Michaela Wenzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2379963/publications.pdf Version: 2024-02-01

MICHAELA WENZEL

#	Article	IF	CITATIONS
1	<scp>SepF</scp> supports the recruitment of the <scp>DNA</scp> translocase <scp>SftA</scp> to the Zâ€ring. Molecular Microbiology, 2022, 117, 1263-1274.	2.5	5
2	Roles of Bacterial Mechanosensitive Channels in Infection and Antibiotic Susceptibility. Pharmaceuticals, 2022, 15, 770.	3.8	10
3	A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. Communications Biology, 2021, 4, 306.	4.4	19
4	Control of septum thickness by the curvature of SepF polymers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
5	Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	23
6	Do we really understand how antibiotics work?. Future Microbiology, 2020, 15, 1307-1311.	2.0	6
7	A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides. Frontiers in Cellular and Infection Microbiology, 2020, 10, 540898.	3.9	29
8	Multitarget Approaches against Multiresistant Superbugs. ACS Infectious Diseases, 2020, 6, 1346-1365.	3.8	103
9	More Than a Pore: A Current Perspective on the In Vivo Mode of Action of the Lipopeptide Antibiotic Daptomycin. Antibiotics, 2020, 9, 17.	3.7	68
10	The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S. MBio, 2018, 9, .	4.1	83
11	Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2404-2415.	2.6	59
12	The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity. PLoS Pathogens, 2018, 14, e1006876.	4.7	56
13	Assessing Membrane Fluidity and Visualizing Fluid Membrane Domains in Bacteria Using Fluorescent Membrane Dyes. Bio-protocol, 2018, 8, e3063.	0.4	31
14	Antimicrobial peptide cWFW kills by combining lipid phase separation with autolysis. Scientific Reports, 2017, 7, 44332.	3.3	98
15	Free SepF interferes with recruitment of late cell division proteins. Scientific Reports, 2017, 7, 16928.	3.3	9
16	Editorial: Antimicrobial Peptides - Interaction with Membrane Lipids and Proteins. Frontiers in Cell and Developmental Biology, 2017, 5, 4.	3.7	14
17	Effects of rhodomyrtone on Gram-positive bacterial tubulin homologue FtsZ. PeerJ, 2017, 5, e2962.	2.0	16
18	Towards Profiles of Resistance Development and Toxicity for the Small Cationic Hexapeptide RWRWRW-NH2. Frontiers in Cell and Developmental Biology, 2016, 4, 86.	3.7	15

MICHAELA WENZEL

#	Article	IF	CITATIONS
19	Purine biosynthesis is the bottleneck in trimethoprimâ€treated <i>Bacillus subtilis</i> . Proteomics - Clinical Applications, 2016, 10, 1036-1048.	1.6	21
20	Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7077-E7086.	7.1	326
21	Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1004-1011.	2.6	38
22	Antimicrobial Peptides from the Aurein Family Form Ion‣elective Pores in <i>Bacillus subtilis</i> . ChemBioChem, 2015, 16, 1101-1108.	2.6	27
23	An organometallic structure-activity relationship study reveals the essential role of a Re(CO) ₃ moiety in the activity against gram-positive pathogens including MRSA. Chemical Science, 2015, 6, 214-224.	7.4	63
24	Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1409-18.	7.1	283
25	The Lantibiotic NAI-107 Binds to Bactoprenol-bound Cell Wall Precursors and Impairs Membrane Functions. Journal of Biological Chemistry, 2014, 289, 12063-12076.	3.4	74
26	Extracting iron and manganese from bacteria with ionophores—A mechanism against competitors characterized by increased potency in environments low in micronutrients. Proteomics, 2013, 13, 1358-1370.	2.2	19
27	Analysis of the Mechanism of Action of Potent Antibacterial Hetero-tri-organometallic Compounds: A Structurally New Class of Antibiotics. ACS Chemical Biology, 2013, 8, 1442-1450.	3.4	119
28	Proteomic Response of Bacillus subtilis to Lantibiotics Reflects Differences in Interaction with the Cytoplasmic Membrane. Antimicrobial Agents and Chemotherapy, 2012, 56, 5749-5757.	3.2	76
29	Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups. Beilstein Journal of Organic Chemistry, 2012, 8, 1753-1764.	2.2	63
30	Sandwich and Half-Sandwich Derivatives of Platensimycin: Synthesis and Biological Evaluation. Organometallics, 2012, 31, 5760-5771.	2.3	43
31	Proteomic Signature of Fatty Acid Biosynthesis Inhibition Available for In Vivo Mechanism-of-Action Studies. Antimicrobial Agents and Chemotherapy, 2011, 55, 2590-2596.	3.2	56
32	Proteomic signatures in antibiotic research. Proteomics, 2011, 11, 3256-3268.	2.2	49
33	Synthesis of Optically Active Ferrocene-Containing Platensimycin Derivatives with a C6-C7 Substitution Pattern. European Journal of Inorganic Chemistry, 2011, 2011, 3295-3302.	2.0	24
34	Synthesis and Biological Evaluation of Ferrocene-Containing Bioorganometallics Inspired by the Antibiotic Platensimycin Lead Structure. Organometallics, 2010, 29, 4312-4319.	2.3	78