List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2379474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cholenic acid derivative UniPR1331 impairs tumor angiogenesis via blockade of VEGF/VEGFR2 in addition to Eph/ephrin. Cancer Gene Therapy, 2022, 29, 908-917.	4.6	4
2	The binding of heparin to spike glycoprotein inhibits SARS-CoV-2 infection by three mechanisms. Journal of Biological Chemistry, 2022, 298, 101507.	3.4	57
3	Prevention of Herpesviridae Infections by Cationic PEGylated Carbosilane Dendrimers. Pharmaceutics, 2022, 14, 536.	4.5	1
4	Metabolic Soft Spot and Pharmacokinetics: Functionalization of C-3 Position of an Eph–Ephrin Antagonist Featuring a Bile Acid Core as an Effective Strategy to Obtain Oral Bioavailability in Mice. Pharmaceuticals, 2022, 15, 41.	3.8	2
5	The FGF/FGFR system in the physiopathology of the prostate gland. Physiological Reviews, 2021, 101, 569-610.	28.8	37
6	In silico drug repositioning on F508del-CFTR: A proof-of-concept study on the AIFA library. European Journal of Medicinal Chemistry, 2021, 213, 113186.	5.5	4
7	A Bittersweet Computational Journey among Glycosaminoglycans. Biomolecules, 2021, 11, 739.	4.0	10
8	HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration. Molecules, 2021, 26, 7488.	3.8	6
9	Discovery of novel VX-809 hybrid derivatives as F508del-CFTR correctors by molecular modeling, chemical synthesis and biological assays. European Journal of Medicinal Chemistry, 2020, 208, 112833.	5.5	8
10	Optimization of EphA2 antagonists based on a lithocholic acid core led to the identification of UniPR505, a new 3α-carbamoyloxy derivative with antiangiogenetic properties. European Journal of Medicinal Chemistry, 2020, 189, 112083.	5.5	5
11	Recent Strategic Advances in CFTR Drug Discovery: An Overview. International Journal of Molecular Sciences, 2020, 21, 2407.	4.1	6
12	Exploitation of a novel biosensor based on the full-length human F508del-CFTR with computational studies, biochemical and biological assays for the characterization of a new Lumacaftor/Tezacaftor analogue. Sensors and Actuators B: Chemical, 2019, 301, 127131.	7.8	7
13	Heparin and heparan sulfate proteoglycans promote HIV-1 p17 matrix protein oligomerization: computational, biochemical and biological implications. Scientific Reports, 2019, 9, 15768.	3.3	18
14	The calcium-binding type III repeats domain of thrombospondin-2 binds to fibroblast growth factor 2 (FGF2). Angiogenesis, 2019, 22, 133-144.	7.2	37
15	Inhibition of Eph/ephrin interaction with the small molecule UniPR500 improves glucose tolerance in healthy and insulin-resistant mice. Pharmacological Research, 2019, 141, 319-330.	7.1	13
16	Identification of amino acid residues critical for the B cell growth-promoting activity of HIV-1 matrix protein p17 variants. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 13-24.	2.4	20
17	Pharmacological evaluation of new bioavailable small molecules targeting Eph/ephrin interaction. Biochemical Pharmacology, 2018, 147, 21-29.	4.4	20
18	Sialic acid as a target for the development of novel antiangiogenic strategies. Future Medicinal Chemistry, 2018, 10, 2835-2854.	2.3	15

	<u> </u>
NARCOL	JIICNATI
MARCOI	NUSNAII

#	Article	IF	CITATIONS
19	Speeding Up the Identification of Cystic Fibrosis Transmembrane Conductance Regulator-Targeted Drugs: An Approach Based on Bioinformatics Strategies and Surface Plasmon Resonance. Molecules, 2018, 23, 120.	3.8	14
20	UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice. Oncotarget, 2018, 9, 24347-24363.	1.8	28
21	FGF Ligand Traps for the Therapy of FGF-Dependent Tumors. , 2017, , 237-269.		0
22	Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. , 2017, 179, 171-187.		152
23	Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis. Oncogene, 2017, 36, 6531-6541.	5.9	33
24	Inhibition of Non Canonical HIV-1 Tat Secretion Through the Cellular Na + ,K + -ATPase Blocks HIV-1 Infection. EBioMedicine, 2017, 21, 170-181.	6.1	31
25	Syndecan-1 increases B-lymphoid cell extravasation in response to HIV-1 Tat via αvβ3/pp60src/pp125FAK pathway. Oncogene, 2017, 36, 2609-2618.	5.9	5
26	Heparan Sulfate Proteoglycans: A Multifaceted Target for Novel Approaches in Antiviral Drug Discovery. Journal of Bioengineering & Biomedical Science, 2016, 06, .	0.2	6
27	Biochemical characterization of EphA2 antagonists with improved physico-chemical properties by cell-based assays and surface plasmon resonance analysis. Biochemical Pharmacology, 2016, 99, 18-30.	4.4	6
28	Integrating computational and chemical biology tools in the discovery of antiangiogenic small molecule ligands of FGF2 derived from endogenous inhibitors. Scientific Reports, 2016, 6, 23432.	3.3	20
29	Blocking the FGF/FGFR system as a â¿;two-compartmentâ;¿ antiangiogenic/antitumor approach in cancer therapy. Pharmacological Research, 2016, 107, 172-185.	7.1	69
30	The AGMA1 poly(amidoamine) inhibits the infectivity of herpes simplex virus in cell lines, in human cervicovaginal histocultures, and in vaginally infected mice. Biomaterials, 2016, 85, 40-53.	11.4	30
31	Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes. Biosensors and Bioelectronics, 2016, 77, 518-524.	10.1	63
32	Surface Plasmon Resonance Analysis of Heparin-Binding Angiogenic Growth Factors. Methods in Molecular Biology, 2016, 1464, 73-84.	0.9	5
33	Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands. Chemistry - A European Journal, 2015, 21, 13598-13608.	3.3	65
34	Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use. Molecules, 2015, 20, 6342-6388.	3.8	126
35	The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opinion on Therapeutic Targets, 2015, 19, 1361-1377.	3.4	72
36	The Agmatine-Containing Poly(Amidoamine) Polymer AGMA1 Binds Cell Surface Heparan Sulfates and Prevents Attachment of Mucosal Human Papillomaviruses. Antimicrobial Agents and Chemotherapy, 2015, 59, 5250-5259.	3.2	20

#	Article	IF	CITATIONS
37	A natural HIV p17 protein variant up-regulates the LMP-1 EBV oncoprotein and promotes the growth of EBV-infected B-lymphocytes: Implications for EBV-driven lymphomagenesis in the HIV setting. International Journal of Cancer, 2015, 137, 1374-1385.	5.1	34
38	Δ5-Cholenoyl-amino acids as selective and orally available antagonists of the Eph–ephrin system. European Journal of Medicinal Chemistry, 2015, 103, 312-324.	5.5	38
39	Angiogenic growth factors interactome and drug discovery: The contribution of surface plasmon resonance. Cytokine and Growth Factor Reviews, 2015, 26, 293-310.	7.2	26
40	Bridging the past and the future of virology: Surface plasmon resonance as a powerful tool to investigate virus/host interactions. Critical Reviews in Microbiology, 2015, 41, 238-260.	6.1	22
41	Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Matrix Proteins Specify Different Capabilities To Modulate B Cell Growth. Journal of Virology, 2014, 88, 5706-5717.	3.4	23
42	A CXCR1 haplotype hampers HIV-1 matrix protein p17 biological activity. Aids, 2014, 28, 2355-2364.	2.2	5
43	Highly Sulfated K5 Escherichia coli Polysaccharide Derivatives Inhibit Respiratory Syncytial Virus Infectivity in Cell Lines and Human Tracheal-Bronchial Histocultures. Antimicrobial Agents and Chemotherapy, 2014, 58, 4782-4794.	3.2	35
44	Functionalization of gold surfaces with copoly(DMA-NAS-MAPS) by dip coating: Surface characterization and hybridization tests. Sensors and Actuators B: Chemical, 2014, 190, 234-242.	7.8	12
45	Membrane association of peroxiredoxin-2 in red cells is mediated by the N-terminal cytoplasmic domain of band 3. Free Radical Biology and Medicine, 2013, 55, 27-35.	2.9	71
46	Molecular Interaction Studies of HIV-1 Matrix Protein p17 and Heparin. Journal of Biological Chemistry, 2013, 288, 1150-1161.	3.4	30
47	Multispot, label-free biodetection at a phantom plastic–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9350-9355.	7.1	35
48	Peptide-Derivatized SB105-A10 Dendrimer Inhibits the Infectivity of R5 and X4 HIV-1 Strains in Primary PBMCs and Cervicovaginal Histocultures. PLoS ONE, 2013, 8, e76482.	2.5	32
49	Sialic Acid Associated with αvβ3 Integrin Mediates HIV-1 Tat Protein Interaction and Endothelial Cell Proangiogenic Activation. Journal of Biological Chemistry, 2012, 287, 20456-20466.	3.4	26
50	Inhibition of Human Respiratory Syncytial Virus Infectivity by a Dendrimeric Heparan Sulfate-Binding Peptide. Antimicrobial Agents and Chemotherapy, 2012, 56, 5278-5288.	3.2	47
51	HIV-1 matrix protein p17 binds to the IL-8 receptor CXCR1 and shows IL-8–like chemokine activity on monocytes through Rho/ROCK activation. Blood, 2012, 119, 2274-2283.	1.4	43
52	A complex of α ₆ integrin and Eâ€cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietinâ€ike 6. EMBO Molecular Medicine, 2012, 4, 1156-1175.	6.9	44
53	Substrate-Immobilized HIV-1 Tat Drives VEGFR2/α _v β ₃ –Integrin Complex Formation and Polarization in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, e25-34.	2.4	15
54	HIV-1 matrix protein p17 promotes angiogenesis via chemokine receptors CXCR1 and CXCR2. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14580-14585.	7.1	92

MARCO RUSNATI

#	Article	IF	CITATIONS
55	Direct and Allosteric Inhibition of the FGF2/HSPGs/FGFR1 Ternary Complex Formation by an Antiangiogenic, Thrombospondin-1-Mimic Small Molecule. PLoS ONE, 2012, 7, e36990.	2.5	40
56	Chemoselective Surface Immobilization of Proteins through a Cleavable Peptide. Bioconjugate Chemistry, 2011, 22, 1753-1757.	3.6	14
57	Heparan Sulfate Proteoglycans Mediate the Angiogenic Activity of the Vascular Endothelial Growth Factor Receptor-2 Agonist Gremlin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, e116-27.	2.4	62
58	BSA conjugates bearing multiple copies of the basic domain of HIV-1 Tat: Prototype for the development of multitarget inhibitors of extracellular Tat. Antiviral Research, 2010, 87, 30-39.	4.1	7
59	Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action. Pharmaceuticals, 2010, 3, 1241-1278.	3.8	30
60	Non-peptidic Thrombospondin-1 Mimics as Fibroblast Growth Factor-2 Inhibitors. Journal of Biological Chemistry, 2010, 285, 8733-8742.	3.4	70
61	Identification of a Dendrimeric Heparan Sulfate-Binding Peptide That Inhibits Infectivity of Genital Types of Human Papillomaviruses. Antimicrobial Agents and Chemotherapy, 2010, 54, 4290-4299.	3.2	56
62	Targeting tumor angiogenesis with TSP-1-based compounds: rational design of antiangiogenic mimetics of endogenous inhibitors. Oncotarget, 2010, 1, 662-673.	1.8	57
63	Targeting tumor angiogenesis with TSP-1-based compounds: rational design of antiangiogenic mimetics of endogenous inhibitors. Oncotarget, 2010, 1, 662-73.	1.8	33
64	Exploiting Surface Plasmon Resonance (SPR) Technology for the Identification of Fibroblast Growth Factor-2 (FGF2) Antagonists Endowed with Antiangiogenic Activity. Sensors, 2009, 9, 6471-6503.	3.8	17
65	Sulfated K5 Escherichia coli polysaccharide derivatives: A novel class of candidate antiviral microbicides. , 2009, 123, 310-322.		82
66	HIV-1 Tat and heparan sulfate proteoglycan interaction: a novel mechanism of lymphocyte adhesion and migration across the endothelium. Blood, 2009, 114, 3335-3342.	1.4	42
67	Fibroblast Growth Factor-2 Antagonist and Antiangiogenic Activity of Long-Pentraxin 3-Derived Synthetic Peptides. Current Pharmaceutical Design, 2009, 15, 3577-3589.	1.9	33
68	Polysulfated/Sulfonated Compounds for the Development of Drugs at the Crossroad of Viral Infection and Oncogenesis. Current Pharmaceutical Design, 2009, 15, 2946-2957.	1.9	37
69	Fibroblast growth factor-2 binding to the thrombospondin-1 type III repeats, a novel antiangiogenic domain. International Journal of Biochemistry and Cell Biology, 2008, 40, 700-709.	2.8	67
70	Sulfated K5 <i>Escherichia coli</i> Polysaccharide Derivatives as Wide-Range Inhibitors of Genital Types of Human Papillomavirus. Antimicrobial Agents and Chemotherapy, 2008, 52, 1374-1381.	3.2	43
71	Polyanionic Drugs and Viral Oncogenesis: a Novel Approach to Control Infection, Tumor-associated Inflammation and Angiogenesis. Molecules, 2008, 13, 2758-2785.	3.8	46

#	Article	IF	CITATIONS
73	Fibroblast Growth Factors/Fibroblast Growth Factor Receptors as Targets for the Development of Anti-Angiogenesis Strategies. Current Pharmaceutical Design, 2007, 13, 2025-2044.	1.9	134
74	Pradimicin A, a Carbohydrate-Binding Nonpeptidic Lead Compound for Treatment of Infections with Viruses with Highly Glycosylated Envelopes, Such as Human Immunodeficiency Virus. Journal of Virology, 2007, 81, 362-373.	3.4	99
75	Heparin-Mimicking Sulfonic Acid Polymers as Multitarget Inhibitors of Human Immunodeficiency Virus Type 1 Tat and gp120 Proteins. Antimicrobial Agents and Chemotherapy, 2007, 51, 2337-2345.	3.2	45
76	The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies. Cytokine and Growth Factor Reviews, 2007, 18, 327-334.	7.2	78
77	Dendritic cell–endothelial cell cross-talk in angiogenesis. Trends in Immunology, 2007, 28, 385-392.	6.8	115
78	Role of the soluble pattern recognition receptor PTX3 in vascular biology. Journal of Cellular and Molecular Medicine, 2007, 11, 723-738.	3.6	166
79	Positively charged peptides can interact with each other, as revealed by solid phase binding assays. Analytical Biochemistry, 2006, 352, 157-168.	2.4	12
80	Identification of an Antiangiogenic FGF2-binding Site in the N Terminus of the Soluble Pattern Recognition Receptor PTX3. Journal of Biological Chemistry, 2006, 281, 22605-22613.	3.4	101
81	Extracellular Angiogenic Growth Factor Interactions: An Angiogenesis Interactome Survey. Endothelium: Journal of Endothelial Cell Research, 2006, 13, 93-111.	1.7	43
82	Heparin Derivatives and Semisynthetic Biotechnological Heparins as Angiogenesis Inhibitors. Frontiers in Drug Design and Discovery, 2005, 2, 371-391.	0.3	0
83	The fd phage and a peptide derived from its p8 coat protein interact with the HIV-1 Tat-NLS and inhibit its biological functions. Antiviral Research, 2005, 66, 67-78.	4.1	12
84	Biotechnological Engineering of Heparin/Heparan Sulphate: A Novel Area of Multi-Target Drug Discovery. Current Pharmaceutical Design, 2005, 11, 2489-2499.	1.9	52
85	Cutting Edge: Proangiogenic Properties of Alternatively Activated Dendritic Cells. Journal of Immunology, 2005, 175, 2788-2792.	0.8	124
86	Pentraxin 3 Inhibits Fibroblast Growth Factor 2–Dependent Activation of Smooth Muscle Cells In Vitro and Neointima Formation In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1837-1842.	2.4	93
87	αvβ3-integrin-dependent activation of focal adhesion kinase mediates NF-κB activation and motogenic activity by HIV-1 Tat in endothelial cells. Journal of Cell Science, 2005, 118, 3949-3958.	2.0	47
88	Antiangiogenic Activity of Semisynthetic Biotechnological Heparins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 71-76.	2.4	35
89	Integrin αVβ3as a Target for Blocking HIV-1 Tat-Induced Endothelial Cell Activation In Vitro and Angiogenesis In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2315-2320.	2.4	44
90	Complexity and Complementarity of Outer Membrane Protein A Recognition by Cellular and Humoral Innate Immunity Receptors. Immunity, 2005, 22, 551-560.	14.3	271

#	Article	IF	CITATIONS
91	Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine and Growth Factor Reviews, 2005, 16, 159-178.	7.2	1,126
92	Undersulfated, low-molecular-weight glycol-split heparin as an antiangiogenic VEGF antagonist. Glycobiology, 2004, 15, 1C-6C.	2.5	48
93	Inhibition of intra- and extra-cellular Tat function and HIV expression by pertussis toxin B-oligomer. European Journal of Immunology, 2004, 34, 530-536.	2.9	16
94	Undersulfated and Glycol-Split Heparins Endowed with Antiangiogenic Activity. Journal of Medicinal Chemistry, 2004, 47, 838-848.	6.4	80
95	Chemically sulfatedEscherichia coliK5 polysaccharide derivatives as extracellular HIV-1 Tat protein antagonists. FEBS Letters, 2004, 568, 171-177.	2.8	50
96	Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood, 2004, 104, 92-99.	1.4	181
97	Thrombospondin 1 as a scavenger for matrix-associated fibroblast growth factor 2. Blood, 2003, 102, 4399-4406.	1.4	93
98	Heparin Derivatives as Angiogenesis Inhibitors. Current Pharmaceutical Design, 2003, 9, 553-566.	1.9	102
99	Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4367-4372.	7.1	101
100	Fibroblast Growth Factors and Their Receptors in Hematopoiesis and Hematological Tumors. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 19-32.	1.8	52
101	Short Heparin Sequences Spaced by Glycol-Split Uronate Residues Are Antagonists of Fibroblast Growth Factor 2 and Angiogenesis Inhibitors. Biochemistry, 2002, 41, 10519-10528.	2.5	76
102	Biological activity of substrate-bound basic fibroblast growth factor (FGF2): recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene, 2002, 21, 3889-3897.	5.9	61
103	HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis, 2002, 5, 141-151.	7.2	93
104	HIV-1 Tat protein: A target for the development of anti-AIDS therapies. Drugs of the Future, 2002, 27, 481.	0.1	21
105	Interaction of Angiogenic Growth Factors with Endothelial Cell Heparan Sulfate Proteoglycans. , 2002, , 357-385.		0
106	Activation of Endothelial Cell Mitogen Activated Protein Kinase ERK _{1/2} by Extracellular HIV-1 Tat Protein. Endothelium: Journal of Endothelial Cell Research, 2001, 8, 65-74.	1.7	40
107	Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans. Journal of Biological Chemistry, 2001, 276, 3254-3261.	3.4	635
108	Fibroblast Growth Factor-2 Antagonist Activity and Angiostatic Capacity of Sulfated Escherichia coli K5 Polysaccharide Derivatives. Journal of Biological Chemistry, 2001, 276, 37900-37908.	3.4	73

#	Article	IF	CITATIONS
109	Pentosan Polysulfate as an Inhibitor of Extracellular HIV-1 Tat. Journal of Biological Chemistry, 2001, 276, 22420-22425.	3.4	67
110	Thrombospondinâ€1/HIVâ€1 Tat protein interaction: modulation of the biological activity of extracellular Tat. FASEB Journal, 2000, 14, 1917-1930.	0.5	27
111	Examining New Models for the Study of Autocrine and Paracrine Mechanisms of Angiogenesis Through FGF2-Transfected Endothelial and Tumour Cells. Advances in Experimental Medicine and Biology, 2000, 476, 7-34.	1.6	8
112	Interaction of Fibroblast Growth Factor-2 (FGF-2) with Free Gangliosides: Biochemical Characterization and Biological Consequences in Endothelial Cell Cultures. Molecular Biology of the Cell, 1999, 10, 313-327.	2.1	65
113	Modulation of Fibroblast Growth Factor-2 Receptor Binding, Signaling, and Mitogenic Activity by Heparin-Mimicking Polysulfonated Compounds. Molecular Pharmacology, 1999, 56, 204-213.	2.3	95
114	Multiple Interactions of HIV-I Tat Protein with Size-defined Heparin Oligosaccharides. Journal of Biological Chemistry, 1999, 274, 28198-28205.	3.4	110
115	Thrombospondin-1 inhibits Kaposi's sarcoma (KS) cell and HIV-1 Tat-induced angiogenesis and is poorly expressed in KS lesions. , 1999, 188, 76-81.		44
116	Alterations of blood vessel development by endothelial cells overexpressing fibroblast growth factor-2. , 1999, 189, 590-599.		35
117	Alterations of blood vessel development by endothelial cells overexpressing fibroblast growth factorâ€Â2. Journal of Pathology, 1999, 189, 590-599.	4.5	3
118	Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis. International Journal of Clinical and Laboratory Research, 1998, 28, 55-68.	1.0	85
119	The Basic Domain in HIV-1 Tat Protein as a Target for Polysulfonated Heparin-mimicking Extracellular Tat Antagonists. Journal of Biological Chemistry, 1998, 273, 16027-16037.	3.4	105
120	Characterization of the Effects of Two Polysulfonated Distamycin A Derivatives, PNU145156E and PNU153429, on HIV Type 1 Tat Protein. AIDS Research and Human Retroviruses, 1998, 14, 1561-1571.	1.1	16
121	Autocrine Role of Basic Fibroblast Growth Factor (bFGF) in Angiogenesis and Angioproliferative Diseases. , 1998, , 99-112.		0
122	α _v β ₃ Integrin Mediates the Cell-adhesive Capacity and Biological Activity of Basic Fibroblast Growth Factor (FGF-2) in Cultured Endothelial Cells. Molecular Biology of the Cell, 1997, 8, 2449-2461.	2.1	140
123	Upregulation of urokinase-type plasminogen activator by endogenous and exogenous HIV-1 Tat protein in tumour cell lines derived from BK virus/tat-transgenic mice. Aids, 1997, 11, 727-736.	2.2	8
124	Interaction of HIV-1 Tat Protein with Heparin. Journal of Biological Chemistry, 1997, 272, 11313-11320.	3.4	179
125	Urokinase-Type Plasminogen Activator Overexpression Enhances the Invasive Capacity of Endothelial Cells. Microvascular Research, 1997, 53, 254-260.	2.5	17
126	Basic Fibroblast Growth Factor–Induced Angiogenic Phenotype in Mouse Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 454-464.	2.4	108

#	Article	IF	CITATIONS
127	Promotion of tumour metastases and induction of angiogenesis by native HIV-1 Tat protein from BK virus/tat transgenic mice. Aids, 1996, 10, 701-710.	2.2	42
128	Up-regulation of urokinase-type plasminogen activator in squamous cell carcinoma of human larynx. British Journal of Cancer, 1996, 74, 1168-1174.	6.4	18
129	Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans. International Journal of Clinical and Laboratory Research, 1996, 26, 15-23.	1.0	121
130	Basic Fibroblast Growth Factor Expression in Endothelial Cells: An Autocrine Role in Angiogenesis?. , 1996, , 61-72.		2
131	The Interaction of Basic Fibroblast Growth Factor (bFGF) With Heparan Sulfate Proteoglycans. , 1996, , 171-187.		1
132	A Monoclonal Antibody to the NH2-Terminal Region of Human Interferon-Î ³ Inhibits Its Antiproliferative Activity Without Affecting Its Internalization. Journal of Interferon and Cytokine Research, 1995, 15, 197-204.	1.2	5
133	Endogenous Basic Fibroblast Growth Factor Is Implicated in the Vascularization of the Chick Embryo Chorioallantoic Membrane. Developmental Biology, 1995, 170, 39-49.	2.0	158
134	Interaction of high-molecular-weight basic fibroblast growth factor with endothelium: Biological activity and intracellular fate of human recombinant Mr 24,000 bFGF. Journal of Cellular Physiology, 1994, 161, 149-159.	4.1	66
135	Distinct Role of 2-O-, N-, and 6-O-Sulfate Groups of Heparin in the Formation of the Ternary Complex with Basic Fibroblast Growth Factor and Soluble FGF Receptor-1. Biochemical and Biophysical Research Communications, 1994, 203, 450-458.	2.1	85
136	Human Basic Fibroblast Growth Factor: Structure-Function Relationship of an Angiogenic Molecule. , 1994, , 39-50.		0
137	Basic fibroblast growth factor in human pheochromocytoma: A biochemical and immunohistochemical study. International Journal of Cancer, 1993, 53, 5-10.	5.1	33
138	Internalization of basic fibroblast growth factor (bFGF) in cultured endothelial cells: Role of the low affinity heparin-like bFGF receptors. Journal of Cellular Physiology, 1993, 154, 152-161.	4.1	85
139	Biochemical bases of the interaction of human basic fibroblast growth factor with glycosaminoglycans. New insights from trypsin digestion studies. FEBS Journal, 1993, 214, 51-58.	0.2	52
140	Estro-Progestinic Replacement Therapy Modulates the Levels of Basic Fibroblast Growth Factor (bFGF) in Postmenopausal Endometrium. Gynecologic Oncology, 1993, 48, 88-93.	1.4	22
141	Subcellular Localization and Biological Activity of Mr 18,000 Basic Fibroblast Growth Factor: Site-Directed Mutagenesis of a Putative Nuclear Translocation Sequence. Growth Factors, 1993, 9, 269-278.	1.7	17
142	Structure-function relationship of basic fibroblast growth factor: Site-directed mutagenesis of a putative heparin-binding and receptor-binding region. Biochemical and Biophysical Research Communications, 1992, 185, 1098-1107.	2.1	31
143	Basic Fibroblast Growth Factor and Endothelial Cells: Receptor Interaction, Signal Transduction, Cellular Response-Dissociation of the Mitogenic Activity of bFGF from its Plasminogen Activator-Inducing Capacity. , 1992, , 79-89.		0
144	Basic fibroblast growth factor bound to cell substrate promotes cell adhesion, proliferation, and protease production in cultured endothelial cells. Exs, 1992, 61, 205-209.	1.4	8

#	Article	IF	CITATIONS
145	Functional Domains of Basic Fibroblast Growth Factor: Possible Role of Asp-Gly-Arg Sequences in the Mitogenic Activity of bFGF. Annals of the New York Academy of Sciences, 1991, 638, 361-368.	3.8	6
146	A Mutant of Basic Fibroblast Growth Factor that Has Lost the Ability to Stimulate Plasminogen Activator Synthesis in Endothelial Cells. Annals of the New York Academy of Sciences, 1991, 638, 369-377.	3.8	3
147	Biologically active synthetic fragments of human basic fibroblast growth factor (bFGF): Identification of two Asp-Gly-Arg-Containing domains involved in the mitogenic activity of bFGF in endothelial cells. Journal of Cellular Physiology, 1991, 149, 512-524.	4.1	32
148	Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells Molecular Biology of the Cell, 1991, 2, 719-726.	6.5	64
149	A six-amino acid deletion in basic fibroblast growth factor dissociates its mitogenic activity from its plasminogen activator-inducing capacity Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 2628-2632.	7.1	76
150	Basic Fibroblast Growth Factor in Ovulatory Cycle and Postmenopausal Human Endometrium. Growth Factors, 1990, 3, 299-307.	1.7	49
151	Characterization of a Mr 20,000 basic fibroblast growth factor-like protein secreted by normal and transformed fetal bovine aortic endothelial cells. Experimental Cell Research, 1990, 186, 354-361.	2.6	24
152	Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. Journal of Cellular Physiology, 1989, 140, 68-74.	4.1	137
153	Basic fibroblast growth factor: Production, mitogenic response, and post-receptor signal transduction in cultured normal and transformed fetal bovine aortic endothelial cells. Journal of Cellular Physiology, 1989, 141, 517-526.	4.1	50
154	Characterization of a Mr 25,000 basic fibroblast growth factor form in adult, regenerating, and fetal rat liver. Biochemical and Biophysical Research Communications, 1989, 164, 1182-1189.	2.1	41
155	Purification of basic fibroblast growth factor from rat brain: Identification of a Mr 22,000 immunoreactive form. Biochemical and Biophysical Research Communications, 1988, 155, 1161-1172.	2.1	57
156	High molecular weight immunoreactive basic fibroblast growth factor-like proteins in rat pituitary and brain. Neuroscience Letters, 1988, 90, 308-313.	2.1	34
157	Liver DNA Damage by Chemical Carcinogens: Role of Thyroid Hormones. , 1988, , 129-135.		1
158	Modulation of plasminogen activator activity in human endometrial adenocarcinoma cells by basic fibroblast growth factor and transforming growth factor beta. Cancer Research, 1988, 48, 6384-9.	0.9	34
159	Critical role of gonadal hormones on the genotoxic activity of the hepatocarcinogen DL-ZAMI 1305. Cancer Letters, 1987, 36, 253-261.	7.2	5