Stuart Calderwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2378395/publications.pdf

Version: 2024-02-01

230 papers

19,976 citations

74 h-index

9264

134 g-index

238 all docs

238 docs citations

times ranked

238

17320 citing authors

#	Article	IF	CITATIONS
1	Heat shock proteins in cell signaling and cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119187.	4.1	20
2	Cancer extracellular vesicles, tumoroid models, and tumor microenvironment. Seminars in Cancer Biology, 2022, 86, 112-126.	9.6	18
3	The XIth International Online Symposium on Heat Shock Proteins in Biology and Medicine. Cell Stress and Chaperones, 2022, 27, 5-10.	2.9	O
4	Regulation of a Novel Splice Variant of Early Growth Response 4 (EGR4-S) by HER+ Signalling and HSF1 in Breast Cancer. Cancers, 2022, 14, 1567.	3.7	0
5	Extracellular $Hsp90\hat{l}\pm$ stimulates a unique innate gene profile in microglial cells with simultaneous activation of Nrf2 and protection from oxidative stress. Cell Stress and Chaperones, 2022, 27, 461-478.	2.9	4
6	Arsenic hexoxide has differential effects on cell proliferation and genome-wide gene expression in human primary mammary epithelial and MCF7 cells. Scientific Reports, 2021, 11, 3761.	3.3	10
7	The 2021 FASEB Virtual Catalyst Conference on Extracellular and Organismal Proteostasis in Health and Disease, February 3â€4, 2021. FASEB Journal, 2021, 35, e21631.	0.5	1
8	The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Archives of Toxicology, 2021, 95, 1943-1970.	4.2	49
9	Extracellular Hsp90 and protection of neuronal cells through Nrf2. Biochemical Society Transactions, 2021, 49, 2299-2306.	3.4	9
10	BRCA1-BARD1 regulates transcription through modulating topoisomerase \hat{Il}^2 . Open Biology, 2021, 11, 210221.	3.6	9
11	Chemogenomic screening identifies the Hsp70 co-chaperone DNAJA1 as a hub for anticancer drug resistance. Scientific Reports, 2020, 10, 13831.	3.3	23
12	Triple knockdown of CDC37, HSP90â€alpha and HSP90â€beta diminishes extracellular vesiclesâ€driven malignancy events and macrophage M2 polarization in oral cancer. Journal of Extracellular Vesicles, 2020, 9, 1769373.	12.2	62
13	Host expression system modulates recombinant Hsp70 activity through postâ€translational modifications. FEBS Journal, 2020, 287, 4902-4916.	4.7	7
14	A Novel Model of Cancer Drug Resistance: Oncosomal Release of Cytotoxic and Antibody-Based Drugs. Biology, 2020, 9, 47.	2.8	20
15	Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells. Cells, 2020, 9, 755.	4.1	47
16	Antiparkinson Drug Benztropine Suppresses Tumor Growth, Circulating Tumor Cells, and Metastasis by Acting on SLC6A3/DAT and Reducing STAT3. Cancers, 2020, 12, 523.	3.7	34
17	HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity. Cells, 2020, 9, 1046.	4.1	38
18	Extracellular Vesicles Enriched with Moonlighting Metalloproteinase Are Highly Transmissive, Pro-Tumorigenic, and Trans-Activates Cellular Communication Network Factor (CCN2/CTGF): CRISPR against Cancer. Cancers, 2020, 12, 881.	3.7	39

#	Article	IF	Citations
19	Heat Shock Proteins Are Essential Components in Transformation and Tumor Progression: Cancer Cell Intrinsic Pathways and Beyond. International Journal of Molecular Sciences, 2019, 20, 4507.	4.1	64
20	MZF1 and SCAND1 Reciprocally Regulate CDC37 Gene Expression in Prostate Cancer. Cancers, 2019, 11, 792.	3.7	28
21	Immunological Outcomes Mediated Upon Binding of Heat Shock Proteins to Scavenger Receptors SCARF1 and LOX-1, and Endocytosis by Mononuclear Phagocytes. Frontiers in Immunology, 2019, 10, 3035.	4.8	13
22	A Workflow Guide to RNA-seq Analysis of Chaperone Function and Beyond. Methods in Molecular Biology, 2018, 1709, 233-252.	0.9	3
23	A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells. Methods in Molecular Biology, 2018, 1709, 359-369.	0.9	4
24	Role of Heat Shock Factors in Stress-Induced Transcription. Methods in Molecular Biology, 2018, 1709, 23-34.	0.9	13
25	Molecular Chaperone Receptors. Methods in Molecular Biology, 2018, 1709, 331-344.	0.9	8
26	Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160524.	4.0	84
27	Depletion of Lipid Efflux Pump ABCG1 Triggers the Intracellular Accumulation of Extracellular Vesicles and Reduces Aggregation and Tumorigenesis of Metastatic Cancer Cells. Frontiers in Oncology, 2018, 8, 376.	2.8	56
28	Carcinogenic epithelial-mesenchymal transition initiated by oral cancer exosomes is inhibited by anti-EGFR antibody cetuximab. Oral Oncology, 2018, 86, 251-257.	1.5	78
29	HSPâ€enriched properties of extracellular vesicles involve survival of metastatic oral cancer cells. Journal of Cellular Biochemistry, 2018, 119, 7350-7362.	2.6	120
30	Anti-EGFR antibody cetuximab is secreted by oral squamous cell carcinoma and alters EGF-driven mesenchymal transition. Biochemical and Biophysical Research Communications, 2018, 503, 1267-1272.	2.1	51
31	HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Scientific Reports, 2018, 8, 6976.	3.3	88
32	Genotoxic stress induces Scaâ€1â€expressing metastatic mammary cancer cells. Molecular Oncology, 2018, 12, 1249-1263.	4.6	15
33	March1-dependent modulation of donor MHC II on CD103+ dendritic cells mitigates alloimmunity. Nature Communications, 2018, 9, 3482.	12.8	22
34	Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment. PLoS ONE, 2018, 13, e0191109.	2.5	100
35	Regulatory Roles for Hsp70 in Cancer Incidence and Tumor Progression. Frontiers in Structural Biology, 2018, , 1-22.	0.3	10
36	Intracellular MMP3 Promotes <i>HSP</i> Gene Expression in Collaboration With Chromobox Proteins. Journal of Cellular Biochemistry, 2017, 118, 43-51.	2.6	46

#	Article	IF	CITATIONS
37	Exploring the nexus of Alzheimer's disease and related dementias with cancer and cancer therapies: A convening of the Alzheimer's Association & Exploration of the Alzheimer's Association and Dementia, 2017, 13, 267-273.	0.8	35
38	Molecular Chaperone Accumulation in Cancer and Decrease in Alzheimer's Disease: The Potential Roles of HSF1. Frontiers in Neuroscience, 2017, 11, 192.	2.8	64
39	Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity. Frontiers in Immunology, 2016, 7, 159.	4.8	155
40	The Scavenger Receptor SREC-I Cooperates with Toll-Like Receptors to Trigger Inflammatory Innate Immune Responses. Frontiers in Immunology, 2016, 7, 226.	4.8	30
41	Editorial: HSPsâ€"Ambiguous Mediators of Immunity. Frontiers in Immunology, 2016, 7, 639.	4.8	2
42	A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription, 2016, 7, 75-83.	3.1	43
43	Creative damage unleashes transcription. Cell Cycle, 2016, 15, 1021-1022.	2.6	5
44	Heat Shock Proteins Promote Cancer: It's a Protection Racket. Trends in Biochemical Sciences, 2016, 41, 311-323.	7.5	316
45	Hsp90 in Cancer. Advances in Cancer Research, 2016, 129, 89-106.	5.0	44
46	A Novel High-Throughput 3D Screening System for EMT Inhibitors: A Pilot Screening Discovered the EMT Inhibitory Activity of CDK2 Inhibitor SU9516. PLoS ONE, 2016, 11, e0162394.	2.5	57
47	Siglecs take a TOLL on inflammation: deciphering the Hsp70 riddle. EMBO Journal, 2015, 34, 2733-2734.	7.8	5
48	Role and Regulation of Myeloid Zinc Finger Protein 1 in Cancer. Journal of Cellular Biochemistry, 2015, 116, 2146-2154.	2.6	55
49	TRIM28 as a novel transcriptional elongation factor. BMC Molecular Biology, 2015, 16, 14.	3.0	42
50	Transcriptional elongation requires DNA break-induced signalling. Nature Communications, 2015, 6, 10191.	12.8	173
51	Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene, 2015, 34, 5460-5471.	5.9	61
52	Scavenger receptor SREC-I promotes double stranded RNA-mediated TLR3 activation in human monocytes. Immunobiology, 2015, 220, 823-832.	1.9	28
53	Report on the VIIth International Symposium on Heat Shock Proteins in Biology & Dedicine. Cell Stress and Chaperones, 2015, 20, 213-216.	2.9	3
54	Emerging roles for scavenger receptor SREC-l in immunity. Cytokine, 2015, 75, 256-260.	3.2	28

#	Article	IF	CITATIONS
55	Prenatal protein malnutrition decreases KCNJ3 and 2DG activity in rat prefrontal cortex. Neuroscience, 2015, 286, 79-86.	2.3	9
56	HSF1 regulation of \hat{l}^2 -catenin in mammary cancer cells through control of HuR/elavL1 expression. Oncogene, 2015, 34, 2178-2188.	5.9	83
57	Cdc37 as a Co-chaperone to Hsp90. Sub-Cellular Biochemistry, 2015, 78, 103-112.	2.4	44
58	Scavenger Receptor SREC-I Mediated Entry of TLR4 into Lipid Microdomains and Triggered Inflammatory Cytokine Release in RAW 264.7 Cells upon LPS Activation. PLoS ONE, 2015, 10, e0122529.	2.5	43
59	LPSâ€activated Scavenger Receptor SRECâ€l can Induce entry of TLR4 into Lipid Microdomains, Mediate Signal Transduction and trigger cytokine release. FASEB Journal, 2015, 29, 888.25.	0.5	1
60	Intraâ€nuclear MMPâ€3 controls transcription of HSP70 gene through interaction with heterochromatin proteins FASEB Journal, 2015, 29, 688.2.	0.5	0
61	OstemiR: A Novel Panel of MicroRNA Biomarkers in Osteoblastic and Osteocytic Differentiation from Mesencymal Stem Cells. FASEB Journal, 2015, 29, 562.19.	0.5	0
62	miRNA-720 regulates the stem cell phenotype and differentiation of human dental pulp-derived mesenchymal stromal cells. , 2014, , .		0
63	Hsp90–peptide complexes stimulate antigen presentation through the class II pathway after binding scavenger receptor SREC-I. Immunobiology, 2014, 219, 924-931.	1.9	39
64	Hsp70–Bag3 Interactions Regulate Cancer-Related Signaling Networks. Cancer Research, 2014, 74, 4731-4740.	0.9	141
65	TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nature Structural and Molecular Biology, 2014, 21, 876-883.	8.2	125
66	From stress protein biochemistry to novel immunotherapeutics. International Journal of Hyperthermia, 2013, 29, 362-363.	2.5	4
67	Cellular and molecular chaperone fusion vaccines: Targeting resistant cancer cell populations. International Journal of Hyperthermia, 2013, 29, 376-379.	2.5	10
68	Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Archives of Toxicology, 2013, 87, 19-48.	4.2	228
69	Stress proteins in aging and life span. International Journal of Hyperthermia, 2013, 29, 442-447.	2.5	89
70	Purification, Preparation, and Use of Chaperone–Peptide Complexes for Tumor Immunotherapy. Methods in Molecular Biology, 2013, 960, 209-217.	0.9	7
71	Molecular Cochaperones: Tumor Growth and Cancer Treatment. Scientifica, 2013, 2013, 1-13.	1.7	52
72	Immunotherapy of Radioresistant Mammary Tumors with Early Metastasis Using Molecular Chaperone Vaccines Combined with Ionizing Radiation. Journal of Immunology, 2013, 191, 755-763.	0.8	46

#	Article	IF	CITATIONS
73	miRNA-720 Controls Stem Cell Phenotype, Proliferation and Differentiation of Human Dental Pulp Cells. PLoS ONE, 2013, 8, e83545.	2.5	66
74	OstemiR: A Novel Panel of MicroRNA Biomarkers in Osteoblastic and Osteocytic Differentiation from Mesencymal Stem Cells. PLoS ONE, 2013, 8, e58796.	2.5	147
75	Hyperthermia, the Tumor Microenvironment and Immunity. , 2013, , 29-37.		11
76	Role of HSF1 and FoxO3 in proteotoxic stress induced Macroautophagy. FASEB Journal, 2013, 27, 994.1.	0.5	0
77	Tumor heterogeneity, clonal evolution, and therapy resistance: an opportunity for multitargeting therapy. Discovery Medicine, 2013, 15, 188-94.	0.5	27
78	Heat Shock Proteins, Autoimmunity, and Cancer Treatment. Autoimmune Diseases, 2012, 2012, 1-10.	0.6	69
79	Elevated levels of HSF1 indicate a poor prognosis in breast cancer. Future Oncology, 2012, 8, 399-401.	2.4	9
80	HSF1, A Versatile Factor in Tumorogenesis. Current Molecular Medicine, 2012, 12, 1102-1107.	1.3	34
81	Metastasis is an early event in mouse mammary carcinomas and is associated with cells bearing stem cell markers. Breast Cancer Research, 2012, 14, R18.	5.0	56
82	mTOR Is Essential for the Proteotoxic Stress Response, HSF1 Activation and Heat Shock Protein Synthesis. PLoS ONE, 2012, 7, e39679.	2.5	187
83	The Role of Heat Shock Proteins in Antigen Cross Presentation. Frontiers in Immunology, 2012, 3, 63.	4.8	137
84	Heat Shock Proteins: Conditional Mediators of Inflammation in Tumor Immunity. Frontiers in Immunology, 2012, 3, 75.	4.8	40
85	Plasma heat shock protein 72 as a biomarker of sarcopenia in elderly people. Cell Stress and Chaperones, 2012, 17, 349-359.	2.9	48
86	Molecular chaperones in mammary cancer growth and breast tumor therapy. Journal of Cellular Biochemistry, 2012, 113, 1096-1103.	2.6	52
87	Molecular Chaperones and Scavenger Receptors: Binding and Trafficking of Molecular Chaperones by Class F and Class H Scavenger Receptors. Heat Shock Proteins, 2012, , 215-227.	0.2	3
88	Pathways of Hsp70 Release: Lessons from Cytokine Secretion. Heat Shock Proteins, 2012, , 103-113.	0.2	0
89	Autophagy, protein aggregation and hyperthermia: A mini-review. International Journal of Hyperthermia, 2011, 27, 409-414.	2.5	62
90	The Role of Heat Shock Factors in Stress-Induced Transcription. Methods in Molecular Biology, 2011, 787, 21-32.	0.9	27

#	Article	IF	CITATIONS
91	Preparation of a Heat-Shock Protein 70-Based Vaccine from DC–Tumor Fusion Cells. Methods in Molecular Biology, 2011, 787, 255-265.	0.9	15
92	Investigating Receptors for Extracellular Heat Shock Proteins. Methods in Molecular Biology, 2011, 787, 289-302.	0.9	48
93	Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Review of Vaccines, 2011, 10, 1553-1568.	4.4	83
94	Induction of cytotoxic T lymphocytes against ovarian cancerâ€initiating cells. International Journal of Cancer, 2011, 129, 1990-2001.	5.1	41
95	Protein Kinase A Regulates Molecular Chaperone Transcription and Protein Aggregation. PLoS ONE, 2011, 6, e28950.	2.5	34
96	Plasma adenosine triphosphate and heat shock protein 72 concentrations after aerobic and eccentric exercise. Exercise Immunology Review, 2011, 17, 136-49.	0.4	17
97	Signal Transduction Pathways Leading to Heat Shock Transcription. Signal Transduction Insights, 2010, 2, STI.S3994.	2.0	70
98	Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress and Chaperones, 2010, 15, 123-141.	2.9	93
99	Protein Kinase A Binds and Activates Heat Shock Factor 1. PLoS ONE, 2010, 5, e13830.	2.5	64
100	Heat Shock Protein 90 Mediates Efficient Antigen Cross Presentation through the Scavenger Receptor Expressed by Endothelial Cells-I. Journal of Immunology, 2010, 185, 2903-2917.	0.8	95
101	Heat shock proteins in breast cancer progression–A suitable case for treatment?. International Journal of Hyperthermia, 2010, 26, 681-685.	2.5	71
102	A Heat Shock Protein 70-Based Vaccine with Enhanced Immunogenicity for Clinical Use. Journal of Immunology, 2010, 184, 488-496.	0.8	80
103	T Cell Activation by Heat Shock Protein 70 Vaccine Requires TLR Signaling and Scavenger Receptor Expressed by Endothelial Cells-1. Journal of Immunology, 2009, 183, 3092-3098.	0.8	75
104	Oxidative Stress Impairs the Heat Stress Response and Delays Unfolded Protein Recovery. PLoS ONE, 2009, 4, e7719.	2.5	76
105	The Shock of Aging: Molecular Chaperones and the Heat Shock Response in Longevity and Aging – A Mini-Review. Gerontology, 2009, 55, 550-558.	2.8	294
106	Antitumor Immunity Can Be Uncoupled from Autoimmunity following Heat Shock Protein 70–Mediated Inflammatory Killing of Normal Pancreas. Cancer Research, 2009, 69, 7767-7774.	0.9	28
107	The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions?. Cell Stress and Chaperones, 2009, 14, 545-553.	2.9	52
108	Telomerase deficiency and telomere dysfunction inhibit mammary tumors induced by polyomavirus middle T oncogene. Oncogene, 2009, 28, 4225-4236.	5.9	20

#	Article	IF	Citations
109	Hyperthermia classic article commentary: †Re-induction of hsp70 synthesis: An assay for thermotolerance†by Gloria C. Li and Johnson Y. Mak, ⟨i⟩International Journal of Hyperthermia ⟨i⟩ 1989;5:389-403. International Journal of Hyperthermia, 2009, 25, 258-261.	2.5	6
110	Role of Host Molecular Chaperones in Responses to Bacterial Infection and Endotoxin Exposure. Heat Shock Proteins, 2009, , 107-120.	0.2	0
111	Cell fusion: from hybridoma to dendritic cell-based vaccine. Expert Review of Vaccines, 2008, 7, 1055-1068.	4.4	49
112	Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation. Expert Review of Vaccines, 2008, 7, 1019-1030.	4.4	70
113	Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene, 2008, 27, 1886-1893.	5.9	99
114	Targeting the oncogene and kinome chaperone CDC37. Nature Reviews Cancer, 2008, 8, 491-495.	28.4	114
115	The dual immunoregulatory roles of stress proteins. Trends in Biochemical Sciences, 2008, 33, 71-79.	7.5	223
116	Heat shock proteins: Stress proteins with Janus-like properties in cancer. International Journal of Hyperthermia, 2008, 24, 31-39.	2.5	132
117	OSU-03012 Stimulates PKR-Like Endoplasmic Reticulum-Dependent Increases in 70-kDa Heat Shock Protein Expression, Attenuating Its Lethal Actions in Transformed Cells. Molecular Pharmacology, 2008, 73, 1168-1184.	2.3	72
118	Cell Stress Proteins: Novel Immunotherapeutics. Novartis Foundation Symposium, 2008, 291, 115-136.	1.1	11
119	Protein Quality Control and Heat Shock Gene Expression in the Nervous System. , 2008, , 349-364.		2
120	Targeting Cdc37 Inhibits Multiple Signaling Pathways and Induces Growth Arrest in Prostate Cancer Cells. Cancer Research, 2007, 67, 11942-11950.	0.9	92
121	Induction of hsp70-Mediated Th17 Autoimmunity Can Be Exploited as Immunotherapy for Metastatic Prostate Cancer. Cancer Research, 2007, 67, 11970-11979.	0.9	83
122	Mechanisms for Hsp70 secretion: Crossing membranes without a leader. Methods, 2007, 43, 168-175.	3.8	165
123	Heat shock proteins in extracellular signaling. Methods, 2007, 43, 167.	3.8	14
124	Implications of Heat Shock Proteins in Carcinogenesis and Cancer Progression., 2007,, 31-52.		3
125	The Elevated Levels of Heat Shock Proteins In Cancer: A Suitable Case For Treatment?. , 2007, , 351-366.		2
126	Extracellular heat shock proteins in cell signaling. FEBS Letters, 2007, 581, 3689-3694.	2.8	280

#	Article	IF	Citations
127	The Anti-inflammatory Effects of Heat Shock Protein 72 Involve Inhibition of High-Mobility-Group Box 1 Release and Proinflammatory Function in Macrophages. Journal of Immunology, 2007, 179, 1236-1244.	0.8	134
128	Extracellular Heat Shock Proteins in Cell Signaling and Immunity. Annals of the New York Academy of Sciences, 2007, 1113, 28-39.	3.8	196
129	The Inside Story: Anti-Inflammatory roles of HSF1 and heat shock proteins. , 2007, , 95-113.		3
130	Cell surface receptors for molecular chaperones. Methods, 2007, 43, 199-206.	3.8	74
131	Hsp70-Based Anticancer Vaccines: Chaperoning The Immune Response. , 2007, , 367-382.		2
132	HSF1: An Emerging Factor In Cancer., 2007,, 53-72.		1
133	Heat Shock Proteins in the Progression of Cancer. , 2007, , 422-450.		0
134	Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. International Journal of Hyperthermia, 2006, 22, 575-585.	2.5	78
135	Co-expression of steroid receptors (estrogen receptor alpha and/or progesterone receptors) and Her-2/neu: Clinical implications. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 32-40.	2.5	47
136	THE INHIBITION OF LPS-INDUCED PRODUCTION OF INFLAMMATORY CYTOKINES BY HSP70 INVOLVES INACTIVATION OF THE NF-κB PATHWAY BUT NOT THE MAPK PATHWAYS. Shock, 2006, 26, 277-284.	2.1	91
137	Heat shock proteins in cancer: chaperones of tumorigenesis. Trends in Biochemical Sciences, 2006, 31, 164-172.	7.5	840
138	Targeting Heat Shock Response to Sensitize Cancer Cells to Proteasome and Hsp90 Inhibitors. Cancer Research, 2006, 66, 1783-1791.	0.9	140
139	Role of Scavenger Receptors in the Binding and Internalization of Heat Shock Protein 70. Journal of Immunology, 2006, 177, 8604-8611.	0.8	142
140	Enhanced Immunogenicity of Heat Shock Protein 70 Peptide Complexes from Dendritic Cell-Tumor Fusion Cells. Journal of Immunology, 2006, 177, 5946-5955.	0.8	89
141	Heat Shock Protein 70 Is Secreted from Tumor Cells by a Nonclassical Pathway Involving Lysosomal Endosomes. Journal of Immunology, 2006, 177, 7849-7857.	0.8	319
142	Phosphorylation of HSF1 by MAPK-Activated Protein Kinase 2 on Serine 121, Inhibits Transcriptional Activity and Promotes HSP90 Binding. Journal of Biological Chemistry, 2006, 281, 782-791.	3.4	108
143	Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Letters, 2005, 579, 1951-1960.	2.8	156
144	Induction of heat shock proteins by heregulin \hat{l}^21 leads to protection from apoptosis and anchorage-independent growth. Oncogene, 2005, 24, 6564-6573.	5.9	107

#	Article	IF	CITATIONS
145	Chaperones and slow death – a recipe for tumor immunotherapy. Trends in Biotechnology, 2005, 23, 57-59.	9.3	30
146	Message in a bottle: Role of the 70-kDa heat shock protein family in anti-tumor immunity. European Journal of Immunology, 2005, 35, 2518-2527.	2.9	130
147	Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress and Chaperones, 2005, 10, 46.	2.9	147
148	Heat Shock Protein 90 Stabilization of ErbB2 Expression Is Disrupted by ATP Depletion in Myocytes. Journal of Biological Chemistry, 2005, 280, 13148-13152.	3.4	62
149	Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress and Chaperones, 2005, 10, 86.	2.9	1,176
150	How is the immune response affected by hyperthermia and heat shock proteins?. International Journal of Hyperthermia, 2005, 21, 713-716.	2.5	77
151	Evolving connections between molecular chaperones and neuronal function. International Journal of Hyperthermia, 2005, 21, 375-378.	2.5	12
152	Regulatory interfaces between the stress protein response and other gene expression programs in the cell. Methods, 2005, 35, 139-148.	3.8	28
153	Regulation of heat shock gene transcription in neuronal cells. International Journal of Hyperthermia, 2005, 21, 433-444.	2.5	53
154	Interactions between Extracellular Signal-regulated Protein Kinase 1, 14-3-3 $\ddot{l}\mu$, and Heat Shock Factor 1 during Stress. Journal of Biological Chemistry, 2004, 279, 49460-49469.	3.4	68
155	Expression of a Dominant Negative Heat Shock Factor-1 Construct Inhibits Aneuploidy in Prostate Carcinoma Cells*. Journal of Biological Chemistry, 2004, 279, 32651-32659.	3.4	64
156	Development of Antigen-Specific CD8+ CTL in MHC Class I-Deficient Mice through CD4 to CD8 Conversion. Journal of Immunology, 2004, 172, 7848-7858.	0.8	25
157	The 70kilodalton heat shock protein is an inhibitor of apoptosis in prostate cancer. International Journal of Hyperthermia, 2004, 20, 835-849.	2.5	52
158	Transcriptional activity and DNA binding of heat shock factor-1 involve phosphorylation on threonine 142 by CK2. Biochemical and Biophysical Research Communications, 2003, 303, 700-706.	2.1	77
159	Elevated Expression of Heat Shock Factor (HSF) 2A Stimulates HSF1-induced Transcription during Stress. Journal of Biological Chemistry, 2003, 278, 35465-35475.	3.4	91
160	Regulation of Molecular Chaperone Gene Transcription Involves the Serine Phosphorylation, 14-3-3ε Binding, and Cytoplasmic Sequestration of Heat Shock Factor 1. Molecular and Cellular Biology, 2003, 23, 6013-6026.	2.3	114
161	Heat Shock Factor 1 Contains Two Functional Domains That Mediate Transcriptional Repression of the c-fos and c-fms Genes. Journal of Biological Chemistry, 2003, 278, 4687-4698.	3.4	51
162	Double-stranded RNA-dependent Protein Kinase (pkr) Is Essential for Thermotolerance, Accumulation of HSP70, and Stabilization of ARE-containing HSP70 mRNA during Stress. Journal of Biological Chemistry, 2002, 277, 44539-44547.	3.4	45

#	Article	IF	Citations
163	A High Affinity HSF-1 Binding Site in the 5′-Untranslated Region of the Murine Tumor Necrosis Factor-α Gene Is a Transcriptional Repressor. Journal of Biological Chemistry, 2002, 277, 4981-4988.	3.4	134
164	Development of an XTT tetrazolium salt-based assay for detection of specific hyperthermia sensitizers in a high-flux screening programme. International Journal of Hyperthermia, 2002, 18, 203-215.	2.5	8
165	Targeting HSP70 induced thermotolerance for design of thermal sensitizers. International Journal of Hyperthermia, 2002, 18, 597-608.	2.5	59
166	Tumor-Derived Heat Shock Protein 70 Peptide Complexes Are Cross-Presented by Human Dendritic Cells. Journal of Immunology, 2002, 169, 5424-5432.	0.8	255
167	Heat Shock Factor 1 Represses Transcription of the IL- \hat{l}^2 Gene through Physical Interaction with the Nuclear Factor of Interleukin 6. Journal of Biological Chemistry, 2002, 277, 11802-11810.	3.4	154
168	Novel Signal Transduction Pathway Utilized by Extracellular HSP70. Journal of Biological Chemistry, 2002, 277, 15028-15034.	3.4	1,370
169	NF-IL6 and HSF1 Have Mutually Antagonistic Effects on Transcription in Monocytic Cells. Biochemical and Biophysical Research Communications, 2002, 291, 1071-1080.	2.1	45
170	Repression of the HSP70B Promoter by NFIL6, Ku70, and MAPK Involves Three Complementary Mechanisms. Biochemical and Biophysical Research Communications, 2001, 280, 280-285.	2.1	20
171	GAP-JUNCTIONAL COMMUNICATION BETWEEN FEEDER CELLS AND RECIPIENT NORMAL EPITHELIAL CELLS CORRELATES WITH GROWTH STIMULATION. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 100.	1.5	6
172	Effects of the flavonoid drug Quercetin on the response of human prostate tumours to hyperthermia in vitro and in vivo. International Journal of Hyperthermia, 2001, 17, 347-356.	2.5	60
173	HSP70 peptide-bearing and peptide-negative preparations act as chaperokines. Cell Stress and Chaperones, 2000, 5, 425.	2.9	148
174	HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine, 2000, 6, 435-442.	30.7	1,497
175	Role of calcium activated kinases and phosphatases in heat shock factor-1 activation International Journal of Molecular Medicine, 2000, 6, 705-10.	4.0	11
176	Inhibition of Tumor Necrosis Factor-α Transcription in Macrophages Exposed to Febrile Range Temperature. Journal of Biological Chemistry, 2000, 275, 9841-9848.	3.4	115
177	HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene. Cell Stress and Chaperones, 2000, 5, 406.	2.9	17
178	Mutation detection in the human HSP70B \hat{a} gene by denaturing high-performance liquid chromatography. Cell Stress and Chaperones, 2000, 5, 415.	2.9	8
179	RSK2 represses HSF1 activation during heat shock. Cell Stress and Chaperones, 2000, 5, 432.	2.9	23
180	Constitutive activation of lÎB kinase α and NF-ÎB in prostate cancer cells is inhibited by ibuprofen. Oncogene, 1999, 18, 7389-7394.	5.9	306

#	Article	IF	Citations
181	NON-STEROIDAL ANTI-INFLAMMATORY DRUGS INHIBIT THE EXPRESSION OF CYTOKINES AND INDUCE HSP70 IN HUMAN MONOCYTES. Cytokine, 1999, 11, 347-358.	3.2	121
182	Activation of heat shock transcription factor 1 to a DNA binding form during the G1phase of the cell cycle. Cell Stress and Chaperones, 1999, 4, 36-45.	2.9	9
183	Heat Shock Proteins and Regulation of Cytokine Expression. Infectious Diseases in Obstetrics and Gynecology, 1999, 7, 26-30.	1.5	11
184	Activation of heat shock transcription factor 1 to a DNA binding form during the G1 phase of the cell cycle. Cell Stress and Chaperones, 1999, 4, 36.	2.9	18
185	Salicylic acid and aspirin inhibit the activity of RSK2 kinase and repress RSK2-dependent transcription of cyclic AMP response element binding protein- and NF-kappa B-responsive genes. Journal of Immunology, 1999, 163, 5608-16.	0.8	47
186	Physical Connections between Feeder Cells and Recipient Normal Mammary Epithelial Cells. Experimental Cell Research, 1998, 243, 76-86.	2.6	10
187	Transcriptional Activity of Heat Shock Factor 1 at 37 oC Is Repressed through Phosphorylation on Two Distinct Serine Residues by Glycogen Synthase Kinase $3\hat{l}_{\pm}$ and Protein Kinases $C\hat{l}_{\pm}$ and $C\hat{l}_{\parallel}$. Journal of Biological Chemistry, 1998, 273, 18640-18646.	3.4	156
188	Heat Shock Factor 1 Represses Ras-induced Transcriptional Activation of the c-fos Gene. Journal of Biological Chemistry, 1997, 272, 26803-26806.	3.4	73
189	Expression and Purification of Human Heat-Shock Transcription Factor 1. Protein Expression and Purification, 1997, 9, 27-32.	1.3	28
190	Reciprocal Effects of Pro-Inflammatory Stimuli and Anti-Inflammatory Drugs on the Activity of Heat Shock Factor-1 in Human Monocytes. Biochemical and Biophysical Research Communications, 1996, 229, 479-484.	2.1	36
191	Sequential Phosphorylation by Mitogen-activated Protein Kinase and Glycogen Synthase Kinase 3 Represses Transcriptional Activation by Heat Shock Factor-1. Journal of Biological Chemistry, 1996, 271, 30847-30857.	3.4	348
192	Transcriptional Repression of the Prointerleukin $1\hat{l}^2$ Gene by Heat Shock Factor 1. Journal of Biological Chemistry, 1996, 271, 24874-24879.	3.4	177
193	Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. Journal of Biological Chemistry, 1996, 271, 24874-9.	3.4	151
194	HSP70 Translocates into a cytoplasmic aggregate during lymphocyte activation. Journal of Cellular Physiology, 1995, 165, 228-238.	4.1	13
195	Heat Shock Factor-1 and the Heat Shock Cognate 70 Protein Associate in High Molecular Weight Complexes in the Cytoplasm of NIH-3T3 Cells. Biochemical and Biophysical Research Communications, 1995, 213, 1-6.	2.1	45
196	X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Research, 1994, 54, 12-5.	0.9	279
197	Inducers of the heat shock response stimulate phospholipase C and phospholipase A2 activity in mammalian cells. Journal of Cellular Physiology, 1993, 155, 248-256.	4.1	34
198	Activation of phospholipase C by heat shock requires GTP analogs and is resistant to pertussis toxin. Journal of Cellular Physiology, 1993, 156, 153-159.	4.1	18

#	Article	IF	CITATIONS
199	Increased sequence-specific p53-DNA binding activity after DNA damage is attenuated by phorbol esters. Oncogene, 1993, 8, 3055-62.	5.9	45
200	Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Research, 1993, 53, 12-5.	0.9	184
201	Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Research, 1993, 53, 2212-6.	0.9	155
202	Hsp70 binds specifically to a peptide derived from the highly conserved domain (I) region of P53. Biochemical and Biophysical Research Communications, 1992, 184, 167-174.	2.1	41
203	Inhibition of heat shock gene expression does not block the development of thermotolerance. Journal of Cellular Physiology, 1992, 151, 56-62.	4.1	26
204	Brefeldin A, thapsigargin, and AIF4? stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. Journal of Cellular Physiology, 1992, 152, 545-552.	4.1	97
205	Heat-induced transcription from RNA polymerases II and III and HSF binding activity are co-ordinately regulated by the products of the heat shock genes. Journal of Cellular Physiology, 1992, 153, 392-401.	4.1	30
206	Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins. Cancer Research, 1992, 52, 3814-7.	0.9	152
207	Ca2+ is essential for multistep activation of the heat shock factor in permeabilized cells Molecular and Cellular Biology, 1991, 11, 3365-3368.	2.3	138
208	NOTES/Ca ²⁺ Is Essential for Multistep Activation of the Heat Shock Factor in Permeabilized Cells. Molecular and Cellular Biology, 1991, 11, 3365-3368.	2.3	41
209	Members of the 70-kilodalton heat shock protein family contain a highly conserved calmodulin-binding domain Molecular and Cellular Biology, 1990, 10, 1234-1238.	2.3	101
210	DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells Molecular and Cellular Biology, 1990, 10, 1600-1608.	2.3	147
211	Characterization and sequence of a mouse hsp70 gene and its expression in mouse cell lines. Gene, 1990, 87, 199-204.	2.2	196
212	Members of the 70-Kilodalton Heat Shock Protein Family Contain a Highly Conserved Calmodulin-Binding Domain. Molecular and Cellular Biology, 1990, 10, 1234-1238.	2.3	44
213	DNA Binding of Heat Shock Factor to the Heat Shock Element Is Insufficient for Transcriptional Activation in Murine Erythroleukemia Cells. Molecular and Cellular Biology, 1990, 10, 1600-1608.	2.3	55
214	Heat shock stimulates the release of arachidonic acid and the synthesis of prostaglandins and leukotriene B4 in mammalian cells. Journal of Cellular Physiology, 1989, 141, 325-333.	4.1	61
215	Biological and Clinical Aspects of Hyperthermia in Cancer Therapy. American Journal of Clinical Oncology: Cancer Clinical Trials, 1988, 11, 368-380.	1.3	102
216	Effects of heat on cell calcium and inositol lipid metabolism. Radiation Research, 1988, 113, 414-25.	1.5	17

#	Article	IF	CITATIONS
217	Heat stress stimulates inositol trisphosphate release and phosphorylation of phosphoinositides in CHO and Balb C 3T3 cells. Journal of Cellular Physiology, 1987, 130, 369-376.	4.1	60
218	Effect of hyperthermia (45 degrees C) on calcium flux in Chinese hamster ovary HA-1 fibroblasts and its potential role in cytotoxicity and heat resistance. Cancer Research, 1987, 47, 3712-7.	0.9	55
219	Role of energy in cellular responses to heat. Symposia of the Society for Experimental Biology, 1987, 41, 213-33.	0.0	0
220	Rapid increases in inositol trisphosphate and intracellular Ca++ after heat shock. Biochemical and Biophysical Research Communications, 1986, 137, 826-833.	2,1	110
221	Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cells stressed with starvation and heat. Journal of Cellular Physiology, 1985, 124, 261-268.	4.1	69
222	Cyclic AMP and the heat shock response in Chinese hamster ovary cells. Biochemical and Biophysical Research Communications, 1985, 126, 911-916.	2.1	29
223	Stable heat-resistant clones selected from wild-type and surface variants of B-16 melanoma. International Journal of Cancer, 1983, 32, 533-535.	5.1	12
224	Thermal sensitivity and resistance of insulin-receptor binding. Biochimica Et Biophysica Acta - General Subjects, 1983, 756, 1-8.	2.4	75
225	pH and Tumor Response to Hyperthermia. Advances in Radiation Biology, 1983, 10, 135-190.	0.4	28
226	Influence of tumour volume and cell kinetics on the response of the solid Yoshida sarcoma to hyperthermia ($42\hat{A}^{\circ}$ C). British Journal of Cancer, 1980, 41, 22-32.	6.4	7
227	TEMPERATURE RANGE AND SELECTIVE SENSITIVITY OF TUMORS TO HYPERTHERMIA: A CRITICAL REVIEW. Annals of the New York Academy of Sciences, 1980, 335, 180-205.	3.8	202
228	Effect of hyperglycemia on blood flow, pH, and response to hyperthermia (42 degrees) of the Yoshida sarcoma in the rat. Cancer Research, 1980, 40, 4728-33.	0.9	45
229	Effects of hyperglycemia and hyperthermia on the pH, glycolysis, and respiration of the Yoshida sarcoma in vivo. Journal of the National Cancer Institute, 1979, 63, 1371-81.	6.3	58
230	In vivo hyperthermia of Yoshida tumour induces entry of non-proliferating cells into cycle. Nature, 1976, 263, 772-774.	27.8	24