Sonia Alitzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2378367/publications.pdf

Version: 2024-02-01

47006 42399 12,793 93 47 92 citations h-index g-index papers 95 95 95 13294 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Habitat Specialization by Wildlife Reduces Pathogen Spread in Urbanizing Landscapes. American Naturalist, 2022, 199, 238-251.	2.1	1
2	Parasite dynamics in North American monarchs predicted by host density and seasonal migratory culling. Journal of Animal Ecology, 2022, 91, 780-793.	2.8	14
3	Land use, season, and parasitism predict metal concentrations in Australian flying fox fur. Science of the Total Environment, 2022, 841, 156699.	8.0	9
4	Temporal patterns of vampire bat rabies and host connectivity in Belize. Transboundary and Emerging Diseases, 2021, 68, 870-879.	3.0	14
5	Thermal tolerance and environmental persistence of a protozoan parasite in monarch butterflies. Journal of Invertebrate Pathology, 2021, 183, 107544.	3.2	7
6	Host Plant Species Mediates Impact of Neonicotinoid Exposure to Monarch Butterflies. Insects, 2021, 12, 999.	2.2	5
7	Planting gardens to support insect pollinators. Conservation Biology, 2020, 34, 15-25.	4.7	67
8	Monarch butterflies reared under autumnâ€like conditions have more efficient flight and lower postâ€flight metabolism. Ecological Entomology, 2020, 45, 562-572.	2.2	15
9	Movement rules determine nomadic species' responses to resource supplementation and degradation. Journal of Animal Ecology, 2020, 89, 2644-2656.	2.8	5
10	Landscape-level toxicant exposure mediates infection impacts on wildlife populations. Biology Letters, 2020, 16, 20200559.	2.3	13
11	Urban specialization reduces habitat connectivity by a highly mobile wading bird. Movement Ecology, 2020, 8, 49.	2.8	10
12	Seasonal insect migrations: massive, influential, and overlooked. Frontiers in Ecology and the Environment, 2020, 18, 335-344.	4.0	79
13	Ecological and evolutionary drivers of haemoplasma infection and bacterial genotype sharing in a Neotropical bat community. Molecular Ecology, 2020, 29, 1534-1549.	3.9	27
14	The changing ecology of primate parasites: Insights from wild aptive comparisons. American Journal of Primatology, 2019, 81, e22991.	1.7	8
15	Exposure to Non-Native Tropical Milkweed Promotes Reproductive Development in Migratory Monarch Butterflies. Insects, 2019, 10, 253.	2.2	40
16	Multiple transmission routes sustain high prevalence of a virulent parasite in a butterfly host. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191630.	2.6	11
17	Urbanization predicts infection risk by a protozoan parasite in non-migratory populations of monarch butterflies from the southern coastal U.S. and Hawaii. Landscape Ecology, 2019, 34, 649-661.	4.2	13
18	Leukocyte Profiles Reflect Geographic Range Limits in a Widespread Neotropical Bat. Integrative and Comparative Biology, 2019, 59, 1176-1189.	2.0	24

#	Article	IF	Citations
19	Parasite sharing in wild ungulates and their predators: Effects of phylogeny, range overlap, and trophic links. Journal of Animal Ecology, 2019, 88, 1017-1028.	2.8	18
20	Animal Migration and Parasitism. , 2019, , 756-763.		0
21	Do characteristics of pollinatorâ€friendly gardens predict the diversity, abundance, and reproduction of butterflies?. Insect Conservation and Diversity, 2018, 11, 370-382.	3.0	29
22	Migratory behaviour predicts greater parasite diversity in ungulates. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180089.	2.6	42
23	Anthropogenic resource subsidies and host–parasite dynamics in wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170086.	4.0	32
24	Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170089.	4.0	68
25	Responses of migratory species and their pathogens to supplemental feeding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170094.	4.0	38
26	Food for contagion: synthesis and future directions for studying host–parasite responses to resource shifts in anthropogenic environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170102.	4.0	54
27	Using host species traits to understand the consequences of resource provisioning for host–parasite interactions. Journal of Animal Ecology, 2018, 87, 511-525.	2.8	53
28	Assessing the contributions of intraspecific and environmental sources of infection in urban wildlife: <i>Salmonella enterica </i> and white ibis as a case study. Journal of the Royal Society Interface, 2018, 15, 20180654.	3.4	8
29	Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats. PLoS Neglected Tropical Diseases, 2018, 12, e0006786.	3.0	46
30	On the relationship between body condition and parasite infection in wildlife: a review and metaâ€analysis. Ecology Letters, 2018, 21, 1869-1884.	6.4	120
31	Migratory monarchs that encounter resident monarchs show lifeâ€history differences and higher rates of parasite infection. Ecology Letters, 2018, 21, 1670-1680.	6.4	48
32	Host Dispersal Responses to Resource Supplementation Determine Pathogen Spread in Wildlife Metapopulations. American Naturalist, 2018, 192, 503-517.	2.1	17
33	Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38Âyears. Global Change Biology, 2017, 23, 2565-2576.	9.5	98
34	Global Mammal Parasite Database version 2.0. Ecology, 2017, 98, 1476-1476.	3.2	98
35	Predictors and immunological correlates of sublethal mercury exposure in vampire bats. Royal Society Open Science, 2017, 4, 170073.	2.4	45
36	Monarch butterfly population decline in North America: identifying the threatening processes. Royal Society Open Science, 2017, 4, 170760.	2.4	191

3

#	Article	lF	CITATIONS
37	Migration distance as a selective episode for wing morphology in a migratory insect. Movement Ecology, 2017, 5, 7.	2.8	42
38	Environmental Persistence Influences Infection Dynamics for a Butterfly Pathogen. PLoS ONE, 2017, 12, e0169982.	2.5	16
39	Modeling vector-borne disease risk in migratory animals under climate change. Integrative and Comparative Biology, 2016, 56, 353-364.	2.0	20
40	Occurrence and host specificity of a neogregarine protozoan in four milkweed butterfly hosts (Danaus spp.). Journal of Invertebrate Pathology, 2016, 140, 75-82.	3.2	13
41	Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies. Physiological and Biochemical Zoology, 2016, 89, 389-401.	1.5	15
42	Host–pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10926-10931.	7.1	108
43	The macroecology of infectious diseases: a new perspective on globalâ€scale drivers of pathogen distributions and impacts. Ecology Letters, 2016, 19, 1159-1171.	6.4	126
44	Unravelling the Costs of Flight for Immune Defenses in the Migratory Monarch Butterfly. Integrative and Comparative Biology, 2016, 56, 278-289.	2.0	16
45	Migratory monarchs wintering in California experience low infection risk compared to monarchs breeding year-round on non-native milkweed. Integrative and Comparative Biology, 2016, 56, 343-352.	2.0	49
46	Screening wild and semiâ€free ranging great apes for putative sexually transmitted diseases: Evidence of Trichomonadidae infections. American Journal of Primatology, 2015, 77, 1075-1085.	1.7	9
47	Do Healthy Monarchs Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies Overwintering in Mexico. PLoS ONE, 2015, 10, e0141371.	2.5	80
48	Infectious disease transmission and behavioural allometry in wild mammals. Journal of Animal Ecology, 2015, 84, 637-646.	2.8	54
49	Parasite diversity declines with host evolutionary distinctiveness: A global analysis of carnivores. Evolution; International Journal of Organic Evolution, 2015, 69, 621-630.	2.3	28
50	Loss of migratory behaviour increases infection risk for a butterfly host. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141734.	2.6	129
51	Linking anthropogenic resources to wildlife–pathogen dynamics: a review and metaâ€analysis. Ecology Letters, 2015, 18, 483-495.	6.4	266
52	Extreme Heterogeneity in Parasitism Despite Low Population Genetic Structure among Monarch Butterflies Inhabiting the Hawaiian Islands. PLoS ONE, 2014, 9, e100061.	2.5	11
53	Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142230.	2.6	73
54	Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. Journal of Animal Ecology, 2014, 83, 671-680.	2.8	74

#	Article	IF	Citations
55	Greater migratory propensity in hosts lowers pathogen transmission and impacts. Journal of Animal Ecology, 2014, 83, 1068-1077.	2.8	61
56	The genetics of monarch butterfly migration and warning colouration. Nature, 2014, 514, 317-321.	27.8	264
57	Network-based vaccination improves prospects for disease control in wild chimpanzees. Journal of the Royal Society Interface, 2014, 11, 20140349.	3.4	65
58	Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk. Journal of Animal Ecology, 2013, 82, 976-986.	2.8	109
59	Climate Change and Infectious Diseases: From Evidence to a Predictive Framework. Science, 2013, 341, 514-519.	12.6	951
60	Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20837-20842.	7.1	149
61	Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen. Insects, 2013, 4, 447-462.	2.2	7
62	Lipid reserves and immune defense in healthy and diseased migrating monarchs Danaus plexippus. Environmental Epigenetics, 2013, 59, 393-402.	1.8	20
63	Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3384-3392.	2.6	187
64	The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies. PLoS ONE, 2012, 7, e41323.	2.5	60
65	Animal Migration and Infectious Disease Risk. Science, 2011, 331, 296-302.	12.6	696
66	POPULATIONS OF MONARCH BUTTERFLIES WITH DIFFERENT MIGRATORY BEHAVIORS SHOW DIVERGENCE IN WING MORPHOLOGY. Evolution; International Journal of Organic Evolution, 2010, 64, 1018-1028.	2.3	32
67	POPULATIONS OF MONARCH BUTTERFLIES WITH DIFFERENT MIGRATORY BEHAVIORS SHOW DIVERGENCE IN WING MORPHOLOGY. Evolution; International Journal of Organic Evolution, 2010, 64, 1018-1028.	2.3	108
68	Crowding and disease: effects of host density on response to infection in a butterfly–parasite interaction. Ecological Entomology, 2009, 34, 551-561.	2.2	49
69	Strength in numbers: high parasite burdens increase transmission of a protozoan parasite of monarch butterflies (Danaus plexippus). Oecologia, 2009, 161, 67-75.	2.0	70
70	Sex differences in immune defenses and response to parasitism in monarch butterflies. Evolutionary Ecology, 2009, 23, 607-620.	1.2	39
71	Climate change and wildlife diseases: When does the host matter the most?. Ecology, 2009, 90, 912-920.	3.2	267
72	Host plant species affects virulence in monarch butterfly parasites. Journal of Animal Ecology, 2008, 77, 120-126.	2.8	109

#	Article	IF	CITATIONS
73	URBAN LAND USE PREDICTS WEST NILE VIRUS EXPOSURE IN SONGBIRDS. Ecological Applications, 2008, 18, 1083-1092.	3.8	86
74	Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7489-7494.	7.1	245
75	Urbanization and the ecology of wildlife diseases. Trends in Ecology and Evolution, 2007, 22, 95-102.	8.7	625
76	Do threatened hosts have fewer parasites? A comparative study in primates. Journal of Animal Ecology, 2007, 76, 304-314.	2.8	112
77	Infectious Diseases and Extinction Risk in Wild Mammals. Conservation Biology, 2007, 21, 1269-1279.	4.7	258
78	Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. Oikos, 2006, 115, 526-536.	2.7	103
79	Seasonality and the dynamics of infectious diseases. Ecology Letters, 2006, 9, 467-484.	6.4	1,162
80	Genotypic Analyses of Mycoplasma gallisepticum Isolates from Songbirds by Random Amplification of Polymorphic DNA and Amplified-fragment Length Polymorphism. Journal of Wildlife Diseases, 2006, 42, 421-428.	0.8	17
81	Variation in thermally induced melanism in monarch butterflies (Lepidoptera: Nymphalidae) from three North American populations. Journal of Thermal Biology, 2005, 30, 410-421.	2.5	77
82	Parasites hinder monarch butterfly flight: implications for disease spread in migratory hosts. Ecology Letters, 2005, 8, 290-300.	6.4	231
83	Oviposition preference and larval performance of North American monarch butterflies on four Asclepias species. Entomologia Experimentalis Et Applicata, 2005, 116, 9-20.	1.4	56
84	Patterns of host specificity and transmission among parasites of wild primates. International Journal for Parasitology, 2005, 35, 647-657.	3.1	178
85	Dynamics of a novel pathogen in an avian host: Mycoplasmal conjunctivitis in house finches. Acta Tropica, 2005, 94, 77-93.	2.0	98
86	Quantifying monarch butterfly larval pigmentation using digital image analysis. Entomologia Experimentalis Et Applicata, 2004, 113, 145-147.	1.4	16
87	Leukocyte Profiles in Wild House Finches with and without Mycoplasmal Conjunctivitis, a Recently Emerged Bacterial Disease. EcoHealth, 2004, 1, 362-373.	2.0	98
88	Age, sex, and season affect the risk of mycoplasmal conjunctivitis in a southeastern house finch population. Canadian Journal of Zoology, 2004, 82, 755-763.	1.0	57
89	Parasites and the Evolutionary Diversification of Primate Clades. American Naturalist, 2004, 164, S90-S103.	2.1	102
90	Comparative Tests of Parasite Species Richness in Primates. American Naturalist, 2003, 162, 597-614.	2.1	315

Sonia Alitzer

#	Article	IF	CITATION
91	Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology and Evolution, 2003, 18, 589-596.	8.7	434
92	Social Organization and Parasite Risk in Mammals: Integrating Theory and Empirical Studies. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 517-547.	8.3	625
93	Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science, 2002, 296, 2158-2162.	12.6	2,154