
Zhenghe Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/237728/publications.pdf Version: 2024-02-01

ZHENCHELL

#	Article	IF	CITATIONS
1	Characterization of DNAÎ ² associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A FN1. Journal of General Virology, 2003, 84, 237-247.	2.9	231
2	Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nature Plants, 2020, 6, 773-779.	9.3	205
3	Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression. PLoS Pathogens, 2014, 10, e1003921.	4.7	186
4	In vitro assembly of the <i>Tomato bushy stunt virus</i> replicase requires the host Heat shock protein 70. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19956-19961.	7.1	157
5	Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biology, 2011, 8, 305-315.	3.1	139
6	Cdc34p Ubiquitin-Conjugating Enzyme Is a Component of the Tombusvirus Replicase Complex and Ubiquitinates p33 Replication Protein. Journal of Virology, 2008, 82, 6911-6926.	3.4	123
7	Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology, 2009, 385, 245-260.	2.4	121
8	A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathogens, 2017, 13, e1006213.	4.7	119
9	Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis. PLoS Pathogens, 2015, 11, e1005223.	4.7	108
10	Tobacco curly shoot virus DNAÎ ² Is Not Necessary for Infection but Intensifies Symptoms in a Host-Dependent Manner. Phytopathology, 2005, 95, 902-908.	2.2	107
11	Translation Elongation Factor 1A Facilitates the Assembly of the Tombusvirus Replicase and Stimulates Minus-Strand Synthesis. PLoS Pathogens, 2010, 6, e1001175.	4.7	104
12	The <scp>AC</scp> 5 protein encoded by <i>Mungbean yellow mosaic India virus</i> is a pathogenicity determinant that suppresses <scp>RNA</scp> silencingâ€based antiviral defenses. New Phytologist, 2015, 208, 555-569.	7.3	88
13	The Nedd4-Type Rsp5p Ubiquitin Ligase Inhibits Tombusvirus Replication by Regulating Degradation of the p92 Replication Protein and Decreasing the Activity of the Tombusvirus Replicase. Journal of Virology, 2009, 83, 11751-11764.	3.4	67
14	Cpr1 cyclophilin and Ess1 parvulin prolyl isomerases interact with the tombusvirus replication protein and inhibit viral replication in yeast model host. Virology, 2010, 406, 342-351.	2.4	60
15	Molecular characterization of tomato-infecting begomoviruses in Yunnan, China. Archives of Virology, 2004, 149, 1721-32.	2.1	53
16	Developments in Plant Negative-Strand RNA Virus Reverse Genetics. Annual Review of Phytopathology, 2016, 54, 469-498.	7.8	52
17	Virus-induced gene silencing and its application in plant functional genomics. Science China Life Sciences, 2012, 55, 99-108.	4.9	49
18	Construction of a <i>Sonchus Yellow Net Virus</i> Minireplicon: a Step toward Reverse Genetic Analysis of Plant Negative-Strand RNA Viruses. Journal of Virology, 2013, 87, 10598-10611.	3.4	46

Zhenghe Li

#	Article	IF	CITATIONS
19	Rapid Construction of Complex Plant RNA Virus Infectious cDNA Clones for Agroinfection Using a Yeast-E. coli-Agrobacterium Shuttle Vector. Viruses, 2017, 9, 332.	3.3	37
20	The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast. PLoS Pathogens, 2017, 13, e1006520.	4.7	37
21	Methylation of translation elongation factor 1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants. Virology, 2014, 448, 43-54.	2.4	31
22	A Novel DNA Motif Contributes to Selective Replication of a Geminivirus-Associated Betasatellite by a Helper Virus-Encoded Replication-Related Protein. Journal of Virology, 2016, 90, 2077-2089.	3.4	31
23	Nucleolin/Nsr1p binds to the 3′ noncoding region of the tombusvirus RNA and inhibits replication. Virology, 2010, 396, 10-20.	2.4	30
24	Specificity of Plant Rhabdovirus Cell-to-Cell Movement. Journal of Virology, 2019, 93, .	3.4	30
25	Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize. Scientific Reports, 2017, 7, 39960.	3.3	29
26	Matrixâ€glycoprotein interactions required for budding of a plant nucleorhabdovirus and induction of inner nuclear membrane invagination. Molecular Plant Pathology, 2018, 19, 2288-2301.	4.2	27
27	Identification of a novel DNA molecule associated with To-bacco leaf curl virus. Science Bulletin, 2002, 47, 1273.	1.7	25
28	The Matrix Protein of a Plant Rhabdovirus Mediates Superinfection Exclusion by Inhibiting Viral Transcription. Journal of Virology, 2019, 93, .	3.4	24
29	Genetic Determinants of Symptoms on Viral DNA Satellites. Applied and Environmental Microbiology, 2009, 75, 5380-5389.	3.1	23
30	Iterons Homologous to Helper Geminiviruses Are Essential for Efficient Replication of Betasatellites. Journal of Virology, 2019, 93, .	3.4	22
31	Natural Defect of a Plant Rhabdovirus Glycoprotein Gene: A Case Study of Virus–Plant Coevolution. Phytopathology, 2021, 111, 227-236.	2.2	21
32	A Naturally Occurring Defective DNA Satellite Associated with a Monopartite Begomovirus: Evidence for Recombination between Alphasatellite and Betasatellite. Viruses, 2013, 5, 2116-2128.	3.3	19
33	A Versatile Plant Rhabdovirus-Based Vector for Gene Silencing, miRNA Expression and Depletion, and Antibody Production. Frontiers in Plant Science, 2020, 11, 627880.	3.6	17
34	Cryo-EM Structure of a Begomovirus Geminate Particle. International Journal of Molecular Sciences, 2019, 20, 1738.	4.1	16
35	Development of Model Systems for Plant Rhabdovirus Research. Advances in Virus Research, 2018, 102, 23-57.	2.1	15
36	Significantly Improved Recovery of Recombinant Sonchus Yellow Net Rhabdovirus by Expressing the Negative-Strand Genomic RNA. Viruses, 2020, 12, 1459.	3.3	14

Zhenghe Li

#	Article	IF	CITATIONS
37	Plant negative-stranded RNA virus biology and host interactions revitalized by reverse genetics. Current Opinion in Virology, 2021, 48, 1-9.	5.4	9
38	Capped antigenomic RNA transcript facilitates rescue of a plant rhabdovirus. Virology Journal, 2017, 14, 113.	3.4	8
39	Development of Rice Stripe Tenuivirus Minireplicon Reverse Genetics Systems Suitable for Analyses of Viral Replication and Intercellular Movement. Frontiers in Microbiology, 2021, 12, 655256.	3.5	8
40	Identification of Yeast Factors Involved in the Replication of Mungbean Yellow Mosaic India Virus Using Yeast Temperature-Sensitive Mutants. Virologica Sinica, 2020, 35, 120-123.	3.0	6
41	Advances in reverse genetics system of plant negative-strand RNA viruses. Chinese Science Bulletin, 2020, 65, 4073-4083.	0.7	6
42	Identification of a cis-Acting Element Derived from Tomato Leaf Curl Yunnan Virus that Mediates the Replication of a Deficient Yeast Plasmid in Saccharomyces cerevisiae. Viruses, 2018, 10, 536.	3.3	2
43	Small RNA biology: From fundamental studies to applications. Science China Life Sciences, 2013, 56, 1059-1062.	4.9	1
44	Plant Rhabdoviruses (Rhabdoviridae). , 2021, , 567-580.		1
45	Split-Luciferase Complementation for Analysis of Virus–Host Protein Interactions. Methods in Molecular Biology, 2022, 2400, 55-62.	0.9	1
46	Development of RNA Polymerase III-Driven Reverse Genetics System for the Rescue of a Plant Rhabdovirus. Virologica Sinica, 2021, 36, 1252-1255.	3.0	0