3.1	4
161	Role of Akt/protein kinase B in metabolism. Trends in Endocrinology and Metabolism, 2002, 13, 444-451.	3.1	590
162	Insulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBbeta). Science, 2001, 292, 1728-1731.	6.0	1,652

#	Article	IF	CITATIONS
163	The Regulation of AMP-Activated Protein Kinase by H2O2. Biochemical and Biophysical Research Communications, 2001, 287, 92-97.	1.0	269
164	Neuregulin Signaling through a PI3K/Akt/Bad Pathway in Schwann Cell Survival. Molecular and Cellular Neurosciences, 2001, 17, 761-767.	1.0	115
165	Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nature Medicine, 2001, 7, 1133-1137.	15.2	471
166	A Role for AMP-Activated Protein Kinase in Contraction- and Hypoxia-Regulated Glucose Transport in Skeletal Muscle. Molecular Cell, 2001, 7, 1085-1094.	4.5	845
167	Normal Akt/PKB with reduced PI3K activation in insulin-resistant mice. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E1249-E1254.	1.8	47
168	Dialogue between muscle and fat. Nature, 2001, 409, 672-673.	13.7	43
169	The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature Cell Biology, 2001, 3, 596-601.	4.6	202
170	ADP-Ribosylation Factor 6 Delineates Separate Pathways Used by Endothelin 1 and Insulin for Stimulating Glucose Uptake in 3T3-L1 Adipocytes. Molecular and Cellular Biology, 2001, 21, 5276-5285.	1.1	40
171	Akt1/PKBα Is Required for Normal Growth but Dispensable for Maintenance of Glucose Homeostasis in Mice. Journal of Biological Chemistry, 2001, 276, 38349-38352.	1.6	845
172	Turning down insulin signaling. Journal of Clinical Investigation, 2001, 108, 655-659.	3.9	35
173	Turning down insulin signaling. Journal of Clinical Investigation, 2001, 108, 655-659.	3.9	72
174	Akt/Protein Kinase B Isoforms Are Differentially Regulated by Epidermal Growth Factor Stimulation. Journal of Biological Chemistry, 2000, 275, 30934-30942.	1.6	181
175	Cyclic AMP Promotes Neuronal Survival by Phosphorylation of Glycogen Synthase Kinase 3β. Molecular and Cellular Biology, 2000, 20, 9356-9363.	1.1	352
176	Insulin-responsive Aminopeptidase Trafficking in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2000, 275, 2560-2567.	1.6	86
177	Exercise Induces Isoform-Specific Increase in 5′AMP-Activated Protein Kinase Activity in Human Skeletal Muscle. Biochemical and Biophysical Research Communications, 2000, 273, 1150-1155.	1.0	318
178	Identification of Wortmannin-sensitive Targets in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1999, 274, 24677-24684.	1.6	92
179	The Role of Glycogen Synthase Kinase 3β in Insulin-stimulated Glucose Metabolism. Journal of Biological Chemistry, 1999, 274, 17934-17940.	1.6	187
180	Differentiation-dependent Suppression of Platelet-derived Growth Factor Signaling in Cultured Adipocytes. Journal of Biological Chemistry, 1999, 274, 23858-23867.	1.6	57

#	Article	IF	CITATIONS
181	Signaling Pathways Mediating Insulin-Stimulated Glucose Transport. Annals of the New York Academy of Sciences, 1999, 892, 169-186.	1.8	91
182	Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nature Cell Biology, 1999, 1, 500-506.	4.6	349
183	A Role for Protein Kinase Bβ/Akt2 in Insulin-Stimulated GLUT4 Translocation in Adipocytes. Molecular and Cellular Biology, 1999, 19, 7771-7781.	1.1	294
184	Protein Kinase A-Dependent and -Independent Signaling Pathways Contribute to Cyclic AMP-Stimulated Proliferation. Molecular and Cellular Biology, 1999, 19, 5882-5891.	1.1	174
185	The tyrosine kinases Syk and Lyn exert opposing effects on the activation of protein kinase Akt/PKB in B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6890-6895.	3.3	60
186	GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nature Genetics, 1998, 18, 188-191.	9.4	349
187	Polyoma Middle T Antigen Activates the Ser/Thr Kinase Akt in a PI3-Kinase-Dependent Manner. Biochemical and Biophysical Research Communications, 1998, 246, 76-81.	1.0	52
188	Insulin Increases the Association of Akt-2 with Glut4-containing Vesicles. Journal of Biological Chemistry, 1998, 273, 7201-7204.	1.6	204
189	Inhibition of Akt Kinase by Cell-permeable Ceramide and Its Implications for Ceramide-induced Apoptosis. Journal of Biological Chemistry, 1998, 273, 16568-16575.	1.6	315
190	Construction and Characterization of a Conditionally Active Version of the Serine/Threonine Kinase Akt. Journal of Biological Chemistry, 1998, 273, 11937-11943.	1.6	281
191	Insulin, but Not Contraction, Activates Akt/PKB in Isolated Rat Skeletal Muscle. Journal of Biological Chemistry, 1998, 273, 14679-14682.	1.6	126
192	Regulation of Insulin-Stimulated Glucose Transporter GLUT4 Translocation and Akt Kinase Activity by Ceramide. Molecular and Cellular Biology, 1998, 18, 5457-5464.	1.1	411
193	A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochemical Society Transactions, 1997, 25, 981-988.	1.6	65
194	Regulation of Neuronal Survival by the Serine-Threonine Protein Kinase Akt. Science, 1997, 275, 661-665.	6.0	2,322
195	Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nature Genetics, 1997, 17, 327-330.	9.4	385
196	Signalling pathways mediating insulin-activated glucose transport. Seminars in Cell and Developmental Biology, 1996, 7, 239-247.	2.3	3
197	Expression of a Constitutively Active Akt Ser/Thr Kinase in 3T3-L1 Adipocytes Stimulates Glucose Uptake and Glucose Transporter 4 Translocation. Journal of Biological Chemistry, 1996, 271, 31372-31378.	1.6	1,115
198	Identification of a nonneuronal isoform of synaptotagmin Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5895-5899.	3.3	81

#	Article	IF	CITATIONS
199	Phosphatidylinositol 3-kinase binding to polyoma virus middle tumor antigen mediates elevation of glucose transport by increasing translocation of the GLUT1 transporter Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11613-11617.	3.3	20
200	The Effects of Wortmannin on Rat Skeletal Muscle. Journal of Biological Chemistry, 1995, 270, 2107-2111.	1.6	279
201	Distinct signals in the GLUT4 glucose transporter for internalization and for targeting to an insulin-responsive compartment Journal of Cell Biology, 1995, 130, 1071-1079.	2.3	119
202	Different Signaling Roles of SHPTP2 in Insulin-induced GLUT1 Expression and GLUT4 Translocation. Journal of Biological Chemistry, 1995, 270, 12965-12968.	1.6	50
203	1 Cellular insulin action and insulin resistance. Bailliere's Clinical Endocrinology and Metabolism, 1993, 7, 785-873.	1.0	47
204	Insulin receptor substrate 1 mediates insulin and insulin-like growth factor I-stimulated maturation of Xenopus oocytes Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5172-5175.	3.3	93
205	The Regulation of Glucose Transporter Gene Expression by Cyclic Adenosine Monophosphate in NIH3T3 Fibroblasts. Molecular Endocrinology, 1989, 3, 1470-1476.	3.7	23
206	Expression of a Glucose Transporter Gene Cloned from Brain in Cellular Models of Insulin Resistance: Dexamethasone Decreases Transporter mRNA in Primary Cultured Adipocytes. Molecular Endocrinology, 1989, 3, 1132-1141.	3.7	55
207	Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell, 1989, 57, 305-315.	13.5	613
208	Transformation stimulates glucose transporter gene expression in the absence of protein kinase C Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8252-8256.	3.3	42
209	The Human Growth Hormone Gene Locus: Structure, Evolution, and Allelic Variations. DNA and Cell Biology, 1987, 6, 59-70.	5.1	138
210	Isolation of a Drosophila genomic sequence homologous to the kinase domain of the human insulin receptor and detection of the phosphorylated Drosophila receptor with an anti-peptide antibody Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 4710-4714.	3.3	123
211	Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5784-5788.	3.3	558
212	Mechanisms of glucocorticoid hormone action. The Journal of Steroid Biochemistry, 1984, 20, 77-88.	1.3	70