
Emmanuel Stephen-Victor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/23803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nature Medicine, 2019, 25, 1164-1174.	30.7	259
2	Functional reprogramming of regulatory T cells in the absence of Foxp3. Nature Immunology, 2019, 20, 1208-1219.	14.5	106
3	Role of Hydrophobins in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2018, 4, 2.	3.5	93
4	Potential of regulatory T-cell-based therapies in the management of severe COVID-19. European Respiratory Journal, 2020, 56, 2002182.	6.7	83
5	Aspergillus fumigatus Cell Wall α-(1,3)-Glucan Stimulates Regulatory T-Cell Polarization by Inducing PD-L1 Expression on Human Dendritic Cells. Journal of Infectious Diseases, 2017, 216, 1281-1294.	4.0	81
6	Regulatory T Cell-Derived TGF-β1 Controls Multiple Checkpoints Governing Allergy and Autoimmunity. Immunity, 2020, 53, 1202-1214.e6.	14.3	77
7	Notch4 signaling limits regulatory T-cell-mediated tissue repair and promotes severe lung inflammation in viral infections. Immunity, 2021, 54, 1186-1199.e7.	14.3	71
8	A regulatory T cell Notch4–GDF15 axis licenses tissue inflammation in asthma. Nature Immunology, 2020, 21, 1359-1370.	14.5	70
9	Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand. Nature Communications, 2014, 5, 4092.	12.8	60
10	IL-26: An Emerging Proinflammatory Member of the IL-10 Cytokine Family with Multifaceted Actions in Antiviral, Antimicrobial, and Autoimmune Responses. PLoS Pathogens, 2016, 12, e1005624.	4.7	58
11	Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion. Scientific Reports, 2016, 6, 24193.	3.3	54
12	Dietary and Microbial Determinants in Food Allergy. Immunity, 2020, 53, 277-289.	14.3	49
13	Regulation of oral immune tolerance by the microbiome in food allergy. Current Opinion in Immunology, 2019, 60, 141-147.	5.5	44
14	Regulatory T cells induce activation rather than suppression of human basophils. Science Immunology, 2018, 3, .	11.9	38
15	The microbial origins of food allergy. Journal of Allergy and Clinical Immunology, 2021, 147, 808-813.	2.9	38
16	The Yin and Yang of regulatory T cells in infectious diseases and avenues to target them. Cellular Microbiology, 2017, 19, e12746.	2.1	37
17	Intravenous immunoglobulin induces IL-4 in human basophils by signaling through surface-bound IgE. Journal of Allergy and Clinical Immunology, 2019, 144, 524-535.e8.	2.9	36
18	Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Scientific Reports, 2014, 4, 5672.	3.3	31

#	Article	IF	CITATIONS
19	Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy. Cell Death and Disease, 2020, 11, 50.	6.3	30
20	Monomeric Immunoglobulin A from Plasma Inhibits Human Th17 Responses In Vitro Independent of FcαRI and DC-SIGN. Frontiers in Immunology, 2017, 8, 275.	4.8	25
21	Regulatory T cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to intravenous immunoglobulin therapy. Journal of Neuroinflammation, 2017, 14, 58.	7.2	23
22	Heme oxygenase-1 is dispensable for the anti-inflammatory activity of intravenous immunoglobulin. Scientific Reports, 2016, 6, 19592.	3.3	19
23	IL-1β, But Not Programed Death-1 and Programed Death Ligand Pathway, Is Critical for the Human Th17 Response to Mycobacterium tuberculosis. Frontiers in Immunology, 2016, 7, 465.	4.8	16
24	Differential Effects of Viscum album Preparations on the Maturation and Activation of Human Dendritic Cells and CD4+ T Cell Responses. Molecules, 2016, 21, 912.	3.8	15
25	Basophils are inept at promoting human Th17 responses. Human Immunology, 2015, 76, 176-180.	2.4	11
26	Demystification of enigma on antigen-presenting cell features of human basophils: data from secondary lymphoid organs. Haematologica, 2017, 102, e233-e237.	3.5	11
27	Inhibition of Programmed Death 1 Ligand 1 on Dendritic Cells Enhances Mycobacterium-Mediated Interferon (IFN-Â) Production Without Modulating the Frequencies of IFN-Â-Producing CD4+ T Cells. Journal of Infectious Diseases, 2015, 211, 1027-1029.	4.0	9
28	The Role of RodA-Conserved Cysteine Residues in the Aspergillus fumigatus Conidial Surface Organization. Journal of Fungi (Basel, Switzerland), 2020, 6, 151.	3.5	9
29	Multimerized IgG1 Fc molecule as an anti-inflammatory agent. Nature Reviews Rheumatology, 2018, 14, 390-392.	8.0	7
30	Human basophils may not undergo modulation by DC-SIGN and mannose receptor–targeting immunotherapies due to absence of receptors. Journal of Allergy and Clinical Immunology, 2017, 139, 1403-1404.e1.	2.9	5
31	Regulatory T cells do not suppress rather activate human basophils by IL-3 and STAT5-dependent mechanisms. Oncolmmunology, 2020, 9, 1773193.	4.6	4
32	Essential functions of regulatory TÂcell TGF-β1 revealed by differential gene-targeting approaches. Immunity, 2021, 54, 397-398.	14.3	3
33	Does intravenous immunoglobulin therapy in Guillain-Barré syndrome patients interfere with serological Zika detection?. Autoimmunity Reviews, 2019, 18, 632-633.	5.8	1