Kristin A Hogquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377087/publications.pdf Version: 2024-02-01

KRISTIN A HOCOLLIST

#	Article	IF	CITATIONS
1	Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8+ tissue-resident memory TÂcells. Immunity, 2022, 55, 98-114.e5.	14.3	38
2	Epithelial STAT6 O-ClcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C. Immunity, 2022, 55, 623-638.e5.	14.3	45
3	Type 2 cytokines in the thymus activate Sirpα+ dendritic cells to promote clonal deletion. Nature Immunology, 2022, 23, 1042-1051.	14.5	15
4	MHC Class I on murine hematopoietic APC selects Type A IEL precursors in the thymus. European Journal of Immunology, 2021, 51, 1080-1088.	2.9	6
5	Classical MHC expression by DP thymocytes impairs the selection of non-classical MHC restricted innate-like T cells. Nature Communications, 2021, 12, 2308.	12.8	11
6	Immunology Lessons from the SARS-CoV-2 Pandemic. Annual Review of Immunology, 2021, 39, v-vii.	21.8	0
7	Microbiotaâ€Driven Activation of Intrahepatic B Cells Aggravates NASH Through Innate and Adaptive Signaling. Hepatology, 2021, 74, 704-722.	7.3	95
8	Intestinal CD8αα IELs derived from two distinct thymic precursors have staggered ontogeny. Journal of Experimental Medicine, 2020, 217, .	8.5	16
9	VISTA is a checkpoint regulator for naÃ ⁻ ve T cell quiescence and peripheral tolerance. Science, 2020, 367, .	12.6	156
10	Recent advances in iNKT cell development. F1000Research, 2020, 9, 127.	1.6	40
11	Programmed Death-1 Restrains the Germinal Center in Type 1 Diabetes. Journal of Immunology, 2019, 203, 844-852.	0.8	15
12	Early childhood education is critical for Treg cells. Nature Immunology, 2019, 20, 952-954.	14.5	0
13	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
14	The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation. Nature Communications, 2019, 10, 354.	12.8	74
15	Development, ontogeny, and maintenance of TCRαβ+ CD8αα IEL. Current Opinion in Immunology, 2019, 58, 83-88.	5.5	18
16	Measuring Thymic Clonal Deletion at the Population Level. Journal of Immunology, 2019, 202, 3226-3233.	0.8	40
17	ARTC2.2/P2RX7 Signaling during Cell Isolation Distorts Function and Quantification of Tissue-Resident CD8+ T Cell and Invariant NKT Subsets. Journal of Immunology, 2019, 202, 2153-2163.	0.8	47
18	Myeloid cells activate iNKT cells to produce IL-4 in the thymic medulla. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22262-22268.	7.1	27

#	Article	IF	CITATIONS
19	Directing T cell fate: How thymic antigen presenting cells coordinate thymocyte selection. Seminars in Cell and Developmental Biology, 2018, 84, 2-10.	5.0	36
20	For T Cells, the Child Is Father of the Man. Cell, 2018, 174, 16-18.	28.9	229
21	The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature, 2018, 559, 264-268.	27.8	209
22	How Lipid-Specific T Cells Become Effectors: The Differentiation of iNKT Subsets. Frontiers in Immunology, 2018, 9, 1450.	4.8	56
23	Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature, 2018, 559, 627-631.	27.8	221
24	Intravenous Labeling and Analysis of the Content of Thymic Perivascular Spaces. Bio-protocol, 2018, 8,	0.4	4
25	CCR7 defines a precursor for murine iNKT cells in thymus and periphery. ELife, 2018, 7, .	6.0	77
26	Ultrasound Guided Intra-thymic Injection to Track Recent Thymic Emigrants and Investigate T Cell Development. Bio-protocol, 2018, 8, .	0.4	4
27	CD8αα intraepithelial lymphocytes arise from two main thymic precursors. Nature Immunology, 2017, 18, 771-779.	14.5	93
28	Cutting Edge: Dual TCRα Expression Poses an Autoimmune Hazard by Limiting Regulatory T Cell Generation. Journal of Immunology, 2017, 199, 33-38.	0.8	20
29	Wait, Wait $\hat{a} \in \stackrel{1}{l}$ OK Now Go In: iNKT Cells Resolve Liver Inflammation. Immunity, 2017, 47, 609-610.	14.3	2
30	T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCl Insight, 2017, 2, .	5.0	18
31	Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst Î ³ δT, Innate Lymphoid, and Th Cells. Journal of Immunology, 2016, 197, 1460-1470.	0.8	114
32	Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. Nature Immunology, 2016, 17, 565-573.	14.5	150
33	Spontaneous partial loss of the OT-I transgene. Nature Immunology, 2016, 17, 471-471.	14.5	7
34	Prospective studies of infectious mononucleosis in university students. Clinical and Translational Immunology, 2016, 5, e94.	3.8	35
35	How MAIT cells get their start. Nature Immunology, 2016, 17, 1238-1240.	14.5	6
36	OKT3 and H57-597: From Discovery, to Commercialization, to the Clinic. Journal of Immunology, 2016, 197, 3429-3430.	0.8	3

#	Article	IF	CITATIONS
37	IL-4 sensitivity shapes the peripheral CD8+ T cell pool and response to infection. Journal of Experimental Medicine, 2016, 213, 1319-1329.	8.5	51
38	CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nature Immunology, 2016, 17, 304-314.	14.5	178
39	Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nature Immunology, 2016, 17, 187-195.	14.5	178
40	The Transcription Factor KLF2 Restrains CD4 + T Follicular Helper Cell Differentiation. Immunity, 2015, 42, 252-264.	14.3	149
41	Infectious mononucleosis. Clinical and Translational Immunology, 2015, 4, e33.	3.8	167
42	Cytokine-Mediated Loss of Blood Dendritic Cells During Epstein-Barr Virus–Associated Acute Infectious Mononucleosis: Implication for Immune Dysregulation. Journal of Infectious Diseases, 2015, 212, 1957-1961.	4.0	22
43	Impaired Epstein-Barr Virus-Specific Neutralizing Antibody Response during Acute Infectious Mononucleosis Is Coincident with Global B-Cell Dysfunction. Journal of Virology, 2015, 89, 9137-9141.	3.4	21
44	Innate Memory T cells. Advances in Immunology, 2015, 126, 173-213.	2.2	99
45	Infectious Mononucleosis. Current Topics in Microbiology and Immunology, 2015, 390, 211-240.	1.1	148
46	T Cell Adolescence: Maturation Events Beyond Positive Selection. Journal of Immunology, 2015, 195, 1351-1357.	0.8	58
47	Tissue-Specific Distribution of iNKT Cells Impacts Their Cytokine Response. Immunity, 2015, 43, 566-578.	14.3	244
48	The TCR's sensitivity to self peptide–MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens. Nature Immunology, 2015, 16, 107-117.	14.5	168
49	The Incubation Period of Primary Epstein-Barr Virus Infection: Viral Dynamics and Immunologic Events. PLoS Pathogens, 2015, 11, e1005286.	4.7	90
50	Primary EBV Infection Induces an Expression Profile Distinct from Other Viruses but Similar to Hemophagocytic Syndromes. PLoS ONE, 2014, 9, e85422.	2.5	41
51	From pre-DP, post-DP, SP4, and SP8 Thymocyte Cell Counts to a Dynamical Model of Cortical and Medullary Selection. Frontiers in Immunology, 2014, 5, 19.	4.8	32
52	Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nature Immunology, 2014, 15, 473-481.	14.5	239
53	Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nature Reviews Immunology, 2014, 14, 377-391.	22.7	1,043
54	The self-obsession of T cells: how TCR signaling thresholds affect fate 'decisions' and effector function. Nature Immunology, 2014, 15, 815-823.	14.5	230

#	Article	IF	CITATIONS
55	TCR Affinity and Tolerance Mechanisms Converge To Shape T Cell Diabetogenic Potential. Journal of Immunology, 2014, 193, 571-579.	0.8	35
56	Cutting Edge: NKG2ChiCD57+ NK Cells Respond Specifically to Acute Infection with Cytomegalovirus and Not Epstein–Barr Virus. Journal of Immunology, 2014, 192, 4492-4496.	0.8	153
57	Antigen-Dependent versus -Independent Activation of Invariant NKT Cells during Infection. Journal of Immunology, 2014, 192, 5490-5498.	0.8	74
58	Isolation, Identification, and Purification of Murine Thymic Epithelial Cells. Journal of Visualized Experiments, 2014, , e51780.	0.3	35
59	Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nature Immunology, 2013, 14, 1285-1293.	14.5	621
60	Behavioral, Virologic, and Immunologic Factors Associated With Acquisition and Severity of Primary Epstein–Barr Virus Infection in University Students. Journal of Infectious Diseases, 2013, 207, 80-88.	4.0	261
61	Murine thymic selection quantified using a unique method to capture deleted T cells. Proceedings of the United States of America, 2013, 110, 4679-4684.	7.1	148
62	Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nature Immunology, 2013, 14, 1146-1154.	14.5	510
63	Distinct Temporal Patterns of T Cell Receptor Signaling During Positive Versus Negative Selection in Situ. Science Signaling, 2013, 6, ra92.	3.6	83
64	Thymoproteasome subunit-β5T generates peptide-MHC complexes specialized for positive selection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6979-6984.	7.1	80
65	Virtual memory CD8 T cells display unique functional properties. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13498-13503.	7.1	137
66	Development of promyelocytic leukemia zinc finger-expressing innate CD4 T cells requires stronger T-cell receptor signals than conventional CD4 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16264-16269.	7.1	15
67	Primary Epstein-Barr virus infection does not erode preexisting CD8+ T cell memory in humans. Journal of Experimental Medicine, 2012, 209, 471-478.	8.5	62
68	Death diverted, but to what?. Nature Immunology, 2012, 13, 528-530.	14.5	2
69	Krüppel-like Factors in Lymphocyte Biology. Journal of Immunology, 2012, 188, 521-526.	0.8	54
70	Antigen-Independent Differentiation and Maintenance of Effector-like Resident Memory T Cells in Tissues. Journal of Immunology, 2012, 188, 4866-4875.	0.8	537
71	Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2072-2077.	7.1	31
72	Selection of Self-Reactive T Cells in the Thymus. Annual Review of Immunology, 2012, 30, 95-114.	21.8	290

5

#	Article	IF	CITATIONS
73	T-Cell Tolerance: Central and Peripheral. Cold Spring Harbor Perspectives in Biology, 2012, 4, a006957-a006957.	5.5	347
74	T ell receptor affinity in thymic development. Immunology, 2012, 135, 261-267.	4.4	72
75	Progress and Problems in Understanding and Managing Primary Epstein-Barr Virus Infections. Clinical Microbiology Reviews, 2011, 24, 193-209.	13.6	340
76	Alternative memory in the CD8 T cell lineage. Trends in Immunology, 2011, 32, 50-56.	6.8	122
77	Editorial overview. Current Opinion in Immunology, 2011, 23, 153-155.	5.5	0
78	Kruppel-Like Factor 2 Is Required for Trafficking but Not Quiescence in Postactivated T Cells. Journal of Immunology, 2011, 186, 775-783.	0.8	47
79	Krüppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 716-721.	7.1	94
80	Postselection Thymocyte Maturation and Emigration Are Independent of IL-7 and ERK5. Journal of Immunology, 2011, 186, 1343-1347.	0.8	19
81	T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. Journal of Experimental Medicine, 2011, 208, 1279-1289.	8.5	881
82	Why CD8+ T Cells Need Diversity When Growing Up. Immunity, 2010, 32, 5-6.	14.3	12
83	T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nature Immunology, 2010, 11, 709-716.	14.5	225
84	Krüppel-Like Factor 2 Regulates Trafficking and Homeostasis of γδT Cells. Journal of Immunology, 2010, 184, 6060-6066.	0.8	50
85	Acute Ablation of Langerhans Cells Enhances Skin Immune Responses. Journal of Immunology, 2010, 185, 4724-4728.	0.8	111
86	Patrolling Murine Monocytes Are Defined by Their Expression of the Orphan Nuclear Receptor, Nur77 (nr4a1). Blood, 2010, 116, 4723-4723.	1.4	0
87	Positive selection optimizes the number and function of MHCII-restricted CD4 ⁺ T cell clones in the naive polyclonal repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11241-11245.	7.1	39
88	Epidermal Langerhans Cells Are Not Required for UV-Induced Immunosuppression. Journal of Immunology, 2009, 183, 5548-5553.	0.8	40
89	Langerhans Cells Are Not Required for the CD8 T Cell Response to Epidermal Self-Antigens. Journal of Immunology, 2009, 182, 4657-4664.	0.8	31
90	Thymic emigration: Sphingosineâ€1â€phosphate receptorâ€1â€dependent models and beyond. European Journal of Immunology, 2009, 39, 925-930.	2.9	13

#	Article	IF	CITATIONS
91	Treg cells meet their limit. Nature Immunology, 2009, 10, 565-566.	14.5	6
92	KLF2 Transcription-Factor Deficiency in T Cells Results in Unrestrained Cytokine Production and Upregulation of Bystander Chemokine Receptors. Immunity, 2009, 31, 122-130.	14.3	183
93	Roles of Krüppel-like Factors in Lymphocytes. , 2009, , 95-106.		0
94	Characterization of Nur77+ Cells in Murine Peripheral Blood Blood, 2009, 114, 1361-1361.	1.4	0
95	Central tolerance: what have we learned from mice?. Seminars in Immunopathology, 2008, 30, 399-409.	6.1	31
96	Tâ€cell migration: Kruppeled T cells move again. Immunology and Cell Biology, 2008, 86, 297-298.	2.3	6
97	Immunodeficiency: when T cells are stuck at home. Nature Immunology, 2008, 9, 1207-1208.	14.5	9
98	Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. Journal of Experimental Medicine, 2008, 205, 2575-2584.	8.5	151
99	Langerin Expressing Cells Promote Skin Immune Responses under Defined Conditions. Journal of Immunology, 2008, 180, 4722-4727.	0.8	106
100	Thymic Emigration: When and How T Cells Leave Home. Journal of Immunology, 2008, 181, 2265-2270.	0.8	134
101	Regulation of KLF2 in the Thymus. FASEB Journal, 2008, 22, 346-346.	0.5	0
102	Presentation of skin self antigens by nonâ€hematopoietic cells induces autoimmunity FASEB Journal, 2008, 22, 463-463.	0.5	0
103	Transcriptional Analysis of Clonal Deletion In Vivo. Journal of Immunology, 2007, 179, 837-844.	0.8	73
104	Mouse Models of Negative Selection. , 2007, , 207-221.		0
105	Identification of a novel population of Langerin+ dendritic cells. Journal of Experimental Medicine, 2007, 204, 3147-3156.	8.5	453
106	Thymic emigration revisited. Journal of Experimental Medicine, 2007, 204, 2513-2520.	8.5	233
107	Tec Kinases in T Cell Development: A Clue behind the Mask?. Immunity, 2006, 25, 9-11.	14.3	1
108	Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature, 2006, 442, 299-302.	27.8	489

#	Article	IF	CITATIONS
109	Lymphocyte development. Current Opinion in Immunology, 2006, 18, 113-115.	5.5	0
110	Conditioning of Langerhans Cells Induced by a Primary CD8 T Cell Response to Self-Antigen In Vivo. Journal of Immunology, 2006, 176, 4658-4665.	0.8	12
111	Central tolerance: learning self-control in the thymus. Nature Reviews Immunology, 2005, 5, 772-782.	22.7	549
112	Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells. PLoS Biology, 2005, 3, e82.	5.6	120
113	A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proceedings of the United States of America, 2005, 102, 13574-13579.	7.1	115
114	The timing of TCR \hat{i} ± expression critically influences T cell development and selection. Journal of Experimental Medicine, 2005, 202, 111-121.	8.5	155
115	Central Tolerance to Self-Antigen Expressed by Cortical Epithelial Cells. Journal of Immunology, 2004, 172, 851-856.	0.8	26
116	The Regulated Expression of a Diverse Set of Genes during Thymocyte Positive Selection In Vivo. Journal of Immunology, 2004, 173, 5434-5444.	0.8	51
117	The Fourth Way? Harnessing Aggressive Tendencies in the Thymus. Journal of Immunology, 2004, 173, 6515-6520.	0.8	83
118	Langerhans Cells Activate Naive Self-Antigen-Specific CD8 T Cells in the Steady State. Immunity, 2004, 21, 391-400.	14.3	114
119	Receptor Sensitivity: When T cells Lose Their Sense of Self. Current Biology, 2003, 13, R239-R241.	3.9	21
120	Antigen receptor selection by editing or downregulation of V(D)J recombination. Current Opinion in Immunology, 2003, 15, 182-189.	5.5	68
121	Positive and Negative Selection of T Cells. Annual Review of Immunology, 2003, 21, 139-176.	21.8	1,321
122	The Central Tolerance Response to Male Antigen in Normal Mice Is Deletion and Not Receptor Editing. Journal of Immunology, 2003, 171, 4048-4053.	0.8	9
123	Thymocyte Sensitivity and Supramolecular Activation Cluster Formation Are Developmentally Regulated: A Partial Role for Sialylation. Journal of Immunology, 2003, 171, 4512-4520.	0.8	52
124	A Spontaneous CD8 T Cell-Dependent Autoimmune Disease to an Antigen Expressed Under the Human Keratin 14 Promoter. Journal of Immunology, 2002, 169, 2141-2147.	0.8	52
125	CD53, a thymocyte selection marker whose induction requires a lower affinity TCR–MHC interaction than CD69, but is up-regulated with slower kinetics. International Immunology, 2002, 14, 249-258.	4.0	29
126	Rare, Structurally Homologous Self-Peptides Promote Thymocyte Positive Selection. Immunity, 2002, 17, 131-142.	14.3	90

#	Article	IF	CITATIONS
127	Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nature Immunology, 2002, 3, 903-910.	14.5	250
128	Assays of Thymic Selection: Fetal Thymus Organ Culture and In Vitro Thymocyte Dulling Assay. , 2001, 156, 219-232.		18
129	CD8 Binding to MHC Class I Molecules Is Influenced by T Cell Maturation and Glycosylation. Immunity, 2001, 15, 1051-1061.	14.3	166
130	Signal strength in thymic selection and lineage commitment. Current Opinion in Immunology, 2001, 13, 225-231.	5.5	115
131	A Low Affinity TCR Ligand Restores Positive Selection of CD8+ T Cells In Vivo. Journal of Immunology, 2001, 166, 6602-6607.	0.8	33
132	T cell receptor editing. Immunology Letters, 2000, 75, 27-31.	2.5	3
133	Receptor editing in developing T cells. Nature Immunology, 2000, 1, 336-341.	14.5	139
134	Positive Selection Is Limited by Available Peptide-Dependent MHC Conformations. Journal of Immunology, 2000, 164, 3519-3526.	0.8	12
135	Qualitative and Quantitative Differences in T Cell Receptor Binding of Agonist and Antagonist Ligands. Immunity, 1999, 10, 227-237.	14.3	216
136	Preselection Thymocytes Are More Sensitive to T Cell Receptor Stimulation Than Mature T Cells. Journal of Experimental Medicine, 1998, 188, 1867-1874.	8.5	196
137	Identification of a Naturally Occurring Ligand for Thymic Positive Selection. Immunity, 1997, 6, 389-399.	14.3	171
138	CD8 Lineage Commitment in the Absence of CD8. Immunity, 1997, 6, 633-642.	14.3	66
139	Options for TCR Interactions: TCR Agonists, Antagonists and Partial Agonists. , 1996, , 181-190.		0
140	Positive Selection of Thymocytes. Annual Review of Immunology, 1995, 13, 93-126.	21.8	557
141	Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity, 1995, 3, 79-86.	14.3	160
142	Major histocompatibility complex class I allele-specific peptide libraries: Identification of peptides that mimic an H-Y T cell epitope. European Journal of Immunology, 1994, 24, 2124-2133.	2.9	48
143	The ligand for positive selection of T lymphocytes in the thymus. Current Opinion in Immunology, 1994, 6, 273-278.	5.5	53
144	Specificity and flexibility in thymic selection. Nature, 1994, 369, 750-752.	27.8	211

#	Article	IF	CITATIONS
145	T cell receptor antagonist peptides induce positive selection. Cell, 1994, 76, 17-27.	28.9	2,538
146	The Specificity of Positive Selection: MHC and Peptides. Immunological Reviews, 1993, 135, 51-66.	6.0	11
147	Epstein-Barr Virus and Cytomegalovirus. , 0, , 563-577.		0
148	An OGT-STAT5 Axis in Regulatory T Cells Controls Energy and Iron Metabolism. Frontiers in Immunology, 0, 13, .	4.8	4