Howard H Patterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377872/publications.pdf

Version: 2024-02-01

100 papers 4,044 citations

35 h-index 61 g-index

100 all docs

100 docs citations

100 times ranked 3330 citing authors

#	Article	IF	CITATIONS
1	Recent advances on TiO ₂ -based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catalysis Reviews - Science and Engineering, 2020, 62, 1-65.	12.9	166
2	Energy transfer studies between mixed Au-Pd cyanide nanosystems and Tb+3 doped in different alkali halides. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112136.	3.9	1
3	Triphenylarsane Oxide Complexes of Lanthanide Nitrates: Polymorphs and Photophysics. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1043-1051.	1.2	1
4	Nanoclusters of Dicyanocuprate(I) Anions in Aqueous Solutions: Investigating Cuprophilic Interactions. ChemistrySelect, 2019, 4, 6532-6536.	1.5	1
5	Synthesis and characterization of (RPh3P)3[Bi3I12] (R = Me, Ph) iodobismuthate complexes for photocatalytic degradation of organic pollutants. Research on Chemical Intermediates, 2019, 45, 5919-5933.	2.7	11
6	Synthesis, structure and photophysical properties of a 2D network with gold dicyanide donors coordinated to aza[5]helicene viologen acceptors. Dalton Transactions, 2019, 48, 10288-10297.	3.3	7
7	Synthesis and Luminescence of Optical Memory Active Tetramethylammonium Cyanocuprate(I) 3D Networks. Materials, 2019, 12, 1211.	2.9	4
8	Photophysical Investigation of Silver/Gold Dicyanometallates and Tetramethylammonium Networks: An Experimental and Theoretical Investigation. European Journal of Inorganic Chemistry, 2019, 2019, 956-962.	2.0	14
9	Crystal Structure and Computational Analysis of a Two-Dimensional Coordination Polymer, Bil3(DppeO2)3/2. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 528-534.	3.7	3
10	Luminescence Investigation of Samarium(III)/Dicyanoaurate(I)-based Coordination Networks with and without Aurophilic Interactions. Gold Bulletin, 2018, 51, 1-10.	2.4	6
11	A terbium chlorobismuthate(III) double salt: Synthesis, structure, and photophysical properties. Inorganica Chimica Acta, 2018, 478, 71-76.	2.4	19
12	Host lattice effects on the design of different metallophilic nanoclusters with novel photonic properties. Inorganica Chimica Acta, 2018, 471, 40-49.	2.4	5
13	Alkyl Pyridinium lodocuprate(I) Clusters: Structural Types and Charge Transfer Behavior. ACS Omega, 2018, 3, 15281-15292.	3.5	18
14	Application of BiOX Photocatalysts in Remediation of Persistent Organic Pollutants. Catalysts, 2018, 8, 604.	3.5	26
15	Triphenylphosphane Oxide Complexes of Lanthanide Nitrates: Polymorphs and Photophysics. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 525-533.	1.2	6
16	The role of Copper (II) ions in Cu-BiOCl for use in the photocatalytic degradation of atrazine. Journal of Environmental Chemical Engineering, 2018, 6, 5595-5601.	6.7	22
17	Photocatalytic degradation of ibuprofen over BiOCl nanosheets with identification of intermediates. Journal of Hazardous Materials, 2018, 358, 1-9.	12.4	70
18	lodobismuthate(III) and lodobismuthate(III)/lodocuprate(I) Complexes with Organic Ligands. European Journal of Inorganic Chemistry, 2017, 2017, 4990-5000.	2.0	28

#	Article	IF	CITATIONS
19	Synthesis, Structure, and Luminescence of Copper(I) Halide Complexes of Chiral Bis(phosphines). Inorganic Chemistry, 2017, 56, 12809-12820.	4.0	37
20	Tetragonal Diiodotetrapyridinedicopper(I): Structure, Luminescence, and Computational Modeling. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 90-100.	3.7	7
21	Light-Induced Photochemical Changes in Copper(I) Thiocyanate Complexes Decorated with Halopyridines: Optical Memory Manifestation. Journal of Physical Chemistry C, 2017, 121, 25430-25439.	3.1	6
22	Ce/Au(CN) ₂ ^{â€"} â€Based Coordination Polymers Containing and Lacking Aurophilic Interactions. European Journal of Inorganic Chemistry, 2016, 2016, 2082-2087.	2.0	13
23	Alkali metal bismuth(III) chloride double salts. Journal of Alloys and Compounds, 2016, 670, 337-345.	5.5	33
24	Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water. Applied Catalysis B: Environmental, 2015, 179, 229-238.	20.2	94
25	Heterogeneous Photocatalysis with Nanoclusters of D $<$ sup $>$ 10 $<$ /sup $>$ Metal Ions Doped in Zeolites. Comments on Inorganic Chemistry, 2015, 35, 59-81.	5.2	12
26	Photocatalysis of fenoxycarb over silver-modified zeolites. Environmental Science and Pollution Research, 2015, 22, 3186-3192.	5.3	12
27	Structure, Luminescence, and Vapochromism of Bridged Cationic Copper(I) Dimers and Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 66-77.	3.7	10
28	Structure, Dynamics, and Photophysics in the Copper(I) Iodide–Tetrahydrothiophene System. Crystal Growth and Design, 2014, 14, 1449-1458.	3.0	71
29	Novel Luminescent Heterobimetallic Nanoclusters of Copper(I), Silver(I), and Gold(I) Doped in Different Alkali Halide Crystals. Journal of Physical Chemistry C, 2014, 118, 11886-11894.	3.1	8
30	Photophysical properties of {[Ag(CN) ₂] ^{â^'} } ₂ complexes trapped in a supramolecular electron-acceptor organic framework. Dalton Transactions, 2014, 43, 12044.	3.3	10
31	Photocatalytic degradation of $17\hat{i}_{\pm}$ -ethinylestradiol (EE2) in the presence of TiO2-doped zeolite. Journal of Hazardous Materials, 2014, 279, 17-25.	12.4	80
32	Amine- and sulfide-sensing copper(I) iodide films. Inorganic Chemistry Communication, 2014, 40, 18-21.	3.9	22
33	Structure and Emissive Properties of Heterobimetallic Lna & Au Coordination Polymers: Role of 1b and Eu in Non-aurophilic [ⁿ Bu ₄ N] ₂ [Ln(NO ₃) ₄ Au(CN) ₂] versus Aurophilic Ln[Au(CN) ₂] ₃ A:3H ₂ O/3D ₂ O Chains.	4.0	25
34	A Review of Luminescent Anionic Nano System: d10 Metallocyanide Excimers and Exciplexes in Alkali Halide Hosts. Materials, 2013, 6, 2595-2611.	2.9	21
35	Kinetics and equilibrium properties of the biosorption of Cu2+ by algae. Environmental Science and Pollution Research, 2012, 19, 3889-3894.	5.3	3
36	Photophysical Properties of {[Au(CN) ₂] ^{â^'} } ₂ Dimers Trapped in a Supramolecular Electron-Acceptor Organic Framework. Inorganic Chemistry, 2012, 51, 1294-1301.	4.0	13

3

#	Article	IF	CITATIONS
37	An Unusual Luminescent Anionic Copper(I) System: Dicyanocuprate(I) Ion in Nano and Bulky States. Journal of Physical Chemistry C, 2012, 116, 26656-26667.	3.1	12
38	Network formation and photoluminescence in copper(i) halide complexes with substituted piperazine ligands. Dalton Transactions, 2012, 41, 11663.	3.3	65
39	Heterobimetallic lanthanide–gold coordination polymers: structure and emissive properties of isomorphous [nBu4N]2[Ln(NO3)4Au(CN)2] 1-D chains. Dalton Transactions, 2012, 41, 6992.	3.3	23
40	Changes in Electronic Properties of Polymeric One-Dimensional ${[M(CN) < sub > 2 < sub > 3^2 < sup > 3^2 < sub > 3^2 <$	4.0	24
41	Copper(I) Thiocyanate-Amine Networks: Synthesis, Structure, and Luminescence Behavior Inorganic Chemistry, 2011, 50, 7239-7249.	4.0	55
42	Zeolite-supported silver and silver $\hat{a} \in \hat{b}$ iron nanoclusters and their activities as photodecomposition catalysts. Research on Chemical Intermediates, 2011, 37, 729-745.	2.7	14
43	Luminescence and simulation of mixed metal nanoclusters of dicyanoargentate(I) and dicyanoaurate(I) in alkali halides. Inorganica Chimica Acta, 2011, 370, 279-285.	2.4	11
44	A study of the effect of microwave treatment on metal zeolites and their use as photocatalysts toward naptalam. Applied Catalysis B: Environmental, 2011, 106, 350-358.	20.2	19
45	Observation of a mixed-metal transition in a d8–d10 heterobimetallic Pt–Ag cyanide system: Experimental and theoretical study. Inorganica Chimica Acta, 2010, 363, 2637-2642.	2.4	7
46	Structure and luminescence of copper(I) cyanide–amine and –sulfide networks. Inorganica Chimica Acta, 2010, 364, 102-114.	2.4	36
47	Reversible luminescent reaction of amines with copper(i) cyanide. Chemical Communications, 2010, 46, 4565.	4.1	59
48	Site-Selective Excitation of "Exciplex Tuning―for Luminescent Nanoclusters of Dicyanoargentate(I) lons Doped in Different Alkali Halide Crystals. Journal of Physical Chemistry C, 2010, 114, 17401-17408.	3.1	12
49	Study of the energy transfer process in the highly luminescent heterometallic dimers of Ce3+ and d10 [Ag(CN)2]â^' or d8 [Pt(CN)4]2â^' ions. Chemical Physics Letters, 2009, 471, 258-263.	2.6	10
50	Luminescent Studies of "Exciplex Tuning―for Nanoclusters of Dicyanocuprate(I) lons Doped in Potassium Chloride Crystals. Journal of Physical Chemistry C, 2009, 113, 5952-5959.	3.1	8
51	Copper(I) Cyanide Networks: Synthesis, Structure, and Luminescence Behavior. Part 2. Piperazine Ligands and Hexamethylenetetramine. Inorganic Chemistry, 2008, 47, 6931-6947.	4.0	89
52	Optical Memory and Multistep Luminescence Thermochromism in Single Crystals of K2Na[Ag(CN)2]3. Inorganic Chemistry, 2007, 46, 3798-3800.	4.0	15
53	Photophysics of Bis(thiocyanato)gold(I) Complexes:  Intriguing Structureâ^'Luminescence Relationships. Journal of Physical Chemistry C, 2007, 111, 10689-10699.	3.1	47
54	Observation of a Mixed-Metal Transition in Heterobimetallic Au/Ag Dicyanide Systems. Inorganic Chemistry, 2007, 46, 6997-7004.	4.0	23

#	ARTICLE energy transfer between <mml:math <="" altimg="sil.gif" display="inline" overflow="scroll" th=""><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
55	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XiviLSchema" xmlns:xsi="http://www.w3.org/2001/XiviLSchema xmlns:xsi="http://www.w3.org/2001/XiviLSchema xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/com/	2.6	19
56	Tunable energy transfer from d10 heterobimetallic dicyanide(I) donor ions to terbium(III) acceptor ions in luminescent Tb[AgxAu1â^2x(CN)2]3 (x=0â†'1). Chemical Physics Letters, 2007, 443, 55-60.	2.6	16
57	Solvent dependent tunable energy transfer of d10 metal dicyanide nanoclusters with Eu3+ and Tb3+ rare earth ions. Chemical Physics Letters, 2007, 445, 340-344.	2.6	15
58	Nanoclusters of silver doped in zeolites as photocatalysts. Catalysis Today, 2007, 120, 168-173.	4.4	42
59	Silver nanoclusters doped in X and mordenite zeolites as heterogeneous catalysts for the decomposition of carbamate pesticides in solution. Research on Chemical Intermediates, 2006, 32, 871-885.	2.7	24
60	Structural studies of lanthanide ion complexes of pure gold, pure silver and mixed metal (gold–silver) dicyanides. Dalton Transactions, 2005, , 675-679.	3.3	39
61	Tunable Photoluminescence of Closed-Shell Heterobimetallic Auâ^'Ag Dicyanide Layered Systems. Journal of Physical Chemistry B, 2005, 109, 4317-4323.	2.6	38
62	Metallophilic Interactions in Closed-Shell d10Metalâ^'Metal Dicyanide Bonded Luminescent Systems Eu[AgxAu1-x(CN)2]3and Their Tunability for Excited State Energy Transfer. Journal of Physical Chemistry B, 2005, 109, 102-109.	2.6	44
63	Luminescence properties of silver(I)-exchanged zeolite Y and its use as a catalyst to photodecompose carbaryl in the presence of natural organic matter. Research on Chemical Intermediates, 2003, 29, 691-704.	2.7	28
64	"Write/Read/Erase―with Laser Irradiation of Dicyanoargentate(I) Doped and Pure Crystals. Journal of Physical Chemistry B, 2003, 107, 14249-14254.	2.6	11
65	Photodecomposition of Carbaryl in the Presence of Silver-Doped Zeolite Y and Suwannee River Natural Organic Matter. Environmental Science & Environmental Science & 2003, 37, 2280-2285.	10.0	28
66	Photoluminescence spectroscopy as a probe of silver doped zeolites as photocatalysts. Current Opinion in Solid State and Materials Science, 2003, 7, 443-449.	11.5	35
67	Syntheses, Structure, and Photoluminescence Properties of the 1-Dimensional Chain Compounds [(TPA)2Au][Au(CN)2] and (TPA)AuCl (TPA = 1,3,5-Triaza-7-phosphaadamantane). Inorganic Chemistry, 2002, 41, 6274-6280.	4.0	135
68	Spectroscopic Studies of "Exciplex Tuning―for Dicyanoaurate(I) lons Doped in Potassium Chloride Crystals. Journal of Physical Chemistry B, 2002, 106, 10058-10064.	2.6	36
69	Photophysical Properties of Ag(I)-exchanged Zeolite A and the Photoassisted Degradation of Malathion. Journal of Physical Chemistry B, 2001, 105, 7508-7516.	2.6	55
70	Photoluminescence and Raman Spectroscopy as Probes to Investigate Silver and Gold Dicyanide Clusters Doped in A-Zeolite and Their Photoassisted Degradation of Carbaryl. Journal of Physical Chemistry B, 2001, 105, 9441-9448.	2.6	37
71	Excited-State Interactions for [Au(CN)2-]n and [Ag(CN)2-]n Oligomers in Solution. Formation of Luminescent Goldâ [*] Gold Bonded Excimers and Exciplexes. Journal of the American Chemical Society, 2001, 123, 11237-11247.	13.7	233
72	Luminescent homoatomic exciplexes in dicyanoargenate(I) ions doped in alkali halide crystals. †Exciplex tuning' by site-selective excitation and variation of the dopant concentration. Coordination Chemistry Reviews, 2000, 208, 227-241.	18.8	70

#	Article	IF	CITATIONS
73	Light-induced electron transfer in Tl[Ag(CN)2]: Photochemical reaction of luminescent metal–metal exciplexes in the solid state. Inorganica Chimica Acta, 2000, 300-302, 314-318.	2.4	8
74	Luminescence Thermochromism in Dicyanoargentate(I) lons Doped in Alkali Halide Crystals. Journal of Physical Chemistry B, 2000, 104, 6143-6151.	2.6	52
75	Tunable Energy Transfer from Dicyanoaurate(I) and Dicyanoargentate(I) Donor Ions to Terbium(III) Acceptor Ions in Pure Crystals. Inorganic Chemistry, 2000, 39, 4527-4534.	4.0	75
76	Oligomerization of Au(CN)2-and Ag(CN)2-lons in Solution via Ground-State Aurophilic and Argentophilic Bonding. Journal of the American Chemical Society, 2000, 122, 10371-10380.	13.7	239
77	Characterization of the Excited States Responsible for the Action of Silver(I)-Doped ZSM-5 Zeolites as Photocatalysts for Nitric Oxide Decomposition. Journal of Physical Chemistry B, 2000, 104, 3507-3517.	2.6	63
78	Luminescent Homoatomic Exciplexes in Dicyanoargentate(I) Ions Doped in Alkali Halide Crystals. 2. "Exciplex Tuning―by Varying the Dopant Concentration. Journal of Physical Chemistry B, 1999, 103, 3845-3853.	2.6	45
79	Photodecomposition of the Carbamate Pesticide Carbofuran:Â Kinetics and the Influence of Dissolved Organic Matter. Environmental Science & Environment	10.0	137
80	A spectrofluorimetric study of the binding of carbofuran, carbaryl, and aldicarb with dissolved organic matter. Analytica Chimica Acta, 1998, 373, 139-151.	5.4	50
81	Effect of high pressure on the emission spectrum of single crystals of Tl[Au(CN)2]. Chemical Physics Letters, 1998, 295, 95-98.	2.6	17
82	Crystal Structure, Electronic Structure, and Temperature-Dependent Raman Spectra of Tl[Ag(CN)2]:Â Evidence for Ligand-Unsupported Argentophilic Interactions. Inorganic Chemistry, 1998, 37, 1380-1386.	4.0	243
83	Temperature-Dependent Photoluminescence Properties of Tl[Ag(CN)2]:Â Formation of Luminescent Metalâ^'Metal-Bonded Inorganic Exciplexes in the Solid State. Inorganic Chemistry, 1998, 37, 1060-1066.	4.0	91
84	Luminescent Homoatomic Exciplexes in Dicyanoargentate(I) Ions Doped in Alkali Halide Crystals. 1. "Exciplex Tuning―by Site-Selective Excitation. Journal of the American Chemical Society, 1998, 120, 7696-7705.	13.7	123
85	Tunable Radiationless Energy Transfer in Eu[Au(CN)2]3·3H2O by High Pressure. Inorganic Chemistry, 1998, 37, 3209-3216.	4.0	41
86	A fluorescence double-quenching study of native lipoproteins in an animal model of manganese deficiency. Biological Trace Element Research, 1997, 60, 69-80.	3.5	6
87	Photoluminescence and Electronic Structure Studies to Probe Metal-Metal Interactions in Thallium Dicyanoargentate(I): A New Low Dimensional Solid State Class. Molecular Crystals and Liquid Crystals, 1996, 284, 399-409.	0.3	13
88	Enhancement of the Water Solubility of Organic Pollutants Such as Pyrene by Dissolved Organic Matter. ACS Symposium Series, 1996, , 288-298.	0.5	6
89	Light-induced electron transfer in lead(II)gold(I) dicyanide. Inorganica Chimica Acta, 1994, 226, 345-348.	2.4	13
90	Preparation and Characterization of the Cu+/ZSM-5 Catalyst and Its Reaction with NO under UV Irradiation at 275 K. In situ Photoluminescence, EPR, and FT-IR Investigations. The Journal of Physical Chemistry, 1994, 98, 5744-5750.	2.9	191

#	Article	lF	CITATION
91	Photoluminescence studies of lanthanide ion complexes of gold and silver dicyanides. 2. A new low dimensional solid state class for nonradiative excited state energy transfer. Inorganic Chemistry, 1994, 33, 6194-6200.	4.0	29
92	Photoluminescence studies of lanthanide ion complexes of gold and silver dicyanides: a new low-dimensional solid state class for nonradiative excited-state energy transfer. Inorganic Chemistry, 1994, 33, 2187-2195.	4.0	80
93	Confirmation of the presence of imine bonds in thermally cured polyimides. Journal of Polymer Science Part A, 1993, 31, 2751-2758.	2.3	37
94	Effects of Disturbance and Soil Amendments on Dissolved Organic Carbon and Organic Acidity in Red Pine Forest Floors. Journal of Environmental Quality, 1992, 21, 457-463.	2.0	55
95	Spectroscopic studies of new model compounds for poly[N,N-bis(phenoxyphenyl)pyromellitimide]. Journal of Polymer Science Part A, 1992, 30, 419-427.	2.3	15
96	Excitation resolved synchronous fluorescence analysis of aromatic compounds and fuel oil. Analytical Chemistry, 1987, 59, 2180-2187.	6.5	37
97	Luminescence and absorption study of delocalized and localized electronic states in quasi-one-dimensional mixed metal Ba(Pt, Pd)(CN)4and Ba(Pt, Ni)(CN)4systems. Molecular Physics, 1983, 48, 567-579.	1.7	12
98	Laser-excited luminescence and absorption study of monomer and cluster tetracyanopalladate(II) species in mixed crystals. Inorganic Chemistry, 1981, 20, 3493-3499.	4.0	7
99	Sharp-line absorption, luminescence, Raman studies for the 5d3hexafluororhenate(IV) ion in pure and host crystal environments. Molecular Physics, 1980, 40, 1401-1420.	1.7	14
100	Multiple state luminescence for the d4OsCl62-impurity ion in K2PtCl6and Cs2ZrCl6cubic crystals. Molecular Physics, 1978, 35, 1623-1636.	1.7	26