Lela B KoriÄ**‡**nac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/237743/publications.pdf

Version: 2024-02-01

20	161	1163117	1125743
papers	citations	h-index	g-index
20	20	20	324
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO2 nanoparticles. Photochemical and Photobiological Sciences, 2021, 20, 1087-1098.	2.9	3
2	Biocompatibility of TiO2 prolate nanospheroids as a potential photosenzitizer in therapy of cancer. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	5
3	Combined Raman and AFM detection of changes in HeLa cervical cancer cells induced by CeO ₂ nanoparticles – molecular and morphological perspectives. Analyst, The, 2020, 145, 3983-3995.	3 . 5	8
4	Light controlled metallo-drug delivery system based on the TiO 2 -nanoparticles and Ru-complex. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 55-66.	3.9	15
5	Radiation dose determines the method for quantification of DNA double strand breaks. Anais Da Academia Brasileira De Ciencias, 2016, 88, 127-136.	0.8	11
6	Elucidation of the binding sites of two novel Ru(II) complexes on bovine serum albumin. Journal of Inorganic Biochemistry, 2016, 159, 89-95.	3. 5	12
7	Radiosensitivity of human ovarian carcinoma and melanoma cells to \hat{l}^3 -rays and protons. Archives of Medical Science, 2014, 3, 578-586.	0.9	10
8	Radiosensitization of non-small cell lung carcinoma by EGFR inhibition. Nuclear Technology and Radiation Protection, 2014, 29, 233-241.	0.8	1
9	Carbon ions induce DNA double strand breaks and apoptosis in HTB140 melanoma cells. Nuclear Technology and Radiation Protection, 2013, 28, 195-203.	0.8	1
10	Variation of Apoptotic Pathway Regulators by Fotemustine and Protons in a Human Melanoma Cell Line. Advanced Science Letters, 2012, 5, 552-559.	0.2	1
11	Proton inactivation of melanoma cells enhanced by fotemustine. Radiation Protection Dosimetry, 2011, 143, 503-507.	0.8	1
12	Anti-Tumour Activity of Fotemustine and Protons in Combination with Bevacizumab. Chemotherapy, 2010, 56, 214-222.	1.6	5
13	Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak. International Journal of Radiation Biology, 2010, 86, 742-751.	1.8	39
14	Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation. Journal of Experimental and Clinical Cancer Research, 2009, 28, 50.	8.6	4
15	Assessment of the inhibitory effects of different radiation qualities or chemotherapeutic agents on a human melanoma cell line. Physica Medica, 2008, 24, 187-195.	0.7	10
16	HTB140 melanoma cells under proton irradiation and/or alkylating agents. Russian Journal of Physical Chemistry A, 2007, 81, 1467-1470.	0.6	4
17	Viability of a Human Melanoma Cell after Single and Combined Treatment with Fotemustine, Dacarbazine, and Proton Irradiation. Annals of the New York Academy of Sciences, 2007, 1095, 154-164.	3.8	7
18	Response of a Human Melanoma Cell Line to Low and High Ionizing Radiation. Annals of the New York Academy of Sciences, 2007, 1095, 165-174.	3.8	22

LELA B KORIćANAC

#	Article	IF	CITATIONS
19	Inhibition of B16 Mouse Melanoma Cell Growth and Induction of Apoptotic Cell Death with 8-Chloroadenosine-3′,5′-monophosphate and Tiazofurin. Annals of the New York Academy of Sciences, 2004, 1030, 384-392.	3.8	1
20	Inactivation of HTB63 human melanoma cells by irradiation with protons and gamma rays. Oncology Reports, 0, , .	2.6	1