
Jillian Madine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time-dependent mechanical behaviour of the aortic chronic dissection flap. Interactive Cardiovascular and Thoracic Surgery, 2022, 34, 892-901.	1.1	1
2	Rapid evaporative ionization mass spectrometry (intelligent knife) for point-of-care testing in acute aortic dissection surgery. Interactive Cardiovascular and Thoracic Surgery, 2022, , .	1.1	2
3	Development of amyloid beta gold nanorod aggregates as optoacoustic probes. PLoS ONE, 2022, 17, e0259608.	2.5	1
4	Micromechanical and Ultrastructural Properties of Abdominal Aortic Aneurysms. Artery Research, 2022, 28, 15-30.	0.6	3
5	Microcalcification and Thoracic Aortopathy: A Window Into Disease Severity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 1048-1059.	2.4	3
6	Nano-Scale Stiffness and Collagen Fibril Deterioration: Probing the Cornea Following Enzymatic Degradation Using Peakforce-QNM AFM. Sensors, 2021, 21, 1629.	3.8	8
7	Exploring the potential of rapid evaporative ionization mass spectrometry (Intelligent Knife) for point-of-care testing in aortic surgery. European Journal of Cardio-thoracic Surgery, 2021, 60, 562-568.	1.4	4
8	Bicuspid valve aortopathy is associated with distinct patterns of matrix degradation. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, e239-e257.	0.8	14
9	Insights Into Peptide Inhibition of Alpha-Synuclein Aggregation. Frontiers in Neuroscience, 2020, 14, 561462.	2.8	10
10	Medin Oligomer Membrane Pore Formation: A Potential Mechanism of Vascular Dysfunction. Biophysical Journal, 2020, 118, 2769-2782.	0.5	9
11	Cerebrovascular medin is associated with Alzheimer's disease and vascular dementia. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12072.	2.4	11
12	Medin aggregation causes cerebrovascular dysfunction in aging wild-type mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23925-23931.	7.1	20
13	Medin amyloid forms ageâ€associated aggregates in the brain vasculature and may contribute to cerebral βâ€amyloidosis. Alzheimer's and Dementia, 2020, 16, e042861.	0.8	Ο
14	Cyclophilin D binds to the acidic C-terminus region of $\hat{I}\pm$ -Synuclein and affects its aggregation characteristics. Scientific Reports, 2020, 10, 10159.	3.3	11
15	Endothelial Immune Activation by Medin: Potential Role in Cerebrovascular Disease and Reversal by Monosialogangliosideâ€Containing Nanoliposomes. Journal of the American Heart Association, 2020, 9, e014810.	3.7	18
16	Idiopathic degenerative thoracic aneurysms are associated with increased aortic medial amyloid. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 148-155.	3.0	15
17	Cofactor-mediated amyloidogenesis. Bioscience Reports, 2019, 39, .	2.4	3
18	Macro- and Micro-mechanical Properties of the Ovine Aorta: Correlation with Regional Variations in Collagen, Elastin and Glycosaminoglycan Levels. Artery Research, 2019, 25, 27-36.	0.6	4

JILLIAN MADINE

#	Article	IF	CITATIONS
19	Monitoring Native and Aggregate Structure of Amino Acids and Human Insulin with Blue Autofluorescence. Biophysical Journal, 2018, 114, 172a.	0.5	0
20	Isolation and purification of recombinant immunoglobulin light chain variable domains from the periplasmic space of Escherichia coli. PLoS ONE, 2018, 13, e0206167.	2.5	1
21	Human cerebral collateral arteriole function in subjects with normal cognition, mild cognitive impairment, and dementia. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H284-H290.	3.2	10
22	Insights into the Origin of Distinct Medin Fibril Morphologies Induced by Incubation Conditions and Seeding. International Journal of Molecular Sciences, 2018, 19, 1357.	4.1	5
23	Heparin and Methionine Oxidation Promote the Formation of Apolipoprotein A-I Amyloid Comprising α-Helical and β-Sheet Structures. Biochemistry, 2017, 56, 1632-1644.	2.5	23
24	Amyloidogenic medin induces endothelial dysfunction and vascular inflammation through the receptor for advanced glycation endproducts. Cardiovascular Research, 2017, 113, 1389-1402.	3.8	30
25	Effect of amino acid mutations on the conformational dynamics of amyloidogenic immunoglobulin light-chains: A combined NMR and in silico study. Scientific Reports, 2017, 7, 10339.	3.3	4
26	Probing Medin Monomer Structure and its Amyloid Nucleation Using 13C-Direct Detection NMR in Combination with Structural Bioinformatics. Scientific Reports, 2017, 7, 45224.	3.3	13
27	Using an NMR metabolomics approach to investigate the pathogenicity of amyloid-beta and alpha-synuclein. Metabolomics, 2017, 13, 151.	3.0	17
28	1H, 15N and 13C assignment of the amyloidogenic protein medin using fast-pulsing NMR techniques. Biomolecular NMR Assignments, 2016, 10, 75-77.	0.8	4
29	Nanoliposomes protect against human arteriole endothelial dysfunction induced by β-amyloid peptide. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 405-412.	4.3	11
30	Oxidative Stress Alters the Morphology and Toxicity of Aortic Medial Amyloid. Biophysical Journal, 2015, 109, 2363-2370.	0.5	17
31	Comparisons with Amyloid-β Reveal an Aspartate Residue That Stabilizes Fibrils of the Aortic Amyloid Peptide Medin. Journal of Biological Chemistry, 2015, 290, 7791-7803.	3.4	12
32	Heparin Promotes the Rapid Fibrillization of a Peptide with Low Intrinsic Amyloidogenicity. Biochemistry, 2013, 52, 8984-8992.	2.5	17
33	Insights into the Molecular Architecture of a Peptide Nanotube Using FTIR and Solidâ€State NMR Spectroscopic Measurements on an Aligned Sample. Angewandte Chemie - International Edition, 2013, 52, 10537-10540.	13.8	59
34	Fibrils and nanotubes assembled from a modified amyloid-β peptide fragment differ in the packing of the same β-sheet building blocks. Chemical Communications, 2012, 48, 2976.	4.1	32
35	Siteâ€Specific Identification of an Aβ Fibril–Heparin Interaction Site by Using Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 13140-13143.	13.8	26
36	Solidâ€state NMR reveals differences in the packing arrangements of peptide aggregates derived from the aortic amyloid polypeptide medin. Journal of Peptide Science, 2012, 18, 65-72.	1.4	6

JILLIAN MADINE

#	Article	IF	CITATIONS
37	Comparison of aggregation enhancement and inhibition as strategies for reducing the cytotoxicity of the aortic amyloid polypeptide medin. European Biophysics Journal, 2010, 39, 1281-1288.	2.2	22
38	Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site. Physical Chemistry Chemical Physics, 2010, 12, 13999.	2.8	11
39	Evaluation of βâ€Alanine―and GABAâ€Substituted Peptides as Inhibitors of Diseaseâ€Linked Protein Aggregation. ChemBioChem, 2009, 10, 1982-1987.	2.6	8
40	Cross-β Spine Architecture of Fibrils Formed by the Amyloidogenic Segment NFGSVQFV of Medin from Solid-State NMR and X-ray Fiber Diffraction Measurements. Biochemistry, 2009, 48, 3089-3099.	2.5	24
41	Inhibitors of protein aggregation and toxicity. Biochemical Society Transactions, 2009, 37, 692-696.	3.4	63
42	Exploiting a 13C-labelled heparin analogue for in situ solid-state NMR investigations of peptide-glycan interactions within amyloid fibrils. Organic and Biomolecular Chemistry, 2009, 7, 2414.	2.8	16
43	Targeting alpha-synuclein aggregation for Parkinson's disease treatement. Drugs of the Future, 2009, 34, 655.	0.1	2
44	Structural Insights into the Polymorphism of Amyloid-Like Fibrils Formed by Region 20â^'29 of Amylin Revealed by Solid-State NMR and X-ray Fiber Diffraction. Journal of the American Chemical Society, 2008, 130, 14990-15001.	13.7	177
45	Membrane interactions of peptides representing the polybasic regions of three Rho GTPases are sensitive to the distribution of arginine and lysine residues. Molecular Membrane Biology, 2008, 25, 14-22.	2.0	7
46	Design of an N-Methylated Peptide Inhibitor of α-Synuclein Aggregation Guided by Solid-State NMR. Journal of the American Chemical Society, 2008, 130, 7873-7881.	13.7	86
47	The effects of α-synuclein on phospholipid vesicle integrity: a study using31P NMR and electron microscopy. Molecular Membrane Biology, 2008, 25, 518-527.	2.0	24
48	An NMR strategy for obtaining multiple conformational constraints for15N–13C spin-pair labelled organic solids. Physical Chemistry Chemical Physics, 2006, 8, 5223-5228.	2.8	7
49	A Study of the Regional Effects of $\hat{I}\pm$ -Synuclein on the Organization and Stability of Phospholipid Bilayers. Biochemistry, 2006, 45, 5783-5792.	2.5	47
50	Studies of the aggregation of an amyloidogenic α-synuclein peptide fragment. Biochemical Society Transactions, 2005, 33, 1113-1115.	3.4	10
51	Studies of the aggregation of an amyloidogenic α-synuclein peptide fragment. Biochemical Society Transactions, 2005, 33, 1113.	3.4	8
52	Screening Molecular Associations with Lipid Membranes Using Natural Abundance13C Cross-Polarization Magic-Angle Spinning NMR and Principal Component Analysis. Journal of the American Chemical Society, 2004, 126, 9478-9479.	13.7	6
53	The aggregation and membrane-binding properties of an α-synuclein peptide fragment. Biochemical Society Transactions, 2004, 32, 1127-1129.	3.4	13